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1. Introduction

The note of spanning simplicial complex A4(G) on edge set E of a graph G =
G(V, E) was introduced in [1], the set of its facets is exactly edge set s(G) of all
possible spanning trees of G, i.e.

As(G) = (F; | F; € 5(GQ)).

Note that for a graph G, the problem of finding s(G) is not always easy to
handle. Anwar, Raza and Kashif [1] proved some algebraic and combinatorial
properties of spanning simplicial complexes of the uni-cyclic graph U,,, where U, is
a connected graph on n vertices, which contains exactly one cycle of length n. In
this paper, our goal is to characterize some algebraic and combinatorial properties
of spanning simplicial complexes of a class of n-cyclic graphs Gy, +,,...,+, with a
common edge, which is obtained by joining n cyclic graphs Gy, Gi,, -+, Gy, of
length ¢4, to, - -+, t, with a common edge. For n = 2 and t; = t; = 4, the graph of
Gy, 4 is shown in Figure 1 of Section 2.

This research is partially supported by the National Natural Science Foundation of China
(11271275), the Natural Science Foundation of Jiangsu province(BK2011276), and the Natural Sci-
ence Foundation for Colleges and Universities in Jiangsu Province (10KJB110007; 11KJB110011).
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We give a brief overview of this paper. In Section 2, we recall some definitions
and results from commutative algebra and algebraic combinatorics. In Section 3,
we determine the Stanley-Reisner ideal Ia (G, ,,. .., ) Of As(Gy 1y, ,1,) and its
primary decomposition in Theorem 3.2. In Section 4, under the assumption that
the length of cyclic graph Gy, is ¢ for every 1 < ¢ < n, we give a formula for
f-vector of Ag(Gy, 1y, .. +,) and consequently a formula for Hilbert series of the
Stanley-Reisner ring k[Ag(Gy, . ¢y, 1, )], where k is a field.

2. Preliminaries

We firstly recall some definitions and basic facts about graph and simplicial
complex to make this paper self-contained.

Definition 2.1. A spanning tree of a simple connected finite graph G = G(V, E)
is a subgraph of GG, which is a tree and contains all vertices of G. We denote the
collection of all edge sets of the spanning trees of G by s(G), i.e.

s(G) = {E(T;) C E| T; is a spanning tree of G}.
(See [3] for more details ).

It is well known that for any simple connected finite graph, spanning trees always
exist. One can find a spanning tree systematically by the cutting-down method,
which says that a spanning tree is obtained by removing one edge from each cycle
appearing in the graph. For example, for the following graph G, we obtain that
s(G) = {{ea;e3,e5,¢6,¢€7},{e1,e3,€5,¢€6,€7},{€1,€2,€5, €6, €7}, {e1, €2, €3,€5, €6},

{627 €3, €4, €6, 67}7 {617 €3, €4, €g, 67}7 {617 €2, €4, €6, 67}7 {627 €3, €4, €5, 67}7
{617 €3, €4, €5, 67}7 {61, €2, €4, €5, 67}5 {617 €2, €4, €5, 66}7 {61, €3, €4, €5, 66}5

{627637 €4, €5, 66}7 {617 €2, €3, €4, 66}7 {617627 €3, ¢4, 65}}'

€1
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€2

er
€5

€3

€4

Figure 1. 2-cyclic graph with a common edge
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Definition 2.2. A simplicial complex A on a set of vertices [n] = {1,2,...,n} isa
collection of subsets of [n] such that

(1) {i} € A for each {i} € [n];

(2) it Fe Aand G C F, then G € A.

An element of A is called a face of A, and the dimension of a face F' of A is
defined as |F| — 1, where |F| is the number of vertices of F' and denoted by dim
F. The faces of dimension 0 and 1 are called vertices and edges, respectively, and
dim ) = —1.

The maximal faces of A under inclusion are called facets of A. The dimension
of the simplicial complex A, which is denoted by dim A, is the maximal dimension
of its facets, i.e.

dim A = max {dim F|F is a facet of A}.

We denote the simplicial complex A with facets {Fy,--- , F,} by
A= (F, -, F,).

Definition 2.3. A simplicial complex A is pure if all of its facets have the same
dimension.

Definition 2.4. Given a simplicial complex A of dimension d, we define its f-vector
to be the (d+ 1)-tuple f = (fo, f1,.-., fa), where f; is the number of i-dimensional
faces of A.

Definition 2.5. For a simple connected finite graph G = G(V, E) with s(G) =
{E1, ..., Es}, we define a simplicial complex A4(G) on E such that facets of Ay(G)
are precisely the elements of s(G), called the spanning simplicial complex of G(V, E).
In other words,

AS(G) = <E17 to 7ES>'

For example, the spanning simplicial complex of the graph G with edge set
E = {ej,ea,e3,¢e4,€5,€5,e7} in Figure 1 is given by
AS(G) - <{62,e3765566767}7{61763765766367}7{61,62765566767}7{61762763765366}7
{62,63764766767},{61,63,84,66,67},{61,62764766767},{62,63,64,65,67},
{61563764365,67}7{61762364765367};{61762764365,66}7{61763364765366}3

{62; €3, €4, €5, 66}7 {617 €2, €3, €4, 66}7 {617627 €3, €4, 65}>-

. with a common edge is a connected

ybn

Definition 2.6. An n-cyclic graph G, 4, ...

n n
graph having > ¢; —2(n—1) vertices and >_ t; — (n— 1) edges, obtained by joining
i=1 1=1
n cyclic graphs G, , Gy, , - - - , Gy, with a common edge, where G, denotes the cyclic
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graph of length ¢;. We can assume that t; < to < --- < ¢, and t; > 3 for each
1€{1,2,...,n}.

