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SOME REFINEMENTS OF BEREZIN NUMBER INEQUALITIES

VIA CONVEX FUNCTIONS

Suna SALTAN1 and Nazlı BASKAN2

1,2Department of Mathematics, Suleyman Demirel University, Isparta, TÜRKİYE

Abstract. The Berezin transform Ã and the Berezin number of an operator
A on the reproducing kernel Hilbert space over some set Ω with normalized

reproducing kernel k̂λ are defined, respectively, by Ã(λ) =
〈
Ak̂λ, k̂λ

〉
, λ ∈ Ω

and ber(A) := supλ∈Ω

∣∣∣Ã(λ)
∣∣∣ . A straightforward comparison between these

characteristics yields the inequalities ber (A) ≤ 1
2

(
∥A∥ber +

∥∥A2
∥∥1/2
ber

)
. In

this paper, we study further inequalities relating them. Namely, we obtained

some refinements of Berezin number inequalities involving convex functions.
In particular, for A ∈ B (H) and r ≥ 1 we show that

ber2r (A) ≤
1

4

(
∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber

)
+

1

2
berr

(
A2

)
.

1. Introduction and Preliminaries

Recall that the reproducing kernel Hilbert space H = H (Ω) (shortly, RKHS) is
the Hilbert space of complex-valued functions on some set Ω such that the eval-
uation functional f → f (λ) is bounded on H for every λ ∈ Ω. Then, by Riesz
representation theorem for each λ ∈ Ω there exists a unique vector kλ in H such
that f (λ) = ⟨f, kλ⟩ for all f ∈ H. The function kλ is called the reproducing kernel
of the space H. It is well known that (see Aronzajn [2])

kλ (z) =

∞∑
n=0

en (λ)en (z)
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for any orthonormal basis {en (z)}n≥0 of the space H (Ω) . The normalized repro-

ducing kernel is defined by k̂λ := kλ

∥kλ∥H
. For a bounded linear operator A acting

in the RKHS H, its Berezin symbol Ã (see Berezin [7]) is defined by the formula

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
(λ ∈ Ω) .

The Berezin symbol is a function that is bounded by norm of the operator. Karaev
[19] defined the Berezin set and the Berezin number of operator A, respectively by

Ber (A) := Range
(
Ã
)
=
{
Ã (λ) : λ ∈ Ω

}
and

ber (A) := sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ .

It is clear from definitions that Ã is a bounded function, Ber (A) lies in the
numerical range W (A) , and so ber (A) does not exceed the numerical radius w (A)
of operator A. Recall that the numerical range and the numerical radius of operator
A are defined, respectively, by

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1}

and

w (A) := sup
∥x∥=1

|⟨Ax, x⟩|

(for more information, see [1, 9, 10, 15, 21, 22, 25–28, 31]). Berezin set and Berezin
number of operators are new numerical characteristics of operators on the RKHS
which are introduced by Karaev in [19].

Suppose that B (H) denotes the C∗-algebra of all bounded linear operators on
H. It is well-known that

ber (A) ≤ w (A) ≤ ∥A∥ (1)

and
∥A∥
2

≤ w (A)

for any A ∈ B (H) . But, Karaev [20] showed that

∥A∥
2

≤ ber (A)

is not hold for every A ∈ B (H) . Also, Berezin number inequalities were given by
using the other inequalities in [11,13,17,20,32].

