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Abstract
This manuscript deals with global solution, polynomial stability and blow-up behavior at a finite time for
the nonlinear system {

u′′ −∆pu+ θ + αu′ = |u|p−2
u ln |u|

θ′ −∆θ = u′

where ∆p is the nonlinear p-Laplacian operator, 2 ≤ p <∞. Taking into account that the initial data is in
a suitable stability set created from the Nehari manifold, the global solution is constructed by means of
the Faedo-Galerkin approximations. Polynomial decay is proven for a subcritical level of initial energy.
The blow-up behavior is shown on an instability set with negative energy values.
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1. Introduction
A thermoelastic system is the result of the coupling of a hyperbolic equation with a parabolic equation. As is

well known, these systems describe the elastic and thermal behavior of elastic, heat-conducting media, especially
the interactions between elastic stresses and temperature differences. The pioneering work on thermoelasticity
without p -Laplacian was presented by C. M. Dafermos [1] in 1968. Since then, a great interest has been aroused in
different contexts and nowadays there are many results on global and local solutions, stability, and burst behavior
of solutions in thermoelasticity theory. We can cite [2–11] with references therein.
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Nonlinear hyperbolic problems have always been much studied by mathematicians and physicists. From the math-
ematical point of view, in [12] was investigated the initial boundary value problem of a nonlinear wave equation
with weak and strong damping terms and logarithmic term, and in [13] the viscoelastic wave equation with a
strong damping and nonlinearity logarithmic source was considered. In physics, the nonlinear logarithmic source
|u|p−2u ln |u| arises in inflation cosmology, supersymmetric led theories, quantum mechanics, nuclear physics, and
fluid mechanics, [14–17].

Regarding global solution for wave equation of p-Laplacian type without an additional dissipation term

u′′ −∆pu = 0, (1.1)

for n = 1, M. Derher [18] proved the local in time existence of solution and showed by a generic counter-example
that the global in time solution can not be expected. Adding a strong damping−∆u′ in (1.1) the well-posedness and
asymptotic behavior was studied by J. M. Greenberg [19]. In fact, the strong damping plays an important role on the
existence and stability for p-Laplacian wave equation see for instance for n ≥ 2 [20–27]. Nevertheless, if the strong
damping is replaced by a weaker damping u′, then global existence and uniqueness are only know for n = 1; 2,
see [28]. For the intermediary damping given by (−∆)αu′, with 0 < α ≤ 1, in [29] was proved the global solution
depending on the growth of a forcing term. The background of these problems are in physics, especially in solid
mechanics. The p-Laplacian problem for the electromagnetic effects in high-temperature Type II superconductors
is considered in [30] where authors presented an extension of previous work on relaxation schemes applied to
degenerate parabolic problems. Global boundedness of weak solution in an attraction–repulsion chemotaxis system
with p-Laplacian diffusion was considered in [31]. In [32], the entire blow-up solutions for a quasilinear p-Laplacian
Schrödinger elliptic equation with a non-square diffusion term. By using the dual approach and some new iterative
techniques, the difficulty due to the non-square diffusion term and the p-Laplacian operator is overcome and the
nonexistence and existence of entire blow-up solutions are established.

Thermoelastic problems involving the p-Laplacian are becoming the new object of research. The following thermoe-
lastic system which contains corner-edge Laplacian and p-Laplacian type operators with potential function

u′′ −∆p,Ku− εV (x̃)u+ θ = |u|α−1u,

θ′ −∆Ku = u′,

with α > 1 was studied in [33] where K is the stretched manifold with respect to the manifold K with corner-edge
singularity and x̃ ∈ K. The operator ∆p,K + εV (x̃) with p 6= 2 arises from a diversity of physical phenomena, like in
reaction-diffusion problems, in nonlinear elasticity, in non-Newtonian fluids and petroleum extraction. In [34] the
relationship with non-Newtonian Mechanics was considered. Authors present a full classification of the short-time
behavior of the interfaces and local solutions to the nonlinear parabolic p-Laplacian type reaction-diffusion equation
of non-Newtonian elastic filtration

u′ −
(
|ux|p−2ux

)
x

+ buβ = 0, 1 < p < 2, β > 0.

In [35] was studied the problem for a parabolic equation involving fractional p-Laplacian with logarithmic
nonlinearity. For 2 ≤ p <∞ the existence of a global solution for the thermoelastic system of p-Laplacian type given
by {

u′′ −∆pu+ θ = |u|r−1u,
θ′ −∆θ = u′.

(1.2)

has been proven in [36]. Later, in [37], by employing the potential well theory, authors discuss the properties of
finite-time blow-up and give the lower and upper bounds of blow-up time to the solutions.

