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Abstract: In this paper, we deal with complex and bicomplex numbers with respect to 

the geometric calculus, and we obtain the set of complex numbers with respect to the 

geometric calculus ( )GC  is a field and the set of bicomplex numbers with respect to 

the geometric calculus ( )GC  is a vector space on the field ( )GC  by defining 

addition and multiplication operations on the sets of such numbers. Also, we give the 

concepts of norm, metric, sequence, convergence of a sequence, Cauchy sequence and 

completeness in the settings ( )GC  and ( )GC . Moreover, we discuss bicomplex

versions with respect to geometric calculus of some well-known inequalities. This paper 

is a new and important addition to the current literature thanks to its applications in 

different areas and the obtained results unify, private and complement the corresponding 

results. 

Geometrik Kalkülüse göre Bikompleks Sayılar ve Bazı Eşitsizlikler 

Anahtar Kelimeler 
Geometrik Kalkülüs, 
Non-Newtonian Bikompleks 
Sayı, 
Non-Newtonian Kompleks 
Sayı, 
Eşitsizlikler 

Öz: Bu makalede, geometrik kalkülüse göre kompleks sayıları ve bikompleks sayıları ele 

aldık ve böyle sayılardan oluşan kümeler üzerinde toplama ve çarpma işlemlerini 

tanımlayarak geometrik kalkülüse göre ( )GC  kompleks sayılar kümesinin bir cisim 

olduğunu ve geometrik kalkülüse göre ( )GC  bikompleks sayılar kümesinin 

( )GC cismi üzerinde bir vektör uzayı olduğunu elde ettik. Ayrıca ( )GC ve

( )GC kurulumlarında norm, metrik, dizi, dizinin yakınsaklığı, Cauchy dizisi ve

tamlık kavramlarını verdik. Diğer yandan, bazı iyi bilinen eşitsizliklerin geometrik 

kalkülüse göre bikompleks versiyonlarını tartıştık. Bu makale, farklı alanlardaki 

uygulamaları ve elde edilen sonuçların birleştirilmesi, özelleştirilmesi ve ilgili sonuçları 

tamamlaması sayesinde mevcut literatüre yeni ve önemli bir katkıdır. 

*Corresponding Author, email: bduyar@omu.edu.tr

1. Introduction

Corrado Segre [1] presented the concept of a bicomplex number in 1892. After that, Price [2] published a book on 
bicomplex numbers and bicomplex functions. Hereupon, Alpay et al. in [3] gave a clear and general survey of 
bicomplex functional analysis and additionally put forward some new ideas and results. 

In 1972, Grossman and Katz [4] laid the foundations of non-newtonian calculus which modify the calculi initiated 
by Gottfried Wilhelm Leibnitz and Isaac Newton in the 17th century. A generator is a one-to-one function 

: A →  . The set ( ) is denoted by ( )N or  and is called non-Newtonian real line. For 

example, the identity function I generates classical arithmetic and the exponential function exp generates 
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geometric arithmetic. So, the results obtained with respect to non-Newtonian calculus are stronger than those of 
classical calculus.  
 

Each choice of specific isomorphisms for the generators   and   creates a *− calculus [5]. Geometric calculus 

obtained by choosing I  instead of the generator   and exp  instead of the generator  ; that is, ( )u u =  and 

( ) uu e =  for all u  is one of the most popular *− calculi and has some attractive applications. In this 

situation, 


 turns into  and   turns into  exp :ue u=  . Geometric calculus has huge applications 

in problems related growth, price elasticity, economy and numerical approximations problems. 
 
Many investigators have published some papers on extensions and generalizations in different ways on non-
Newtonian calculus. In the literature, there are great contributions to non-Newtonian calculus and their 
applications some of which can be seen in Stanley [6], C´ordova-Lepe [7], Bashirov et al. [8,9], Uzer [10], Bashirov 
and Rıza [11], Mısırlı and Gurefe [12], Çakmak and Başar [13,14], Tekin and Başar [15], Kadak and Efe [16], Duyar 
et al. [17], Boruah and Hazarika [18,19,20], Güngör [21] etc. 
 
Our first study on non-Newtonian bicomplex analysis is [22] in which we discussed non-Newtonian bicomplex 
numbers and non-Newtonian bicomplex versions of some well-known inequalities. Also, Sager and Sağır [23] 

constructed vector spaces ( )( )pl N  and showed that these vector spaces are Banach with the *− norm 

( )( )

.. ..

