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ABSTRACT: 

 

In this paper, we obtain a common fixed point theorem by employing the notion of 𝑔 −reciprocal continuity in 

probabilistic metric space. We demonstrate that 𝑔 −reciprocal continuity ensures the existence of common fixed 

point under strict contractive conditions, which otherwise do not ensure the existence of fixed points.  
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1. INTRODUCTION 

 

The theory of probabilistic metric spaces was 

introduced by Menger [1] in connection with some 

measurements in Physics. The first effort in this 

direction was made by Sehgal [3], who in his 

doctoral dissertation initiated the study of 

contraction mapping theorems in probabilistic 

metric spaces. Since then, Sehgal and Bharucha - 

Reid [6] obtained a generalization of Banach 

Contraction Principle on a complete Menger space 

which is an important step in the development of 

fixed point theorems in Mengar space. Over the 

years, the theory has found several important 

applications in the investigation of physical 

quantities in quantum particle physics and string 

theory as studied by El.Naschie [18, 20]. The area 

of probabilistic metric spaces is also of fundamental 

importance in probabilistic functional analysis. 

Fixed point theory of strict contractive conditions 

constitutes a very important class of mappings and 

includes contraction mappings as their subclass. It 

may be observed that strict contractive conditions 

do not ensure the existence of common fixed points 

unless some strong condition is assumed either on 

the space or on the mappings. In such cases either 
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the space is taken to be compact or some sequence 

of iterates is assumed to be Cauchy sequence. The 

studyof common fixed points of strict contractive 

conditions using noncompatibility was initiated by 

Pant [19]. The significance of this paper lies in the 

fact that we can obtain fixed point theorems for g- 

reciprocally continuous mappings in Probabilistic 

metric spaces. 

We begin with the following preliminaries:

Definition 1.1. [22]. A distribution function (on 

[−∞, +∞]) is a function  𝐹: [−∞, +∞] → [0, 1] 

which is left-continuous on 𝑅, non-decreasing and 

𝐹 (−∞)  =  0, 𝐹 (+∞)  =  1.  The Heaviside 

function 𝐻 is a distribution function defined by,  

𝐻(𝑡) = {
0, 𝑖𝑓 𝑡 ≤ 0
1, 𝑖𝑓 𝑡 > 0.

 

Definition 1.2. [22]. A distance distribution 

function 𝐹: [−∞, +∞]→ [0, 1] is distribution 

function with support contained in [0, ∞].The 

family of all distance distribution functions will be 

denoted by ∆+.We denote  

𝐷+ =  {𝐹: 𝐹 ∈ ∆+, lim
𝑥→∞

𝐹(𝑥) = 1}. 

Definition 1.3. [10]. A probabilistic metric space in 

the sense of Schweizer and Sklar is an ordered pair 
(𝑋, 𝐹),  where 𝑋 is a nonempty set and 𝐹 ∶ 𝑋 ×
𝑋 →  ∆+, if and only if the following conditions are 

satisfied (𝐹(𝑥, 𝑦) = 𝐹𝑥,𝑦for every 𝑥, 𝑦 ∈ 𝑋 × 𝑋): 

(i) for every (𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝐹𝑥,𝑦(0) =  0; 

(ii) for every (𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝐹𝑥,𝑦 =   𝐹𝑦,𝑥; 

(iii) 𝐹𝑥,𝑦 =  1,  for every 𝑡 >  0 ⟺  𝑥 =  𝑦; 

(iv) for every (𝑥, 𝑦, 𝑧)  ∈ 𝑋 × 𝑋 ×  𝑋 and for every 

𝑡1, 𝑡2 >  0, 

(v) 𝐹𝑥,𝑦(𝑡1) = 1,   𝐹𝑦,𝑧(𝑡2) = 1, ⟹   𝐹𝑥,𝑧(𝑡1 + 𝑡2) = 1. 

 

For each 𝑥 and 𝑦 in 𝑋 and for each real number 

𝑡 ≥ 0, 𝐹𝑥,𝑦(𝑡) is to be thought of as the probability 

that the distance between 𝑥 and 𝑦 is less than 𝑡. 

Indeed, if (𝑋, 𝑑) is a metric space, then the 

distribution function 𝐹𝑥,𝑦(𝑡) defined by the relation 

𝐹𝑥,𝑦(𝑡) = 𝐻(𝑡 − 𝑑(𝑥, 𝑦)) induces a probabilistic 

metric space. 