Regarding the model (1.2) in this manuscript, we analyze the competition between the weak damping αu′, α > 0

and the logarithmic source |u|p−2
u ln |u|. To our goal we consider the following system

u′′ −∆pu+ θ + αu′ = |u|p−2
u ln |u| , (x, t) ∈ Ω× R+, (1.3)

θ′ −∆θ = u′, (x, t) ∈ Ω× R+, (1.4)
u(x, 0) = u0(x), u′(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω, (1.5)

u(x, t) = θ(x, t) = 0 on ∂Ω× [0,∞). (1.6)
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This paper is organized as follows. In the Section 2, we introduce the notation and some technical lemmas.
Section 3 deals with the potential well, we introduce some notations and the stability set for the problem. In the
section 4 we introduce a suitable Galerkin basis necessary to deal with the operator p-Laplacian. In the section 5 we
prove the existence of global solution by Faedo-Galerkin method. In section 6 we prove the polynomial. Finally in
section 7 we prove the blow-up in finite time for initial data in the instability set.

2. Preliminaries

The duality pairing between the space W 1,p
0 (Ω) and its dual W−1,p′(Ω) will be denoted using the form 〈 · , · 〉p.

According to Poincaré’s inequality, the standard norm ‖ · ‖W 1,p
0 (Ω) is equivalent to the norm ‖∇ · ‖p on W 1,p

0 (Ω).
Henceforth, we put ‖ · ‖W 1,p

0 (Ω) = ‖∇ · ‖p. We denote ‖ · ‖L2(Ω) = | · |2 and the usual inner product by ( · , · ).

Let B be a Banach space and u : [0, T ]→ B a mensurable function. We denote by

Lp(0, T ;B) =

u :

(∫ T

0

||u(t)||pB dt

)1/p

<∞, if 1 ≤ p <∞

 ,

L∞(0, T ;B) =

{
u : sup ess

t∈(0,T )

||u(t)||B <∞, if p =∞

}
.

The p-Laplacian operator is given by ∆pu = div
(
|∇u|p−2∇u

)
. ∆pu can be extended to a monotone, bounded,

hemicontinuos and coercive operator between the spaces W 1,p
0 (Ω) and its dual by

−∆p : W 1,p
0 (Ω)→W−1,p′(Ω), 〈−∆pu, v〉p =

∫
Ω

|∇u|p−2∇u · ∇v dx.

We assume that the parameter p satisfies the following assumptions.

(H): p ≥ 2 if n = 1, 2 and 2 ≤ p ≤ 2n− 2

n− 2
if n ≥ 3.

By (H) we have
W

1,2(p−1)
0 (Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω).

Now, we present some results that will be used in this manuscript.

Lemma 2.1 (Kim [38], Lemma 1.4 ). Let um be a sequence of functions such that as m→∞

um
∗
⇀ u in L∞(0, T ;Hβ(Ω)), weakly star,

umt ⇀ ut in L2(0, T ;Hα(Ω)), weakly,

where −1 ≤ α < β ≤ 1. Then, we have

um ⇀ u in C([0, T ] ; Hη(Ω)), for any η < β.

Lemma 2.2 (Lions [39], Lemma 1.3 ). Let Q = Ω × (0, T ), T > 0 a bounded open set of Rn × R and gm, g : Q → R
functions of Lp(0, T ;Lp(Ω)) = L(Q), 1 < p <∞ such that ||gm||Lp(Q) ≤ C, gm → g a.e. in Q. Then

gm ⇀ g in Lp(0, T ;Lp(Ω)) as m→∞.

Lemma 2.3 (Lions-Aubin [39], Theorem 5.1). Let T > 0, 1 < p0, p1 <∞. Consider B0 ⊂ B ⊂ B1 Banach spaces, B0, B1

reflexives, B0 with compact immersion in B. Define W = {u | u ∈ Lp0(0, T ;B0) , u′ ∈ Lp1(0, T ;B1)} equipped with the
norm ||u||W = ||u||Lp0 (0,T ;B0) + ||u||Lp1 (0,T ;B1). Then, W has compact immersion in Lp0(0, T ;B).
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Lemma 2.4 (Martinez [40]). Let E : (0,∞)→ (0,∞) be a nonincreasing function and φ : [0,∞)→ [0,∞) an increasing
C1 function such that φ(0) = 0 and φ(t)→∞ as t→∞.

Assume that there exist σ > −1 and ω > 0 such that∫ ∞
S

E1+σ(t)φ′(t) dt ≤ 1

ω
Eσ(0)E(S), 0 ≤ S <∞.

Then

E(t) = 0 ∀t ≥ E(0)σ

ω|σ|
, if − 1 < σ < 0,

E(t) ≤ E(0)
( 1 + σ

1 + ωφ(t)

)1/σ ∀t ≥ 0, if σ > 0,

E(t) ≤ E(0)e1−ωφ(t) ∀t ≥ 0, if σ = 0.