2,||.||
pl N . Besides, in [24], we derived some elementary topological and geometric properties of ( )( ).pl N  

 
Motivated by above studies, the focus of this study is giving complex and bicomplex numbers with respect to 
geometric calculus and examining some inequalities for such numbers. In Section 2, we give some required 
definitions and fundamental facts. In Section 3, we introduce the notion of a complex number with recpect to the 

geometric calculus and then obtain that the set of these numbers is a Banach space according to the norm 
1

.
GC

.  

Also, we investigate some properties and inequalities by defining bicomplex numbers according to the geometric 
calculus. 
 
 
2.  Material and Method 
 
Now, we briefly mention several known concepts on non-Newtonian calculus. The details can be found in [4,5,25]. 

Let     and     be arbitrarily determined generators which map the set    to  A   and  B   respectively and  *−

calculus also be the ordered pair of arithmetics ( −arithmetic,  − arithmetic). We will use the following 

symbols and operations: 

 arithmetic −  arithmetic −  

Realm ( ) ( ) ( ):A N s s 
= = =   ( )( )B N 

= =  

Summation ( ) ( ) 
.

1 1s t s t  − −+ = +  
..

+  

Subtraction ( ) ( ) 
.

1 1s t s t  − −− = −  
..

−  

Multiplication ( ) ( ) 
.

1 1s t s t  − − =   
..

  

Division 
( )

( )

1. .

1
/ 0

ss
s t t

t t







−

−

    
= =    

   
 

..

/  

Ordering ( ) ( )
.

1 1s t s t − −    
..

  

 

 −absolute value of ( )s N   is characterized by  



 Bicomplex Numbers with respect to the Geometric Calculus and Some Inequalities 

337 
 

( )( )1

> 0

0 = 0 .

0 < 0

s if s

s s if s

s if s


  −




= = 
 −

 

If   and   are chosen as one of I  and exp , the following special calculuses are obtained. 

 
Calculus (arguments)  (values)  

Classic I  I  
Geometric I  

exp
 

Anageometric exp
 I  

Bigeometric exp
 

exp
 

  

In geometric calculus, the operations in exp =  are as follows: 

Geometric addition 
ln ln

exp

x yx y e e x ye e e e+ ++ = =  

Geometric subtraction 
ln ln

exp

x yx y e e x ye e e e− −− = =  

Geometric multiplicaiton 
ln .ln

exp

x yx y e e xye e e e = =  

Geometric division ( )0y e  
ln

ln
exp

x

y

xex
ye

y

e
e e

e
= =  

Geometric ordering exp ln lnx y x ye e e e x y      

  

Also, exp− absolute value of a number expx  is as follows:  

0

exp

ln 0 0

exp

0 0

exp exp

1

= 1 =1.

1
1

x

x if x e x if x

x e e if x e if x

e x if x e
if x

x


  


= = = 
 −   



 

The isomorphism from  −arithmetic to  − arithmetic is the unique function   (iota) and : A B →  has the 

following three properties: 
    1.    is injective, 

    2.    is surjective, 

    3.  For all ,s t A , 

  ( ) ( ) ( )= ,s t s t  + +  

  ( ) ( ) ( )= ,s t s t  − −  

  ( ) ( ) ( )= ,s t s t     

  ( ) ( ) ( )/ = / ,s t s t    0t   

  ( ) ( )< <s t s t  .  

It turns out that ( ) ( ) 1=s s   −
 for every number s A . 

  
Based on the definitions above, the concept of a non-Newtonian complex number is defined by Tekin and Başar in 
[15] as follows: 

Let  
. . . . . .

, , , , /,a A
 

 + −   
 

  and  
.. .. . .. .. ..

, , , , /,b B
 

 + −   
 

  be arbitrarily chosen elements from corresponding 
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arithmetics. Then, the ordered pair  
. ..

,a b
 
 
 

  is called as a  −  complex numbers (non-Newtonian complex 

numbers) and is denoted by  


  or  ( )N . 

In the rest of the study, when necessary we will use the abbreviations “w.r.t.” and “w.r.t.g.c.” for the statements 
“with respect to” and “with respect to the geometric calculus”, respectively. 

The set  ( )N  forms a field w.r.t. 
1  and 

1  for all 
. ..

1 1 1,z a b  
=  
 

 ,  ( )
. ..

2 2 2,z a b N  
=  
 

  defined as 

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )( )

1

. .. . .. . . . .. .. ..

1 2 1 1 2 1 1 1 2 2 1 2 1 2

1

. .. . ..