Definition 1.4.[10]. A t-norm is a function ∆: [0, 

1][0,1] ⟶ [0,1] satisfying the following 

conditions: 

i.              𝑇(𝑎, 1)  =  𝑎, 𝑇(0, 0)  =  0. 

ii. 𝑇(𝑎, 𝑏) =  𝑇(𝑏, 𝑎). 

iii. 𝑇(𝑐, 𝑑)   ≥ 𝑇(𝑎, 𝑏) for 𝑐 ≥ 𝑎,   𝑑 ≥ 𝑏. 

iv.  𝑇(𝑇(𝑎, 𝑏), 𝑐)  =  𝑇(𝑎, 𝑇(𝑏, 𝑐))  for all a, b, c in 

 [0, 1]. 

Definition 1.5. [10]. A Menger probabilistic metric 

space (𝑋, 𝐹, 𝑇) is an ordered triad, where T is a 𝑡 - 

norm, and (𝑋, 𝐹) is probabilistic metric space 

satisfying the following condition: 

𝐹𝑥,𝑧(𝑡1 + 𝑡2) ≥ 𝑇(𝐹𝑥,𝑦(𝑡1), 𝐹𝑦,𝑧(𝑡2))for all x, 

y, z in X and 𝑡1, 𝑡2 ≥ 0. 

Definition 1.6. [10]. Let (𝑋, 𝐹) be a probabilistic 

metric space. The (∈, 𝜆) − topology in (𝑋, 𝐹) is 

generated by the family of neighborhoods 𝑈 =

 {(𝑈𝑣(𝜖, 𝜆)): (𝑣, 𝜖, 𝜆 ∈ 𝑋 × 𝑅+ × (0,1))}, where 

𝑈𝑣(∈, 𝜆) =  {𝑢: 𝑢 ∈ 𝑋, 𝐹𝑢,𝑣(∈) > 1 − 𝜆}. 

If a 𝑡 - norm 𝑇 is such that 𝑠𝑢𝑝𝑥 < 1 𝑇(𝑥, 𝑥)  =  1 

then (𝑋, 𝐹, 𝑇) is, with the(∈, 𝜆) topology, a 

metrizable topological space. 

Definition 1.7. [10]. Let (X, F) be a probabilistic 

metric space. A sequence {𝑥𝑛} in (𝑋, 𝐹) is said to 

converge a point 𝑥 ∈ 𝑋 if for every ∈> 0 and 𝜆> 0, 

there exists a positive integer 𝑁(∈, 𝜆)such that, 

𝐹𝑥𝑛,𝑥
(∈) > 1 − 𝜆for all 𝑛 ≥ 𝑁(∈, 𝜆). 

Definition 1.8. [10]. Let (X, F) be a probabilistic 

metric space. A sequence {𝑥𝑛} in (𝑋, 𝐹) is said to be 

a Cauchy sequence if for every ∈> 0 and 𝜆> 0, there 

exists a positive integer 𝑁(∈, 𝜆)such that, 

𝐹𝑥𝑛,𝑥𝑚
(∈) > 1 − 𝜆for all 𝑛, 𝑚 ≥ 𝑁(∈, 𝜆). 

Definition 1.9. [10]. A probabilistic metric space 

(X, F) with continuous t-norm is said to be complete 

if every cauchy sequence in X converge to a point in 

X. 

Definition 1.10.[13]. Twoself maps f  and g of a 

probabilistic metric space  ,X F  are called 

compatible if 
, ( ) 1

n nfgx gfxF t   for all 𝑡 >

0 whenever  nx  is a sequence in X  such that 

lim limn n
n n

fx gx u  . 

Definition 1.11[16].Twoself maps f  and g  of a 

probabilistic metric space  ,X F  are called 𝑔 − 

compatible if 
, ( ) 1

n nfgx gfxF t   for all 𝑡 >
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0whenever  nx  is a sequence in X  such that 

lim limn n
n n

fx gx u   

Definition 1.12[17].Two selfmappings f  and g  

of a probabilistic metric space  ,X F  are called 

reciprocally continuous iff nfgx fu  and 

ngfx gu   whenever  nx  is a sequence such 

that lim limn n
n n

fx gx u   for some u  in .X  

Definition 1.13 [23].Two self mappings f and g of a 

probabilistic metric space  ,X F satisfy (𝐸. 𝐴) 

property if there exist a sequence  nx  such that 

lim limn n
n n

fx gx u
 

   for some u  in .X  

Definition 1.14[25].Two selfmappings f  and g  

of a probabilistic metric space  ,X F are called 

𝑔 − reciprocally continuous iff nffx fu  and 

ngfx gu   whenever  nx  is a sequence such 

that  lim limn n
n n

fx gx u   for some u  in 

.X  

Remark 1.1. It may be observed that if f and g are 

both continuous then they are obviously g-

reciprocally continuous but the converse is not true. 

It may also be observed that g-reciprocal continuity 

is independent of the notion of reciprocal continuity. 