Lemma 2.5 (Levine [41], Qin-Rivera [42]). Suppose that φ(t) ∈ C2[0,∞) is a positive function satisfying

φ(t)φ′′(t)− (1 + γ)(φ′(t))2 ≥ −2C1φ(t)φ′(t)− C2(φ(t)2,

being C1, C2 ≥ 0 and γ > 0 are constants. If

C1 + C2 ≥ 0, φ(0) > 0, φ′(0) + γ2
1

γ
φ(0) > 0,

then
lim
t→T−

φ(t) = +∞,

where

T ≤ 1

2
√
C2

1 + γC2

ln

[
γ1φ(0) + γφ′(0)

γ2φ(0) + γφ′(0)

]
,

and
γ1 = −C1 +

√
C2

1 + γC2, γ2 = −C1 −
√
C2

1 + γC2.

3. The potential well

In this section we use the potential theory, a power full tool in the study of the global existence of solution to
partial differential equation. See Payne-Sattinger [43]. It is well-known that the energy of a PDE system, in some
sense, splits into the kinetic and the potential energy.

The energy of the problem (1.3)-(1.6) is given by

E(t) =
1

2

∫
Ω

|u′(t)|2 dx+
1

p2

∫
Ω

|u(t)|p dx+
1

2

∫
Ω

|θ(t)|2 dx+
1

p

∫
Ω

|∇u(t)|p dx− 1

p

∫
Ω

|u(t)|p ln |u(t)|dx.

Mutiplying (1.3) by u′, (1.4) by θ, performing integration by parts and using (1.6) we obtain

d

dt
E(t) = −α||u′(t)||22 − ||∇θ(t)||22. (3.1)

We introduce the functional

J(u(t)) =
1

p2

∫
Ω

|u(t)|p dx+
1

p

∫
Ω

|∇u(t)|p dx− 1

p

∫
Ω

|u(t)|p ln |u(t)|dx.

The Nehari functional associated with J(u(t)) is I : W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω)→ R defined by

I(u(t)) =

∫
Ω

|∇u(t)|p dx−
∫
Ω

|u(t)|p ln |u(t)|dx. (3.2)
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Associated with the J(λu(t)) we have the well known Nehari Manifold given by

N def
=

{
u(t) ∈W 1,p

0 (Ω) ∩W 1,2(p−1)
0 (Ω)/{0} :

[
d

dλ
I(λu(t))

]
λ=1

= 0

}
=

{
u(t) ∈W 1,p

0 (Ω) ∩W 1,2(p−1)
0 (Ω)/{0} :

∫
Ω

|∇u(t)|p dx =

∫
Ω

|u(t)|p ln |u(t)|dx
}
.

Now, we introduce the potential well (stable set)

W1 =

{
u(t) ∈W 1,p

0 (Ω) ∩W 1,2(p−1)
0 (Ω)/{0} :

∫
Ω

|∇u(t)|p dx >

∫
Ω

|u(t)|p ln |u(t)|dx
}
∪ {0}.

and the unstable set

W2 =

{
u(t) ∈W 1,p

0 (Ω) ∩W 1,2(p−1)
0 (Ω)/{0} :

∫
Ω

|∇u(t)|p dx <

∫
Ω

|u(t)|p ln |u(t)|dx
}
.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [44],

d
def
= inf

u(t)∈W 1,p
0 (Ω)/{0}

sup
0≤λ

J(λu(t)).

It is well-known that under H the depth of the well d is a strictly positive constant, see [[45], Theorem 4.2], and

d = inf
u(t)∈N

J(u(t)).

The source term induces a potential energy in the system that act in opposed to effect of the stabilizing mechanism.
In this sense, it is possible that the energy from the source term destabilize all the system and produce a blow-up a
finite time. For provide a global solution, the stability setW1 create a valley or a well of the depth d, see Y. Ye [27],
where the potential energy of the solution can never escape the potential well.

We will prove thatW1 is invariant set for sub-critical initial energy.

Proposition 3.1. Let u0 ∈ W1, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then u(t) ∈ W1.

Proof. Let T > 0 be the maximum existence time. From (3.1) we get

E(t) ≤ E(0) < d, for all t ∈ [0, T ).

and then,

1

2

∫
Ω

|u′(t)|2 dx+
1

2

∫
Ω

|θ(t)|2 dx+ J(u(t)) < d, for all t ∈ [0, T ),

that is,

E(t) < d, for all t ∈ [0, T ). (3.3)

Arguing by contradiction, we suppose that there exists a first t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u(t)) > 0 for
all 0 ≤ t < t0, that is, ∫

Ω

|∇u(t0)|p dx =

∫
Ω

|u(t0)|p ln |u(t0)|dx.

From the definition of N , we have that u(t0) ∈ N , which leads to

J(u(t0)) ≥ inf
u(t)∈N

J(u(t)) = d.

By definition of E(t),

1

2

∫
Ω

|u′(t0)|2 dx+
1

2

∫
Ω

|θ(t0)|2 dx+ J(u(t0)) ≥ d, it holds that, E(t0) ≥ d,

which contradicts with (3.3). Then u(t) ∈ W1 for all t ∈ [0, T ).
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4. Galerkin basis
From Sobolev immersion, we have

W ν,q
0 (Ω) ↪→W ν−k,qk

0 (Ω),
1

qk
=

1

q
− k

n
.