1 2 1 1 2 1 1 1 2 2 1 2 1 2 1 2 1 2

: ,

, , , , ,

: ,

, , , , .

N N N

z z z z a b a b a a b b

N N N

z z z z a b a b a a b b a b b a 

   

   

  →

     
→  =  = + +     

     

  →

   
→  =  = − +   

   

 

On the other hand, a bicomplex number is defined as 
1 2z z jz= +  where 

2 1,j ij ji= − = , 
1z  and 

2z  are 

complex numbers, and i  and j  are independent imaginary units. Also, the set of bicomplex numbers is denoted 

by  and the set forms a Banach space with the following operations ,+   and the norm .  

( ) ( ) ( ) ( )

( )

1 2 1 2 1 1 2 2

1 2 1 2

2 2

1 2

,

. . ,

. : ,

z w z jz w jw z w j z w

z z jz z j z

z z z z

   

+ = + + + = + + +

= + = +

→ → = +

 

for all  
1 2 1 2,z z jz w w jw= + = +   and for all   [2]. 

In [22], we defined the concept of a non-Newtonian bicomplex number which forms the basis of this study, as 
follows: 

Let  
. . . . . . .

, , , , , /,a c A
 

 + −   
 

  and  
.. .. .. . .. .. ..

, , , , , /,b d B
 

 + −   
 

 . Then,  
. .. . ..

, , ,a b c d
 
 
 

  is called as a  −bicomplex 

number (non-Newtonian bicomplex number). The set of these numbers is denoted by  


  or  ( ) ;N   that 

is, 

( )

( )

. .. . .. . . .. ..

. .. . .. . . .. ..

, , , : , , ,

, : , , , , , , , .

N a b c d a c A b d B

z w z a b w c d a c A b d B   

  
=      

  

    
= = =        

    

 

Also, ( )N   forms a vector space over the field  ( )N  and a ring w.r.t. the algebraic operations addition  
2 ,   

multiplication  
2   and scalar multiplication  

2
  defined on  ( )N   as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

2

1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 2

2

1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1

2

1 2 1 2 1 1 1

: ,

, , , , ,

: ,

, , , , ,

: ,

, ,

N N N

z w z w z z w w

N N N

z w z w z z w w z w z w

N N N

z z z z w z z

   

   

 

           

               

       

  →

→  =  =  

  →

→  =  =      

 →

→ = = ( )1 1 1, z w  

 

where  ( )1 1 1,z w   =  ,  ( ) ( )2 2 2,z w N   =    and  ( ).z N   
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3. Results 
In this part, we obtain new concepts and results by rewriting some definitions and concepts given in the second 
part w.r.t.g.c. 
 
3.1. Complex numbers with respect the geometric calculus 
In this section, we examine the concept of a non-Newtonian complex number and some related properties given 
by Tekin and Başar w.r.t.g.c.  

Definition 3.1.1. The ordered pair ( ) exp, ba e    is called as a complex number w.r.t.g.c. The set of all complex 

numbers w.r.t.g.c. is denoted by ( )GC  that is, 

 

( ) ( ) , : , .bGC a e a b=   

Theorem 3.1.2. The set of complex numbers w.r.t.g.c. ( )GC  forms a field w.r.t. addition 1,GC  and 

multiplication 1,GC  for all ( ) ( ) ( )1 2

1 1 2 2, , ,b bGC GCz a e z a e GC= =   defined as 

( ) ( ) ( )

( ) ( ) ( ) ( )1 2 1 2

1,

1 2 1 1, 2 1 1, 2 1 2

: ,

, , , ,

GC

b b b bGC GC GC GC

GC GC

GC GC GC

z z z z a e a e a a e
+

  →

→  =  = +
 

( ) ( ) ( )

( ) ( ) ( ) ( )1 2 1 2 1 2

1,

1 2 1 1, 2 1 1, 2 1 2 1 2

: ,

, , , , .

GC

b b a b b aGC GC GC GC

GC GC

GC GC GC

z z z z a e a e a a bb e
+

  →

→  =  = −
 

Proof. The proof depends on definitions of of algebraic operations 1,GC  and 1,GC . 

Definition 3.1.3. The distance 1

GCd  between two elements ( ) ( ) ( )1 2

1 1 2 2, , ,b bGC GCz a e z a e GC= =   of the set 

( )GC is defined by 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
2 2

1 2 1 21 2

1 exp

1 2 1 1 2 1 1 2

: ,

, , , , , .