Huban et al. [18, Theorem 2.14] improved the inequality (1) by proving that

ber (A) ≤ 1

2

(
∥A∥ber +

∥∥A2
∥∥1/2
ber

)
(2)

for any A ∈ B(H).
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It has been shown in [17] that if A ∈ B (H), then

1

4
∥A∗A+AA∗∥ ≤ ber2 (A) ≤ 1

2
∥A∗A+AA∗∥ . (3)

The following estimate of the Berezin numbers has been given in [16],

ber (A) ≤ 1

2

√
∥AA∗ +A∗A∥ber + 2ber (A2) ≤ ∥A∥ber . (4)

The inequality (4) also refines the inequality (2). This can be seen by using the
fact that

∥AA∗ +A∗A∥ber ≤ ∥A∥2ber +
∥∥A2

∥∥
ber

. (5)

In this work, inspired by the numerical radius inequalities in [29], an extension
of the inequality (3) is proved. In particular, for A ∈ B (H) and r ≥ 1 we prove
that

ber2r (A) ≤ 1

4
(∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber) +

1

2
berr

(
A2
)
.

Other general related results are also established.

2. Main Results

In order to achieve our goal, we need the following series of corollaries.

Lemma 1. ( [23]) Let A be an operator in B (H) and x, y ∈ H be any vectors.

(i) If 0 ≤ α ≤ 1, then |⟨Ax, y⟩|2 ≤
〈
|A|2α x, x

〉〈
|A∗|2(1−α)

y, y
〉
.

(ii) If f and g are non-negative continuous functions on [0,∞) satisfying f(t)g(t)
= t, (t ≥ 0),then |⟨Ax, y⟩| ≤ ∥f (|A|)x∥ ∥g (|A∗|) y∥ .

Lemma 2. ( [24]) Let A be a self-adjoint operator in B (H) with the spectrum
contained in the interval J , and let h be convex function on J . Then for any unit
vector x ∈ H,

h (⟨Ax, x⟩) ≤ ⟨h (A)x, x⟩ .

In [31, Lemma 2.4], the authors present an improvement of the Young inequality
as follows:

Lemma 3. Let a, b > 0 and min {a, b} ≤ m ≤ M ≤ max {a, b} . Then

√
ab ≤ 2

√
Mm

M +m

a+ b

2
. (6)

In 1941, R.P. Boas [8] and in 1944, independently, R. Bellman [6] proved the
following generalization of Bessel’s inequality.
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Lemma 4. If a, b1, ..., bn are elements of an inner product space (H, ⟨., .⟩) , then
the following inequality holds:

n∑
i=1

|⟨a, bi⟩|2 ≤ ∥a∥2

 max
1≤i≤n

∥bi∥2 +

 n∑
1≤i ̸=j≤n

|⟨bi, bj⟩|2
 1

2

 .

In particulary, the case n = 2 in the above reduces to

|⟨a, b1⟩|2 + |⟨a, b2⟩|2 ≤ ∥a∥2
(
max

(
∥b1∥2 , ∥b2∥2

)
+ |⟨b1, b2⟩|

)
. (7)

We recall the following refinement of the Cauchy-Schwarz inequality obtained by
Dragomir in [9]. If a, b, e are vectors in H and ∥e∥ = 1, then we have

|⟨a, b⟩| ≤ |⟨a, e⟩ ⟨e, b⟩|+ |⟨a, b⟩ − ⟨a, e⟩ ⟨e, b⟩| ≤ ∥a∥ ∥b∥ . (8)

From the inequality (8) we deduce that

|⟨a, e⟩ ⟨e, b⟩| ≤ 1

2
(∥a∥ ∥b∥+ |⟨a, b⟩|) . (9)

Let k̂λ be a normalized reproducing kernel. Then, by taking e = k̂λ, a = Ak̂λ and

b = A∗k̂λ in the inequality (9), we get∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣2 ≤ 1

2

(∥∥∥Ak̂λ

∥∥∥∥∥∥A∗k̂λ

∥∥∥+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) (10)

and

sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣2 ≤ sup

λ∈Ω

1

2

(∥∥∥Ak̂λ

∥∥∥2 + ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
which is equivalent to

ber2 (A) ≤ 1

2

(
∥A∥2Ber + ber

(
A2
))

. (11)

In addition to this, we have the following related inequality:

Theorem 1. Let A ∈ B (H), f, g be non-negative continuous functions on [0,∞)
satisfying f(t) g(t) = t, (t ≥ 0), and h be a non-negative increasing convex function
on [0,∞). If

0 < f2
(∣∣A2

∣∣) ≤ m < M ≤ g2
(∣∣∣(A2

)∗∣∣∣) ,
or

0 < g2
(∣∣∣(A2

)∗∣∣∣) ≤ m < M ≤ f2
(∣∣A2

∣∣) ,
then

h
(
ber

(
A2
))

≤ 2
√
Mm

M +m

∥∥∥∥∥∥
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

∥∥∥∥∥∥
ber

. (12)
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Proof. Let k̂λ be a normalized reproducing kernel. Then, we have

h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
≤ h

(√〈
f2 (|A2|) k̂λ, k̂λ

〉〈
g2
(∣∣(A2)

∗∣∣) k̂λ, k̂λ〉)
(by Lemma 1 (ii))

≤ h

2
√
Mm

M +m


〈
f2
(∣∣A2

∣∣) k̂λ, k̂λ〉+
〈
g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉
2


(by the inequality (6))

≤ 2
√
Mm

M +m
h


〈
f2
(∣∣A2

∣∣) k̂λ, k̂λ〉+
〈
g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉
2


≤ 2

√
Mm

M +m

h
(〈

f2
(∣∣A2

∣∣) k̂λ, k̂λ〉)+ h
(〈

g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉)
2


≤ 2

√
Mm

M +m


〈
h
(
f2
(∣∣A2

∣∣)) k̂λ, k̂λ〉+
〈
h
(
g2
(∣∣∣(A2

)∗∣∣∣)) k̂λ, k̂λ〉
2


(by Lemma 2)

=
2
√
Mm

M +m

〈
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

k̂λ, k̂λ

〉
.

Therefore,

h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) ≤ 2
√
Mm

M +m

〈
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

k̂λ, k̂λ

〉
.

By taking the supremum over λ ∈ Ω above inequality, we deduce the desired result

h
(
ber

(
A2
))

≤ 2
√
Mm

M +m

∥∥∥∥∥∥
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

∥∥∥∥∥∥
ber

.

This finalizes the proof. □

The following result may be stated as well.

Corollary 1. Let A ∈ B (H), f, g be non-negative continuous functions on [0,∞)
satisfying f(t)g(t) = t, (t ≥ 0), and r ≥ 1. If

0 < f2
(∣∣A2

∣∣) ≤ m < M ≤ g2
(∣∣∣(A2

)∗∣∣∣) ,
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or

0 < g2
(∣∣∣(A2

)∗∣∣∣) ≤ m < M ≤ f2
(∣∣A2

∣∣) ,
then

berr
(
A2
)
≤ 2

√
Mm

M +m

∥∥∥∥∥∥
f2r

(∣∣A2
∣∣)+ g2r

(∣∣∣(A2
)∗∣∣∣)

2

∥∥∥∥∥∥
ber

.

Remark 1. By taking r = 1 in Corollary 1, then it follows from the inequality (11)
that

ber2 (A) ≤ 1

2

∥∥A2
∥∥
Ber

+
2
√
Mm

M +m

∥∥∥∥∥∥
f2
(∣∣A2

∣∣)+ g2
(∣∣∣(A2

)∗∣∣∣)
2

∥∥∥∥∥∥
ber

 .

For various operators, the following conclusion is true.