Choosing qk = p, ν − k = 1, and q = 2, we get

ν = 1 +
n

2
− n

p
= 1 +

n(p− 2)

2p
> 0

and we obtain a Hilbert Space Hν
0 (Ω) such that

Hν
0 (Ω) = W ν,2

0 (Ω) ↪→W 1,p
0 (Ω).

Let s an integer for which s > ν. We have

Hs
0(Ω) ↪→W 1,p

0 (Ω) ↪→W
1,2(p−1)
0 (Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω).

According to the Rellich-Kondrachov theorem, H1
0 (Ω) ↪→ L2(Ω) is compact, so is also the immersion Hs

0(Ω) ↪→
L2(Ω). From spectral theory, there exists an operator defined by

{Hs
0(Ω), L2(Ω), ((·, ·))Hs0 (Ω)}

and a sequence of eigenvectors (vj)j∈N of this operator such that

((vj , v))Hs0 (Ω) = λj(vj , v), for all v ∈ Hs
0(Ω)

with λj > 0, λj ≤ λj+1, and λj → +∞ as j → +∞. Moreover (vj)j∈N is a complete orthonormal system in L2(Ω)

and
(
wj =

vj√
λj

)
j∈N

is a complete orthonormal system in Hs
0(Ω). Then (wj)j∈N yields a “Galerkin basis” for both

W 1,p
0 (Ω) and L2(Ω).

5. Global solution
Theorem 5.1. Consider E(0) < d. Given u0 ∈ W1, u1 ∈ L2(Ω), θ0 ∈ H1

0 (Ω), there exist functions u, θ : Ω× (0, T )→ R
in the class

u ∈ L∞(0, T ;W 1,p
0 (Ω)),

u′ ∈ L∞(0, T ;L2(Ω)),

θ ∈ L∞(0, T ;H1
0 (Ω)),

such that, for all φ ∈W 1,p
0 (Ω), ψ ∈ L2(Ω)

d

dt
(u′, φ) + 〈−∆pu, φ〉p + (θ, φ) = (|u|p−2u ln |u|, φ) in D′(0, T ), (5.1)

d

dt
(θ, ψ) + (−∆θ, ψ) = (u′, ψ) in D′(0, T ), (5.2)

u(x, 0) = u0(x), u′(x, 0) = u1(x), θ(x, 0) = θ0(x) a.e. in Ω. (5.3)

Proof. Let’s use the Galerkin basis obtained in the previous section. For each m ∈ N, let us put

Vm = Span{w1, w2, . . . , wm}.

We search for functions

um(t) =

m∑
j=1

fjm(t)wj , θm(t) =

m∑
j=1

gjm(t)wj ,



118 C. A. Raposo da Cunha, A. P. Cattai, O. P. V. Villagran, G. C. Gorain & D. C. Pereira

such that any φ, ψ ∈ Vm, um(t) and θm(t) satisfies the following approximate problem

d

dt
(u′m(t), φ)+〈−∆pum(t), φ〉p + (θm(t), φ) = (|um(t)|p−2um(t) ln |um(t)|, φ), (5.4)

d

dt
(θm(t), ψ) + (−∆θm(t), ψ) = (u′m(t), ψ), (5.5)

with the initial conditions um(0) = u0m, u′m(0) = u1m and θm(0) = θ0m, where u0m, u1m and θ0m are choose so that

u0m → u0 ∈ W 1,p
0 (Ω), u1m → u1 in L

2(Ω) and θ0m → θ0 in H
1
0 (Ω). (5.6)

Putting φ = wi, ψ = wi, i = 1, 2, . . . ,m, and using

u′′m(t) =

m∑
j=1

f ′′jm(t)wj(x), ∆pum(t) =

m∑
j=1

fjm(t)∆pwj(x),

θ′m(t) =

m∑
j=1

g′jm(t)wj(x), ∆θm(t) =

m∑
j=1

gjm(t)∆wj(x),

we observe that (5.4)-(5.5) leads to a system of ODEs in the variable t that has a local solution um(t), θm(t) in a
interval [0, tm) by virtue of Carathéodory’s theorem. In the next step we obtain a priori estimates for the solution
um(t), θm(t) so that they can be extended to the whole interval [0, T ], T > 0.

5.1 A priori estimates
Replacing φ = u′m(t), ψ = θm(t) in the approximate equation (5.4), (5.5) we get

(u′′m(t), u′m(t)) + 〈−∆pum(t), u′m(t)〉p + (θm(t), u′m(t)) = (|um(t)|p−2um(t) ln |um(t)|, u′m(t)), (5.7)
(θ′m(t), θm(t)) + (−∆θm(t), θm(t)) = (u′m(t), θm(t)), (5.8)

Let z ∈ D(0, tm). We denote by 〈 · , · 〉 the duality pairing between D′ and D. So we have

〈(u′′m(t), u′m(t)), z〉 =

〈
d

dt

1

2

∫
Ω

|u′m(t)|2 dx, z

〉
, (5.9)