GC

a a b bb bGC GC GC GC GC GC

d GC GC

z z d z z d a e a e e
− + −

 →

→ = =
 

Definition 3.1.4. The number ( )1 ,0GC GC GCd z  is called norm of ( ),GC bz a e= , denoted by 
1

.
GC

 , that is, 

( ) ( ) ( )( )
2 20

1 11
,0 , , 0, .

GC
GC GC GC GC GC b a bz d z d a e e e += = =  

Definition 3.1.5. A sequence ( )GC

ns  in ( )GC  is a function defined by ( ):s GC→ . This sequence is called 

a complex sequence w.r.t.g.c. It converges to a limit ( )GCs GC  w.r.t. the metric 1

GCd  if and only if for every 

0

GC e   there is a 
0n   such that ( )1 ,GC GC GC

n GCd s s   for all 
0n n . It is denoted by 

1,
lim

GC GC GC

n
n

s s
→

=

. The sequence ( )GC

ns  is Cauchy w.r.t. 1

GCd  if and only if for every 
0

GC e   there is a 
0n   such that 

( )1 ,GC GC GC

n m GCd s s  for all 
0,n m n . 

Theorem 3.1.6. Let ( ) ( )( ), nbGC

n ns a e=  be a complex sequence w.r.t.g.c. and ( ),GC bs a e= . Then, 

1,
lim

GC GC GC

n
n

s s
→

=  if and only if lim n
n

a a
→

=  and lim n
n

b b
→

= . 
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Proof. The proof follows from definitions of complex sequences w.r.t.g.c. 

Definition 3.1.7. Let ( )GC

ns  be a complex sequence w.r.t.g.c. Then, the infinite sum 

1,

1 1, 2 1, 1, 1,

1

... ...

GC

GC GC GC GC

k GC GC GC n GC

k

s s s s


=

=      (1) 

is called a complex series w.r.t.g.c. Define the complex sequence w.r.t.g.c. 

( )
1,

1

: ,

GC

n
GC GC

n k

k

S GC n S s
=

→ → =  . The infinite series (1) converges to a limit ( )GCS GC  w.r.t. the 

metric 1

GCd  if and only if ( )GC

nS converges to ( )GCS GC  w.r.t. the metric 1

GCd . Then, 
GCS  is called the sum 

of bicomplex series w.r.t.g.c., and 

1,
1

GC

GC GC

k

k

s S


=

= . 

Theorem 3.1.8. Let ( ) ( )( ), nbGC

n ns a e=  be a complex sequence w.r.t.g.c., ( ) ( ),GC bS a e GC=  . Then, 

1,
1

GC

GC GC

k

k

s S


=

=  if and only if 
1

k

k

a a


=

=  and 
1

k

k

b b


=

= . 

Proof. The proof of this theorem is directly seen  from the definitions of convergence for complex series w.r.t.g.c. 

Theorem 3.1.9. ( )GC  is complete w.r.t. the metric 1

GCd . 

Proof. Let ( ) ( )( ), nbGC

n ns a e=  be a bicomplex Cauchy sequence w.r.t.g.c. Then, to each 
0

exp e   there 

corresponds a natural number 
0n  such that ( )1 exp,GC GC GC

n md s s  for all 
0,n m n . So, 

( ) ( ) ( )
2 2

1 exp, n m n ma a b bGC GC GC

n md s s e 
− + −

=  . This implies that ( ) ( )
2 2

lnn m n ma a b b − + −   and so 

lnn ma a −  , lnn mb b −  . Then, since ( )na  and ( )nb  are Cauchy sequences in  and  is Banach, 

there exist ,a b  such that lim n
n

a a
→

=  and lim n
n

b b
→

= . So, we obtain 

( ) ( ) ( ) ( ) ( )
2 2 2 2

ln

1 exp, ,
n n n n n m n m

a a b b a a b b a a b bGC GC GC

nd s s e e e e  
− + − − + − − + −

=  =  =  

This means that lim GC GC

n
n

s s
→

= . Then, ( )GC  is complete w.r.t. the metric 1

GCd . 

Corollary 3.1.10. ( )GC  is Banach w.r.t. the norm 
1

.
GC

. 

Proof. The proof is based on Theorem 3.1.9. 