Theorem 2. Let A,B,C ∈ B (H) , A,B ≥ 0, 0 ≤ α ≤ 1, and h be a non-negative
increasing sub-multiplicative convex function on [0,∞). If

0 < B2(1−α) ≤ m < M ≤ A2α

or
0 < A2α ≤ m < M ≤ B2(1−α),

then

h
(
ber

(
AαCB1−α

))
≤ 2

√
Mm

M +m
h (∥C∥ber)

∥∥∥∥∥h
(
B2(1−α)

)
+ h

(
A2α

)
2

∥∥∥∥∥
ber

. (13)

Proof. Let k̂λ be a normalized reproducing kernel. Then, by the Cauchy-Schwarz,
we have

h
(∣∣∣〈AαCB1−αk̂λ, k̂λ

〉∣∣∣)
= h

(∣∣∣〈CB1−αk̂λ, A
αk̂λ

〉∣∣∣)
≤ h

(
∥C∥ber

∥∥∥B1−αk̂λ

∥∥∥ ∥∥∥Aαk̂λ

∥∥∥)
(by h sub-multiplicativity)

= h

(
∥C∥ber

√〈
B1−αk̂λ, B1−αk̂λ

〉〈
Aαk̂λ, Aαk̂λ

〉)
(by the inequality (6))

= h

(
∥C∥ber

√〈
B2(1−α) k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉)

≤ h (∥C∥ber)h

(√〈
B2(1−α) k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉)
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≤ h (∥C∥ber)h

2
√
Mm

M +m


〈
B

2(1−α)

k̂λ, k̂λ

〉
+
〈
A2αk̂λ, k̂λ

〉
2


≤ 2

√
Mm

M +m
h (∥C∥ber)h


〈
B

2(1−α)

k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉
2


(by Lemma 2)

≤ 2
√
Mm

M +m
h (∥C∥ber)

h
(〈

B
2(1−α)

k̂λ, k̂λ

〉)
+ h

(〈
A2αk̂λ, k̂λ

〉)
2

≤ 2
√
Mm

M +m
h (∥C∥ber)

〈
h
(
B

2(1−α)
)
k̂λ, k̂λ

〉
+
〈
h
(
A

2α
)
k̂λ, k̂λ

〉
2

=
2
√
Mm

M +m
h (∥C∥ber)

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
,

So,

h
(∣∣∣〈AαCB1−αk̂λ, k̂λ

〉∣∣∣) ≤ 2
√
Mm

M +m
h (∥C∥ber)

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
,

and

sup
λ∈Ω

h
(∣∣∣( ˜AαCB1−α

)
(λ)
∣∣∣) ≤ 2

√
Mm

M +m
h (∥C∥ber) sup

λ∈Ω

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
which is equivalent to

h
(
ber

(
AαCB1−α

))
≤ 2

√
Mm

M +m
h (∥C∥ber)

∥∥∥∥∥h
(
B2(1−α)

)
+ h

(
A2α

)
2

∥∥∥∥∥
ber

,

which proves the desired inequalities. □

Corollary 2. Let A,B,C ∈ B (H), A, B ≥ 0, and 0 ≤ α ≤ 1, and let r ≥ 1. If

0 < B2(1−α) ≤ m < M ≤ A2α,

or

0 < A2α ≤ m < M ≤ B2(1−α),

then

berr
(
AαCB1−α

)
≤ 2

√
Mm

M +m
∥C∥rber

∥∥∥∥∥
(
A2rα

)
+
(
B2r(1−α)

)
2

∥∥∥∥∥
ber

.

As a consequence of the above, we can present the following inequality.
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Corollary 3. Suppose that the assumptions of Corollary 2 are satisfied. Then

berr
(
A1/2CB1/2

)
≤ 2

√
Mm

M +m
∥C∥rber

∥∥∥∥Ar +Br

2

∥∥∥∥
ber

. (14)

We can give the following corollary whose proof can be reached by using similar
techniques from Theorem 3.4 and Lemma 3.5 in [30].

Corollary 4. Let A,B ∈ B (H) be invertible self-adjoint operators and C ∈ B (H).
Then

berr
(
A1/2CB1/2

)
≤ ∥C∥rber

∥∥∥∥Ar +Br

2

∥∥∥∥
ber

. (15)

Remark 2. Therefore, inequality (14) essentially gives a refinement of the inequal-

ity of (15) since 2
√
Mm

M+m ≤ 1.