〈〈−∆pum(t), u′m(t)〉p, z〉 =

〈
d

dt

1

p

∫
Ω

|∇um(t)|p dx, z

〉
, (5.10)

〈(u′m(t), u′m(t)), z〉 =

〈∫
Ω

|u′m(t)|2 dx, z

〉
, (5.11)

〈
(|um(t)|p−2um(t) lnum(t), u′m(t)), z

〉
=

〈
1

p

d

dt

∫
Ω

|um(t)|p lnum(t) dx, z

〉
−
〈

1

p2

d

dt

∫
Ω

|um(t)|p dx, z

〉
, (5.12)

〈(θ′m(t), θm(t)), z〉 =

〈
d

dt

1

2

∫
Ω

|θm(t)|2 dx, z

〉
, (5.13)

〈(−∆θm(t), θm(t)) , z〉 =

〈∫
Ω

|∇θm(t)|2 dx, z

〉
. (5.14)

Replacing (5.9), (5.10), (5.11), (5.12), (5.13), (5.14) in (5.7) and (5.8) we obtain in D′(0, tm)

d

dt
Em(t) = −

∫
Ω

|∇θm(t)|2 dx−
∫

Ω

|u′m(t)|2 dx, (5.15)

from where follows that the approximate energy

Em(t) =
1

2

∫
Ω

|u′m(t)|2 dx+
1

p2

∫
Ω

|um(t)|p dx+
1

2

∫
Ω

|θm(t)|2 dx+
1

p

∫
Ω

|∇um(t)|p dx− 1

p

∫
Ω

|um(t)|p ln |um(t)|dx

=
1

2

∫
Ω

|u′m(t)|2 dx+
1

2

∫
Ω

|θm(t)|2 dx+ J(u(t))
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satisfies

Em(t) ≤ Em(0)

=
1

2

∫
Ω

|u′m(0)|2 dx+
1

2

∫
Ω

|θm(0)|2 dx+ J(um(0)).

We have that J(um(0)) < d inW1. By to convergence of initial data (5.6), there exists a constant C > 0 independent
of t and m such that

1

2

∫
Ω

|u′m(0)|2 dx+
1

2

∫
Ω

|θm(0)|2 dx ≤ C.

With the estimate Em(t) ≤ Em(0) ≤ C we can extend the approximate solutions um(t), θm(t) to the interval
[0, T ], T > 0. By using (5.15) we deduce∫ T

0

∫
Ω

|∇θm(t)|2 dxdt+

∫ T

0

∫
Ω

|u′m(t)|2 dxdt ≤
∫ T

0

∫
Ω

|∇θm(t)|2 dxdt+

∫ T

0

∫
Ω

|u′m(t)|2 dxdt+ Em(t) ≤ Em(0) ≤ C.

(5.16)

To prove that (1.4)-(1.6) carrying a good energy structure inW1, we need show that the forcing term isL2(0, T ;L2(Ω)).
Consider Ω = Ω1 ∪ Ω2 where

Ω1 = {x ∈ Ω : |um(t)(x)| ≤ 1} and Ω2 = {x ∈ Ω : |um(t)(x)| > 1}.

From∫
Ω

||um(t)|p−2um(t) ln |um(t)||2 dx =

∫
Ω1

||um(t)|p−2um(t) ln |um(t)||2 dx+

∫
Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx.

We have ∫
Ω1

||um(t)|p−2um(t) ln |um(t)||2 dx ≤ |Ω|. (5.17)

Note that, ∫
Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx =

∫
Ω2

|um(t)|2p−4|um(t)|2| ln |um(t)||2 dx

≤
∫

Ω2

|um(t)|2p−4|um(t)|4| ln |um(t)||2 dx

=

∫
Ω2

|um(t)|2p| ln |um(t)|2 dx

=

∫
Ω2

||um(t)|p ln |um(t)||2 dx.

Taking into account that um(t) ∈ W1 we obtain∫
Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx ≤
∫

Ω

|∇u|p dx. (5.18)

From (5.17) and (5.18) we get∫
Ω

||um(t)|p−2um(t) ln |um(t)||2 dx ≤ |Ω|+
∫

Ω

|∇u|p dx ≤ C. (5.19)

Then we have

um(t) is bounded in L∞(0, T ;W 1,p
0 (Ω)), (5.20)

u′m(t) is bounded in L∞(0, T ;L2(Ω)), (5.21)
u′m(t) is bounded in L2(0, T ;L2(Ω)), (5.22)

|um(t)|p−2um(t) lnum(t) is bounded in L2(0, T ;L2(Ω)), (5.23)

−∆pum(t) is bounded in L∞(0, T ;W−1,p′(Ω)), (5.24)
θm(t) is bounded in L∞(0, T ;L2(Ω)), (5.25)

−∆θm(t) is bounded in L2(0, T ;L2(Ω)). (5.26)
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Since our Galerkin basis was taken in the Hilbert space L2(Ω) we can use the standard projection arguments
as described in Lions [39], pages 75-76, to obtain an estimate for u′′m(t). Let Pm be the orthogonal projection
Pm : L2(Ω)→ Vm, that is

Pmh =

m∑
n=1

(h,wj)wj , h ∈ L2(Ω).