 

3.2. Bicomplex numbers with respect to geometric calculus and some inequalities 

In this section, we consider the concept of a non-Newtonian bicomplex number w.r.t.g.c. and give some definitions 

about it. Also, we obtain that ( )GC  is a Banach space w.r.t. the norm 
2

.
GC

 by proving some inequalities 

w.r.t. the norm
2

.
GC

. 
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Definition 3.2.1. The point ( ), , ,b da e c e  is called as a bicomplex number w.r.t.g.c. The set of all bicomplex numbers 

w.r.t.g.c. is denoted by ( )GC  that is, 

( ) ( )  ( ) ( ) ( ) ( ) , , , : , , , , : , , , .b d GC GC GC b GC dGC a e c e a b c d z w z a e w c e GC=  = = =   

Theorem 3.2.2. The set ( )GC  forms a vector space over the field ( )GC  and a ring w.r.t. addition 2,GC , 

multiplication 2,GC  and scalar multiplication 2,GC  for all 

( ) ( ) ( )1 1 1 2 2 2, , ,GC GC GC GC GC GCz w z w GC = =   and ( )GCz GC  defined as 

( ) ( ) ( )

( ) ( ) ( ) ( )
2,

1 2 1 2, 2 1 1 2, 2 2 1 1, 2 1 1, 2

: ,

, , , ,

GC

GC GC GC GC GC GC GC GC GC GC GC GC

GC GC GC GC

GC GC GC

z w z w z z w w   

  →

→  =  =  
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

2,

1 2 1 2, 2 1 1 2, 2 2

1 1, 2 1, 1 1, 2 1 1, 2 1, 2 1, 1

: ,

, , ,

,

GC

GC GC GC GC GC GC GC GC

GC GC

GC GC GC GC GC GC GC GC

GC GC GC GC GC GC

GC GC GC

z w z w

z z w w z w z w

   

  →

→  = 

=      

 

( ) ( ) ( )

( ) ( ) ( )
2,

1 2, 1 2, 1 1 1, 1 1, 1

: ,

, , , .

GC

GC GC GC GC GC GC GC GC GC GC GC

GC GC GC GC

GC GC GC

z z z z w z z z w 

 →

→ = =  
 

Proof. The proof of Theorem 3.2.2 follows from definitions of algebraic operations 2,GC , 2,GC  and 2,GC . 

Definition 3.2.3. The distance 2

GCd  between two elements ( ) ( ) ( )1 1 1 2 2 2, , ,GC GC GC GC GC GCz w z w GC = =   

is defined by 

( ) ( )

( ) ( )

2 2exp exp

1 1 2 exp 1 1 2
1 1

2 exp

ln

1 2 2 1 2

: ,

, , .

GC GC
GC GC GC GC

GC

z z w w
GC GC GC GC GC

d GC GC

d e   

    
 +     

     

 →

→ =

 

Theorem 3.2.4. The function 2

GCd  is a metric on ( )GC . 

Proof. It is clear that ( ) 0

2 1 2 exp,GC GC GCd e   , ( ) ( )2 1 2 2 2 1, ,GC GC GC GC GC GCd d   =  for all 

( )1 2,GC GC GC    and ( ) 0

2 1 2 1 2,GC GC GC GC GCd e   =  = . On the other hand, 

( )

( ) ( ) ( ) ( )

2 2exp exp

1 1, 2 exp 1 1, 2
1 1

2 2exp exp

1 1, 3 1, 3 1, 2 exp 1 1, 3 1, 3 1, 2
1 1

1 1,

ln

2 1 2

ln

ln

exp

,

GC GC
GC GC GC GC

GC GC

GC GC
GC GC GC GC GC GC GC GC

GC GC GC GC GC GC

GC
G

z z w w
GC GC GC

z z z z w w w w

z

d e

e

e

 

    
 +     

     

    
    +      
     



=

=



2 2exp exp

3 exp 3 1, 2 exp 1 1, 3 exp 3 1, 2
1 1 1 1

2 2 2exp exp exp

1 1, 3 exp 1 1, 3 3 1, 2 exp
1 1 1

ln ln

exp

GC GC GC GC
GC GC GC GC GC GC GC

C GC GC GC

GC GC GC
GC GC GC GC GC GC

GC GC GC

z z z w w w w

z z w w z z

e

    
+  +  +     

     

      
 +  +  +      

       

( ) ( )

2exp

3 1, 2
1

2 1 3 exp 2 3 2, ,

GC
GC GC

GCw w

GC GC GC GC GC GCd d   

  
  

   

= +
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for all ( ) ( ) ( )1 1 1 2 2 2, , ,GC GC GC GC GC GCz w z w GC = =  . Then, 2

GCd  is a metric on ( )GC . 