The following result is of interest in itself.

Theorem 3. Let A ∈ B (H) , and let h be a non-negative increasing convex function
on [0,∞).

h
(
ber2 (A)

)
≤ 1

4
(h (∥A∗A+AA∗∥ber) + h (∥A∗A−AA∗∥ber)) +

1

2
h
(
ber

(
A2
))

.

In particular, for any r ≥ 1,

ber2r (A) ≤ 1

4
(∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber) +

1

2
berr

(
A2
)
.

Proof. Let λ ∈ Ω be an arbitrary. Put b1 = Ak̂λ, b2 = A∗k̂λ, and a = k̂λ in the

inequality (7). Since max (a, b) = |a+b|+|a−b|
2 , we get∣∣∣〈k̂λ, Ak̂λ〉∣∣∣2 + ∣∣∣〈k̂λ, A∗k̂λ

〉∣∣∣2
≤ max

(∥∥∥Ak̂λ

∥∥∥2 ,∥∥∥A∗k̂λ

∥∥∥2)+
∣∣∣〈Ak̂λ, A

∗k̂λ

〉∣∣∣ (16)

=
1

2

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣ .
Applying the AM-GM inequality for the left hand side of the above inequality,

we get∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣
≤ 1

4

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ 1

2

∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣ .
Whence,

h
(∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣)
≤ h

(
1

4

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ 1

2

∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)



40 S. SALTAN, N. BASKAN

= h

 1
2

∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
2


≤ 1

2

h


∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣
2

+ h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)


≤ 1

4

(
h
(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣)+ h
(∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣))+ 1

2
h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) .
Therefore,

h
(∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣)
≤ 1

4

(
h
(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣)+ h
(∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣))+ 1

2
h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) .
By taking the supremum over λ ∈ Ω above inequality, we have

h
(
ber2 (A)

)
≤ 1

4
(h (∥A∗A+AA∗∥ber) + h (∥A∗A−AA∗∥ber)) +

1

2
h
(
ber

(
A2
))

.

This completes the proof. □

Corollary 5. Let A ∈ B (H) be an invertible operator. Then

ber(A) ≤
√

1

2
∥A∥2ber +

3

4
∥A2∥v −

1

4
∥A−1∥−2

ber .

Proof. By using similar techniques from [22], we get

∥A∗A−AA∗∥ber ≤ ∥A∥2ber −
∥∥A−1

∥∥−2

ber
. (17)

On the other hand, from Theorem 3, we have

ber2(A) ≤ 1

4
(∥A∗A+AA∗∥ber + ∥A∗A−AA∗∥ber) +

1

2
ber(A2).

Hence

ber2(A) ≤ 1

4
(∥A∗A+AA∗∥ber + ∥A∗A−AA∗∥ber) +

1

2
ber(A2)

≤ 1

4

(
∥A∗A+AA∗∥ber + ∥A∥2 −

∥∥A−1
∥∥−2

ber

)
+

1

2
ber(A2)

(by the inequality (17))

≤ 1

4

(
2 ∥A∥2ber +

∥∥A2
∥∥
ber

−
∥∥A−1

∥∥−2

ber

)
+

1

2
ber(A2)

(by the inequality (5))

≤ 1

2
∥A∥2ber +

3

4

∥∥A2
∥∥
ber

− 1

4

∥∥A−1
∥∥−2

ber

(by the inequality (1))

as required. □
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The following upper bound for the nonnegative difference ber2(A)−ber(A2) can
be obtained:

Corollary 6. Let A ∈ B (H). Then

ber2(A)− ber(A2) ≤ 1

4

(∥∥∥|A|2 + |A∗|2
∥∥∥
ber

+
∥∥∥|A|2 − |A∗|2

∥∥∥
ber

)
.

For more recent results concerning Berezin radius inequalities for operators and
other related results, we suggest [3–5,12,14,16,33].
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