Approximated problem (5.7) leads to

u′′m(t) = Pm∆pum(t)− Pmθm(t)− Pmu′m(t) + Pm|um(t)|p−2um(t) ln |um(t)|.

As −∆pum(t) ∈ L2(0, T ; (W−1,p′(Ω)), from estimates (5.23), (5.25) we obtain

u′′m(t) is bounded in L∞(0, T ;W−1,p′(Ω)). (5.27)

5.2 Passage to the limit
From (5.20)-(5.27) going to the suitable subsequence if necessary (which we continue to denote in the same way),

there exist u(t), θ(t) such that

um(t)
∗
⇀ u(t) in L∞(0, T ;W 1,p

0 (Ω)), (5.28)

u′m(t)
∗
⇀ u′(t) in L∞(0, T ;L2(Ω)), (5.29)

u′m(t) ⇀ u′(t) in L2(0, T ;L2(Ω)), (5.30)

−∆pum(t)
∗
⇀ X1(t) in L∞(0, T ;W−1,p′(Ω)), (5.31)

|um(t)|p−2um(t) lnum(t) ⇀ X2(t) in L2(0, T ;L2(Ω)), (5.32)
θm(t) ⇀ θ(t) in L2(0, T ;L2(Ω)), (5.33)

−∆θm(t)
∗
⇀ −∆θ(t) in L∞(0, T ;L2(Ω). (5.34)

Applying the Lions-Aubin compactness lemma, from (5.27), (5.28) and (5.29) we get

um(t) → u(t) strongly in L2(0, T ;L2(Ω)) and a.e. inQ, (5.35)
u′m(t) → u′(t) strongly in L2(0, T ;L2(Ω)) and a.e. inQ. (5.36)

We need to prove that X1(t) = −∆pu(t). The following elementary inequality∣∣|x|p−2x− |y|p−2y
∣∣ ≤ C (|x|p−2 + |y|p−2

)
|x− y| (5.37)

is a consequence of the Mean Value Theorem. Using (5.37) and Hölder generalized inequality with

p− 2

2(p− 1)
+

1

2
+

1

2(p− 1)
= 1,

we deduce, for z ∈ D(0, T ) and v ∈ Vm, that∣∣∣∣∣
∫ T

0

〈(−∆pum(t))− (−∆pu(t)), v〉z(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

(
|∇um(t)|p−2∇um(t)− |∇u(t)|p−2∇u(t)

)
∇v dxz(t) dt

∣∣∣∣∣
≤ C|θ|∞

∫ T

0

∫
Ω

(
|∇um(t)|p−2 + |∇u(t)|p−2

)
|∇um(t)−∇u(t)||∇v| dxdt

≤ C1

∫ T

0

(
‖∇um(t)‖p−2

2(p−1) + ‖∇u(t)‖p−2
2(p−1)

)
|∇um(t)−∇u(t)| ‖∇v‖2(p−1)dt,

that leads to ∣∣∣∣∣
∫ T

0

〈(−∆pum(t))− (−∆pu(t)), v〉p z(t) dt

∣∣∣∣∣ ≤ C
∫ T

0

|∇um(t)−∇u(t)|dt. (5.38)
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Now, from (5.28) and (5.29), by lemma 2.1 we have

um → u in C([0, T ] ; L2(Ω)).

whence
∇um(t)→ ∇u(t) a. e. in [0, T ].

Therefore, by (5.31) and (5.38) we have X1(t) = −∆pu, that is

−∆pum(t) ⇀ −∆pu(t) in L2(0, T ;W−1,p′(Ω)), (5.39)

Now we will prove X2(t) = |u(t)|p−2u(t) lnu(t). From (5.19) we have

|um|p−2um ln |um| is bounded in L2(0, T ;L2(Ω)) = L2(Q). (5.40)

Using continuity of function s→ |s|p−2s ln |s| and (5.35) we have

|um|p−2um ln |um| → |u|p−2u ln |u| a.e. in Q. (5.41)

Then, by using Lions’s lemma, (5.40) and (5.41) leads to

|um|p−2um ln |um|⇀ |u|p−2u ln |u| in L2(0, T ;L2(Ω)). (5.42)

Now, with the convergences (5.29), (5.39), (5.42), (5.33) and (5.34) we can pass to the limit in the approximate
system and we get (5.1),(5.2). The verification of the initial data is a routine procedure. The prove of existence is
complete.

6. Polynomial decay for E(0) < d

In this section, we prove the ||u||pp decay polynomially for subcritical level of initial energy.

Theorem 6.1. Let u0 in the stability set W1, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then the weak solution u(t) of the

problem (1.3)-(1.6) decay polynomially. That is,

‖u(t)‖pp ≤ ‖u(0)‖pp
[

1 + σ

1 + ωt

] 1
σ

where σ >
1

2
, ω =

[‖u(0)‖pp]σ

C
, C > 0.