Definition 3.2.5. A sequence ( )GC

ns  in ( )GC  is a function defined by ( ):s GC→ . This sequence is 

called a bicomplex sequence w.r.t.g.c. It is convergent to a limit ( )GCs GC  w.r.t. the metric 2

GCd  if and only 

if for every 
0

exp e   there is a 
0n   such that ( )2 exp,GC GC GC

nd s s   for all 
0n n . It is denoted by 

2,
lim

GC GC GC

n
n

s s
→

= . The sequence ( )GC

ns  is Cauchy w.r.t. 2

GCd  if and only if for every 
0

exp e   there is a 
0n 

such that ( )2 exp,GC GC GC

n md s s  for all 
0, .n m n  

Theorem 3.2.6. Let ( ) ( )( ),GC GC GC

n n ns z w=  be a bicomplex sequence w.r.t.g.c. and ( ),GC GC GCs z w= . Then, 

2,
lim

GC GC GC

n
n

s s
→

=  if and only if 
1,

lim
GC GC GC

n
n

z z
→

=  and 
1,

lim
GC GC GC

n
n

w w
→

= . 

Proof. The proof follows directly from the definitions of convergence for bicomplex sequences w.r.t.g.c. 

Definition 3.2.7. Let ( )GC

ns  be a bicomplex sequence w.r.t.g.c. Then, the infinite sum  

2,

1 2, 2 2, 2, 2,

1

... ...

GC

GC GC GC GC

k GC GC GC n GC

k

s s s s


=

=      (2) 

is called a bicomplex series w.r.t.g.c. Define the bicomplex sequence w.r.t.g.c. 

( )
2,

1

: ,

GC

n
GC GC

n k

k

S GC n S s
=

→ → =  . (2) converges to a limit ( )GCS GC  w.r.t. the metric 2

GCd  

if and only if ( )GC

nS converges to a limit ( )GCS GC  w.r.t. the metric 2

GCd . Then, 
GCS  is called the sum of 

bicomplex series w.r.t.g.c., and we 

2,
1

GC

GC GC

k

k

s S


=

= . 

Theorem 3.2.8. Let ( ) ( )( ),GC GC GC

n n ns z w=  be a bicomplex sequence w.r.t.g.c., ( ) ( ),GC GC GCS z w GC=  . 

Then, 

2,
1

GC

GC GC

k

k

s S


=

=  if and only if 

1,
1

GC

GC GC

k

k

z z


=

=  and 

1,
1

GC

GC GC

k

k

w w


=

= . 

Proof. The proof depends on definitions of convergence of bicomplex series w.r.t.g.c. 

Theorem 3.2.9. ( )GC  is complete w.r.t. the metric 2

GCd . 

Proof. Let ( ) ( )( ),GC GC GC

n n ns z w=  be a bicomplex Cauchy sequence w.r.t.g.c. Then, for every 
0

exp e   there is a 

0n   such that ( )2 exp,GC GC GC

n md s s   for all 
0, .n m n  So, 

( )

2 2exp exp

1, exp 1,
1 1

ln

2 exp,

GC GC
GC GC GC GC
n GC m n GC mz z w w

GC GC GC

n md s s e 

    
 +     

     =  . This implies that 

( ) ( )
exp exp2 2

1, exp 1,1 1
ln ln

GC GC
GC GC GC GC

n GC m n GC mz z w w 
 

 +   
 

 and so 

ln

2
1, 1

GC
GC GC

n GC mz z e



  , 

ln

2
1, 1

GC
GC GC

n GC mw w e



  . Then, ( )GC

nz  and ( )GC

nw  are Cauchy sequences w.r.t. the norm 
1

.
GC

. Since ( )GC  
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is Banach, there exist ( ),GC GCz w GC  such that 
1,

lim
GC GC GC

n
n

z z
→

=  and 
1,

lim
GC GC GC

n
n

w w
→

= . This implies 

that to each 
0

GC e   there corresponds a natural number 
1n   such that ( )

ln

2
1 ,GC GC GC

n GCd z z e



  for all 

1n n  and there corresponds a natural number 
2n   such that ( )

ln

2
1 ,GC GC GC

n GCd w w e



  for all 
2n n . 

Then, we obtain 

( )

2 2exp exp

1, exp 1,
1 1

ln
ln

2 exp,

GC GC
GC GC GC GC
n GC n GCz z w w

GC GC GC

nd s s e e  

    
 +     

     =  =  

for all  0 1 2max ,n n n n = . This means that lim
GC GC GC

n
n

s s
→

= . Then, ( )GC  is complete w.r.t. the metric 

2

GCd . 