Example 1.1. [19]. Let [2,20]X   and 

𝐹𝑥,𝑦(𝑡) =  𝐻(𝑡 − 𝑑(𝑥, 𝑦)), 

where ( , )d x y x y   .Define 

, :f g X X by 

 

2  2if 2 or 5,   4 if 2 5,

1
2  2, 18 if  2 5,  if 5.

3

f x x fx x

x
g gx x gx x

     


     

 

Then f  and 𝑔   are 𝑔 − reciprocally continuous 

but not reciprocally continuous. To see this let us 

consider the sequence 
1

5 .nx
n

  Then

2, 2, lim 2,n n n
n

fx gx fgx f


  

lim 2 2n
n

gfx g


  and lim 2 2.n
n

ffx f


   

Thus f  and g are 𝑔 − reciprocally continuous but 

they are not reciprocally continuous. 

Example 1.2. [19]. Let [2,20]X  and 𝐹𝑥,𝑦(𝑡) =

 𝐻(𝑡 − 𝑑(𝑥, 𝑦)),where ( , )d x y x y   

.Define , :f g X X by 

 

 

5
2  2,  6 if 2 5,  if 5,

5

4
  2 if 2or 5,  if 2 5.

3

x
f fx x fx x

x
gx x x gx x


     


     

 

Then f  and g are reciprocally continuous but not 

𝑔 − reciprocally continuous. To see this let us 

consider the sequence 
1

5 .nx
n

  Then

2, 2, lim 2 2,n n n
n

fx gx fgx f


   

lim 2 2n
n

gfx g


  and 

lim 6 2.n
n

ffx f


   Thus f  and g are 

reciprocally continuous but they are not 𝑔 − 

reciprocally continuous.  

Remark 1.2. Both the Examples areclearly showing 

that reciprocal continuity and 𝑔 − reciprocally 

continuous reciprocal continuity are independent of 

each other. 

2.MAIN RESULT 

Theorem 2.1. Let f and g be g- reciprocally 

continuous self mappings of probabilistic metric 

space    ,X F  satisfying,  

(1)           𝐹𝑓𝑥,𝑓𝑦(𝑡) > 𝐹𝑔𝑥,𝑔𝑦(𝑡) 

whenever right hand side is not equal to one. 

Suppose f and g satisfy property (𝐸. 𝐴). If 𝑓 and 𝑔 

are 𝑔- compatible then 𝑓 and 𝑔 have a unique 

common fixed point. 

Proof. Since f and g satisfy property (𝐸. 𝐴)there 

exists a sequence nx  in X such that nfx u  

and ngx u for some 𝑢in 𝑋. Suppose that 𝑓 and 
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𝑔 are 𝑔 - compatible. Then 
, ( ) 1,

n nfgx gfxF t  g - 

reciprocal continuity of f and g implies that 

nffx fu  and .ngfx gu The last two 

limits together imply𝑓𝑢 =  𝑔𝑢.Since 𝑔 - 

compatibility implies commutativity at coincidence 

points,i.e., 𝑓𝑔𝑢 =  𝑔𝑓𝑢 and, hence𝑓𝑓𝑢 =  𝑓𝑔𝑢 =
 𝑔𝑓𝑢 =  𝑔𝑔𝑢. If 𝑓𝑢 ≠  𝑓𝑓𝑢 then by using(1), we 

get𝐹𝑓𝑢,𝑓𝑓𝑢(𝑡) > 𝐹𝑔𝑢,𝑔𝑓𝑢(𝑡)  = 𝐹𝑓𝑢,𝑓𝑓𝑢(𝑡).a 

contradiction. Hence 𝑓𝑢 =  𝑓𝑓𝑢 =  𝑔𝑓𝑢 and 𝑓𝑢is a 

common fixed point of fand g. 

The next example illustrates the above theorem. 

Example 2.1.Let [2,20]X   and and𝐹𝑥,𝑦(𝑡) =

 𝐻(𝑡 − 𝑑(𝑥, 𝑦)),where ( , )d x y x y   

.Define , :f g X X as follows  

2  2  5,    6  2 5,fx if x or x fx if x     
 

   2 2, 12  2 5,  1 / 3  5.g gx if x gx x if x      

 

Then f  and g  satisfy all the conditions of 

Theorem 2.1 and have a unique common fixed point 

at 2.x   It can be verified in this example that 

f  and g  satisfy the contraction condition (𝑖). 

Furthermore, f  and g  are 𝑔 − reciprocally 

continuous 𝑔 − compatible mappings. It is also 

obvious that f  and g  are not reciprocally 

continuous. Here f  and g  are not reciprocally 

continuous mappings. 

Remark:In the above result we have not assumed 

strong conditions, e.g., completeness of the space, 

containment of the ranges of the mappings, 

closedness of the range of any one of the involved 

mappings and continuity of any mapping. In this 

paper we have proved a result using generalized 

strict contractive condition. 
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