Proof. As ln |u| ≤ |u|, we have ∫
Ω

|u|p ln |u|dx ≤
∫

Ω

|u|p+1 dx = ‖u‖p+1
p+1.

By Hölder inequality we obtain

‖u‖p+1
p+1 ≤ ‖u‖ν(p+1)

p ‖u‖(1−ν)(p+1)
q , ν ∈ (0, 1).

Applying Young inequality

‖u‖p+1
p+1 ≤

ε

p
‖u‖ν(p+1)p

p +
C0(ε)

q
‖u‖q(1−ν)(p+1)

q

with
1

p
+

1

q
= 1, q < p, and then,

‖u‖p+1
p+1 ≤

ε

p
‖u‖ν(p+1)p

p + C(ε)‖u‖q(1−ν)(p+1)
q .

For ν =
1

2
we have ∫

Ω

|u|p ln |u|dx ≤ ‖u‖p+1
p+1 ≤

ε

p
‖u‖[

p+1
2 ]p + C(ε)‖u‖[

p+1
2 ]q

q . (6.1)
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We define

L(t) = N‖u‖[
p+1
2 ]q

q + ‖∇u‖pp −
∫

Ω

|u|p ln |u|dx. (6.2)

As u ∈W1 we get L(t) > 0. By using (6.1) and Poincaré inequality in (6.2) we obtain

L(t) ≥ N‖u‖[
p+1
2 ]q

q + Cp‖u‖pp − ‖u‖
p+1
p+1

≥ N‖u‖[
p+1
2 ]q

q + Cp‖u‖pp −
ε

p
‖u‖[

p+1
2 ]p

p − C(ε)‖u‖[
p+1
2 ]q

p

≥ (N − C(ε)) ‖u‖[
p+1
2 ]q

q + ‖u‖pp
(
Cp −

ε

p

)
‖u‖

p+1
2

p

Choosing N, ε > 0 such that Cp −
ε

p
> C > 0 and N − C(ε) > 0 we have

L(t) ≥ C
[
‖u‖pp

] p+1
2 .

As p > 2,

p+ 1

2
=
p

2
+

1

2
=
p

2
+

1

2
− 1 + 1 =

p

2
− 1

2
+ 1

= σ + 1, σ >
1

2
.

Then
‖u‖p[

p+1
2 ]

p =
[
‖u‖pp

]σ+1
, σ >

1

2
and

we obtain
L(t) ≥ C

[
‖u‖pp

]σ+1
, σ >

1

2
. (6.3)

By other hand
d

dt
‖u(t)‖pp ≤ p2 d

dt
E(t) ≤ 0,

that is, ‖u(t)‖pp is nonincreasing function. Then − d

dt
‖u(t)‖pp ≥ 0. For each ∞ > T > S ≥ 0, let t > 0 such that

t ∈ (S, T ) and define

A =

{
t ∈ (S, T ) ; − d

dt
‖u(t)‖pp > L(t)

}
.

If t ∈ (S, T ) satisfy

− d

dt
‖u(t)‖pp ≤ L(t)

consider 0 < η(t) <∞ such that

− d

dt
‖u(t)‖pp η(t) ≥ L(t),

and take

A =

{
t ∈ (S, T ) ; − d

dt
‖u(t)‖pp η(t) ≥ L(t)

}
.

Let
η = sup{η(t); t ∈ A, 0 < η(t) <∞}.

Then 0 < η <∞ and ∫ T

S

L(t) dt =

∫
A

L(t) dt+

∫
A

L(t) dt

≤ (1 + η)

∫ T

S

− d

dt
‖u(t)‖pp dt

≤ (1 + η)‖u(S)‖pp, ∀ S ≥ 0. (6.4)



Thermoelastic system of p-Laplacian type with logarithmic source 123

From (6.3) and (6.4) ∫ T

S

[
‖u(t)‖pp

]σ+1
dt ≤ C−1

∫ T

S

L(t) dt

≤ C−1(1 + η)‖u(S)‖pp

≤ 1

ω

[
‖u(0)‖pp

]σ ‖u(S)‖pp

where ω =
[‖u(0)‖pp]σ

C−1(1 + η)
.

From Lemma 2.4, with E(t) = ‖u(t)‖pp and φ(t) = t we obtain

‖u(t)‖pp ≤ ‖u(0)‖pp
[

1 + σ

1 + ωt

] 1
σ

where σ >
1

2
, ω > 0, C > 0.

7. Blow-up in finite time

As in section 3 we can prove thatW2 is invariant for sub-critical initial energy, that is,

Proposition 7.1. Let u0 ∈ W2, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then u(t) ∈ W2.

Theorem 7.1. Let u0 in the instability set W2, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω) and r > 1 a fixed real number. If ||u0||22 <√

r − 1(u0, u1) and E(0) < d then the weak solution u(t) of the problem (1.3)-(1.6) will blow up at finite time. Namely, the
maximum existence time T <∞ and

lim
t→T−

||u(t)||pp = +∞,

where

T <
1√
r − 1

ln

[
(r − 1)(u0, u1) +

√
r − 1||u0||22

(r − 1)(u0, u1)−
√
r − 1||u0||22

]
.