Definition 3.2.10. The number ( )2 ,0GC GC GCd   is called norm of ( ),GC GC GCz w = , denoted by 
2

.
GC

 , that 

is, 

( ) ( ) ( )( )
2 2exp exp

exp
1 1

ln
0 0

2 22
,0 , , 0, ,0, .

GC GC
GC GCz w

GC
GC GC GC GC GC GC GCd d z w e e e 

    
+    

     = = =  

Corollary 3.2.11. ( )GC  is Banach w.r.t. the norm 
2

.
GC

. 

Proof. The proof is easily derived from Theorem 3.2.9. 

Lemma 3.2.12. The following inequalities are satisfied: 

i. 
1 2, 2 exp 1 exp 22 2 2

GC GC GC
GC GC GC GC

GC     +  for all ( )1 2, .GC GC GC    

ii. 
1 exp 2 exp 1 2, 22 2 2

exp

GC GC GC
GC GC GC GC

GC   −    for all ( )1 2, .GC GC GC    

iii. 
1 exp 2 exp 1 2, 22 2 2

exp

GC GC GC
GC GC GC GC

GC   −    for all ( )1 2, .GC GC GC    

iv. 
1 2, 2 1 22 2 2

exp exp

exp exp 1 2, 2 exp exp 1 exp exp 22 2 2

exp exp exp

1 1 1

GC GC GC
GC GC GC GC

GC

GC GC GC
GC GC GC GC

GC

   

   


 +

+  + +
 for all 

( )1 2, .GC GC GC    

v. ( ) ( ) ( )
exp exp exp

exp exp exp1 1 1

2, exp exp2 2 21 1 1exp exp exp

p p pn n np p pGC GC GC
GC GC GC GC

k GC k k k
k k k

s t s t
= = =

     
    +      

     
 for

expp  with 
exp exp exp exp1 lim x

x
p e

→
   = =  and ( ),GC GC

k ks t GC  where  1,2,..., .k n

(Minkowski's inequality in ( )GC   with respect to 
2

.
GC

) 

Proof.  

i. Let ( ) ( ) ( )1 1 1 2 2 2, , ,GC GC GC GC GC GCz w z w GC = =  . Then, we have 
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2 2exp exp

1 1, 2 exp 1 1, 2
1 1

2 2 2 2exp exp exp exp

1 exp 2 exp 1 exp 2
1 1 1 1

2

1
1

ln

1 2, 2 2

ln

exp

ln

exp

GC GC
GC GC GC GC

GC GC

GC GC GC GC
GC GC GC GC

GC
GC

z z w w
GC

GC GC

GC

z z w w

z

e

e

e

 

    
 +     

     

        
+ + +        

         

 
 
 

 =





2 2 2exp exp exp exp

exp 1 2 exp 2
1 1 1

ln

exp

exp 1 exp 22 2
.

GC GC GC
GC GC GCw z w

GC GC
GC GC

e

 

        
+ +        

           +

 +

 

This completes the proof. 

ii. Since 

( )

( )

1 1 2, 2 2, 22 2

1 2, 2 2, 2
2

exp 1 2, 2 exp 22 2

GCGC
GC GC GC GC

GC GC

GC
GC GC GC

GC GC

GC GC
GC GC GC

GC

   

  

  

=  

=  

  +

 

we have  

1 exp 2 exp 1 2, 22 2 2

GC GC GC
GC GC GC GC

GC   −     

and similarly  

exp 1 2, 2 exp 1 exp 22 2 2

GC GC GC
GC GC GC GC

GC   −   − . 

 This implies that 
1 exp 2 exp 1 2, 22 2 2

exp

GC GC GC
GC GC GC GC

GC   −    for all ( )1 2, .GC GC GC    

iii. Since 

( )

( )

1 1 2, 2 2, 22 2

1 2, 2 2, 2
2

exp 1 2, 2 exp 22 2

GCGC
GC GC GC GC

GC GC

GC
GC GC GC

GC GC

GC GC
GC GC GC

GC

   

  

  

=  

=  

  +

 

from (i), we have  

1 exp 2 exp 1 2, 22 2 2

GC GC GC
GC GC GC GC

GC   −    

 and similarly  

exp 1 2, 2 exp 1 exp 22 2 2

GC GC GC
GC GC GC GC

GC   −   − . 

 This implies that 1 exp 2 exp 1 2, 22 2 2
exp

GC GC GC
GC GC GC GC

GC   −    for all ( )1 2, .GC GC GC    

iv. We have 
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( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

1 1 2, 2 21 2, 2 2 2

exp exp 1 2, 2 exp exp 1 1 2, 2 22 2

2 22 2

1 2 1 2 1 2 1 2

2 22 2

1 2 1 2 1 2 1 2

1

exp exp

ln

exp exp

exp

, , , , , ,

1 1 , , , , , ,

1

GCGC b d b dGC GC

GCGC

GC GC
GC GC b d b d

GC GC

a a

a a b b c c d d

a a b b c c d d

e

a e c e a e c e

a e c e a e c e

e

e

e

 

 

+

+ + + + + + +

+ + + + + + +



+  + 
=

=

+

=

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 1

2 22 2
2 1 2 1 2 1 2

2 22 2
1 2 1 2 1 2 1 2ln1 lnexp

2 22 2

1 2 1 2 1 2 1 2

2 22 2

1 2 1 2 1 2 1 2

ln

1

exp

b b c c d d

a a b b c c d d
e

a b

e

a a b b c c d d

a a b b c c d d
e

e

      
      

      

 
              
       
 
 
 
  

+ + + + + +

+ + + + + + +
+

+ +

+ + + + + + +

+ + + + + + + +
=



2 2 2 2 2 2
1 1 2 2 2 2

2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

exp exp

1 2
2

exp 1
2

1 1

ln ln

ln1 ln ln1 ln

ln ln

ln1 ln

a b c d a b c d

a b c d a b c d

GC
GC

GC
GC

c d a b c d

a b c d a b c d

e e

e e
e

e

 



 
 
 
 
 

 
 
 
 
 
 

+ + + + + +

+ + + + + +

+ + + +
+

+ + + + + + + +

+

+ +

+

+

=

=

2

exp 2
2

1 2
2 2

ln1 ln ln1 lnexp exp1 22 2

ln1 ln

ln ln

ln ln

GC
GC

GC
GC

GC GC
GC GC

GC GC
GC GC

e ee

 



 

   
   
   
      
   

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

+ +

+

+

=

 

1 2
2 2

1 1exp exp exp exp1 2
2 2

ln ln
1 22 2

ln 1 ln 1exp exp exp exp1 22 2

ln exp ln exp

1 22
exp

exp exp 1 2

ln ln

exp

1

GC GC
GC GC

GC GC
GC GC

GC GC
GC GC

GC GC
GC GC

GC
GC GC

GC
GC

e e

e

e

 

 

 

 

 



   
   
      
   

   
   + +
   
   

+ +

 
 
 +
 
 
 

+

=

= +
+

=

2

exp exp 2 2

exp .
1

GC

GC
GC+

 

This completes the proof. 

v. Since 

( ) ( )

( ) ( )

exp exp

exp exp

1

2, 2, exp 2,2 2 21 1exp exp

1

exp 2, exp exp2 2 21exp

p pn nGC GC GC
GC GC GC GC GC GC

k GC k k GC k k GC k
k k

pn GC GC GC
GC GC GC GC

k GC k k k
k

s t s t s t

s t s t

−

= =

−

=

  =    

    +
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( ) ( )
exp exp exp exp1 1

2, exp exp 2, exp2 2 2 21 1exp exp

,
p pn nGC GC GC GC

GC GC GC GC GC GC

k GC k k k GC k k
k k

s t s s t t
− −

= =

=    +     

if we choose 

exp exp

exp

1

p
q

p
=

−
, we obtain the inequalities 

( ) ( ) ( )
( )

exp
exp

expexp
1

exp exp exp exp

11

1

exp 2, exp exp 2,2 2 2 21 1 1exp exp exp

qp p p e qn n npGC GC GC GC
GC GC GC GC GC GC

k k GC k k k GC k
k k k

s s t s s t
− − 

= = =

  
              

 

and 

( ) ( ) ( )
( )

expexp
expexp

exp exp exp exp exp

11

1 1

exp 2, exp exp 2,2 2 2 21 1 1exp exp exp

.
p p p q qn n npGC GC GC GC
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4. Discussion and Conclusion 
 
In the present study, inspired by the ideas of non-Newtonian bicomplex numbers and geometric calculus, we give 
bicomplex numbers with respect to the geometric calculus, and we state and prove some inequalities for use in 

future studies. Also, our findings carry some concepts and results from the recent literature to ( )GC . 
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