Proof. By contradiction, suppose that the solution u(t) ∈ W2 is global. That is, we let T =∞. Let φ(t) = |u(t)|2. We
have φ′(t) = 2(u(t), u′(t)). Applying Hölder inequality we get

2(u(t), u′(t)) ≤ 2|u(t)| |u′(t)|

and
[φ′(t)]2 ≤ 4|u(t)|2 |u′(t)|2

that leads to

[φ′(t)]2 ≤ 4φ(t)|u′(t)|2. (7.1)

We have

(u′′(t), u(t)) = −‖∇u(t)‖pp −
∫

Ω

u(t)θ(t) dx− α

2

d

dt
|u(t)|2 +

∫
Ω

|u(t)|p ln |u(t)|dx.

Note that,

φ′′(t) = 2|u′(t)|2 + 2(u′′(t), u(t))

= 2|u′(t)|2 − 2‖∇u(t)‖pp − 2

∫
Ω

u(t)θ(t) dx− α d
dt
|u(t)|2 + 2

∫
Ω

|u(t)|p ln |u(t)|dx.

By using

I(u(t)) = ‖∇u(t)‖pp −
∫

Ω

|u(t)|p ln |u(t)|dx
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we get

φ′′(t) = 2|u′(t)|2 − 2I(u(t))− 2

∫
Ω

|u(t)|p ln |u(t)|dx− 2

∫
Ω

u(t)θ(t) dx− α d
dt
|u(t)|2 + 2

∫
Ω

|u(t)|p ln |u(t)|dx.

that is

φ′′(t) = 2|u′(t)|2 − 2I(u(t))− 2

∫
Ω

u(t)θ(t) dx− α d
dt
|u(t)|2.

Let r > 0 be a real number. By using (7.1) we obtain

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

(
2|u′(t)|2 − 2I(u(t))− 2

∫
Ω

u(t)θ(t) dx

)
− αφ(t)

d

dt
|u(t)|2 − (r + 3)φ(t)|u′(t)|2.

Applying Young inequality we get

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

[
−(r + 1)|u′(t)|2 − 2I(u(t))− |u(t)|2 − |θ(t)|2

]
− αφ(t)

d

dt
|u(t)|2. (7.2)

From,

E(t) =
1

2
|u′(t)|2 +

1

2
|θ(t)|2 + J(u(t)).

we get

1

2
|u′(t)|2 =− 1

2
|θ(t)|2 + E(t)− J(u(t)),

≤− 1

2
|θ(t)|2 + E(0)− J(u(t)),

≤− 1

2
|θ(t)|2 + d− J(u(t)).

Then,

−(r + 1)|u′(t)|2 ≥ (r + 1)|θ(t)|2 + 2(r + 1)(J(u(t))− d). (7.3)

By using (7.3) in (7.2) we obtain

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

[
(r + 1)|θ(t)|2 − |θ(t)|2

]
+ φ(t)

[
2(r + 1)(J(u(t))− d)

]
+ φ(t)

[
− 2I(u(t))

]
− αφ(t)

d

dt
|u(t)|2 − φ(t)|u(t)|2.

Now, observe that
[
(r + 1)|θ(t)|2 − |θ(t)|2

]
> 0, −2I(u(t)) > 0 inW2, and J(u(t))− d > 0 because

d = inf
u∈N

J(u).

Namely, we have
φ(t)φ′′(t)− (1 + γ)(φ(t))2 ≥ −2c1φ(t)φ′(t)− c2(φ(t))2,

where c1 =
α

2
, c2 = 1, γ =

r − 1

4
. By
√
r − 1(u0, u1) > |u0|2, c1 + c2 > 0, φ(0) > 0 we get φ′(0) + γ2γ

−1φ(0) > 0, for

γ1 =

√
r − 1

2
and γ2 = −

√
r − 1

2
.

Finally, from Lemma 2.5 we concludes that

lim
t→T−

‖u(t)‖pp ≥ c lim
t→T−

|u(t)|2 = +∞,

where

T <
1√
r − 1

ln

[
(r − 1)(u0, u1) +

√
r − 1|u0|2

(r − 1)(u0, u1)−
√
r − 1|u0|2

]
,

which contradicts T =∞. Then u(t) blows up in finite time.
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8. Final comment
In recent years, results on global well-posedness, local well-posedness, blow-up, and asymptotic behavior of

thermoelastic system have been studied. However, when considering the p-Laplacian operator, few results are
known. We analyze the competition between the logarithmic source and the stabilization power given by the
temperature difference. We show the existence of a global solution and the polynomial decay in a suitable stability
set created from the Nehari Manifold. On the other hand, we prove the blow-up in finite time out of the stability set.
We hope that the results presented here will be a font of inspiration for future research related to the topic.
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