3. Primary decomposition of the Stanley-Reisner ideal
In this section, we will determine the Stanley-Reisner ideal Ia (G, ,, .. . ) of
Ag(Gy 1y, - 1,,) and its primary decomposition.

We label the edge set of Gy, ¢,, ...+, such that {e;1, €2, - ,€;¢,} is the edge set of
cyclic graph Gy, for every 1 < i < n. By convention, e1, = eg¢, = -+ =e€pt, =€
is the common edge. First, we have the following proposition.

Proposition 3.1. A (Gy, 1y, ,1,) s a pure simplicial complex of dimension

n
Z ti —2n.
i=1

Proof. Let E' = {e11,€12,- "+ ;€1,4,-1,€21, " ,€2,t,-1,""" ,€nl, " ;€n t,—1,€} be
the edge set of n-cyclic graph Gy, ¢, ... +,, where e is the common edge. As
G, t,, .-, ¢, contains exactly n cycles of length ¢y, t2, --- , t,,, which has a com-

mon edge e, by the cutting-down method, its spanning trees are obtained by re-
moving one edge from each cycle G¢,, 1 < i < n. Hence, the subset E(T;) C E

is in $(Gyy, 1y, ,1,) if and only if E(T;) = E\{e14,,€2iy, - ,€ni, ; for some i; €
{1,2,--- ,t;}, where these e; ;s are distinct and j runs from 1 to n, with convention
€1t, = €24, ="+ =€npyt, =6, l.e.

5(Giy o, tn) =1E\{€14, seni, } | 1 <idy <t,1 < j <n, wheree; ;s are distinct}.

n
It is easily seen that each spanning tree of Ay(Gy, ¢y, 1,,) has > t;—(n—1)—n =

1=1

n
> t; —2n+ 1 edges. Thus the result follows. O
i=1

Let £ = {ella €12, ,€1,¢1—1,€21, " ;€2 ty—1,""" y€Enl, " ,En,t,—1, 6} be the
edge set of n-cyclic graph Gy, ¢, ... 1., and let Ag(Gy, 1, ...+, ) be the spanning sim-
plicial complex of Gy, ¢, ... 1, - We can assume that S = k[z11, - ,Z1,4,-1, T21, " ,

n

X2, ty—15" " sTnls s Tn,t,—1,Y) IS a polynomial ring in > ¢;— (n—1) variables over

afield k, In,(G,, 1, ..., ) is the Stanley-Reisner ideal of 1As(Gt1,t2, - t,,), Which is
a square-free monomial ideal. The standard graded algebra k[A (G, 1y, ... t,)] =
S/IA(Giy. vy, ..1,) 18 called the Stanley-Reisner ring of Ay(Gyy, ¢y, ,¢,). We can
give a primary decomposition of ideal I DGy iyt ) Hilbert series and h-vector
of k[As(Gyy 1y, - 1, )]- We refer readers to [2] and [5] for detailed information about

the Stanley-Reisner ideal, primary decomposition, Hilbert series and h-vector.

Now, we give a primary decomposition of the Stanley-Reisner ideal I (Geyotg, it
of AS(C‘;t17 to, -, tn)'
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Theorem 3.2. Let Ay(Gy, 1y, .-, 1, ) be the spanning simplicial complex of n-cyclic
graph Gy, 1,, .. .+, . Then the Stanley-Reisner ideal In (G, ,, .. . ) of As(Gyy ity - 1)
is given by

IniGiyivg. o) ﬂ (@14, T24g5 -+

7xni”) ﬂ (x1i17"'7§jkik7"'
e I

7xnin>y)
i€ {1, ty-1)
je{L,---,n} je{l,--, k- n}
Ee{l,---,n}
t1—1

ta—1 tp—1

(waljany%’a"'anynja H éﬂisl’jl)-
j=1 j=1 j=1

1<i<j<n
1 < t;—1
1

<s
<1<l

Proof. As each of facets of As(Gy, 1y, .. ,1,) is obtained by removing exactly one
edge from each cycle Gy,, 1 < i <, from [5, Proposition 5.3.10], we get that

IAS(th,tQ,-‘-,tn) = m (T1iy, 5 Tni,) ﬂ

(xli17"' 7xk7ik7"' 71‘717;,,“:1/)'
ij € {1, ,t;—1} i € {1, t;-1}
jed{t,---,n} je{t,---, k- n}
kedl,--,n}
From [4, Proposition 1.2.1], we have that
ﬂ (T1i15 T2i00 " 5 Tni,) = (T11, @21, Tp1,1, T1) N (211, -
i;j € {1,---,t;—1}
je{t,---,n}

* 1,1, an)

N--N(@11, 21, 5 Tt 1, T, 1) N (T11, T21, -+ 3 T, 2, Tp1) N -

N (x117 T 7-’I’.’nfl,27 ',I:’n,tnfl) n---N (xl,t1717 xQ,t2717 e 7-Tn71,t(n,1)717 xn,tnfl)
tn—l tp—1

- (xll,le, : 7x’n71,17Hmnj)m(xllax217“' 7xn71,27H(Enj)m'

Jj=1 Jj=1

tn—l
N2, 61, T2, 491, - - y L1, t(p1y—1> H Tnj)
Jj=1

t(n-1)—1 tn—1 t(n-1)—1 tp—1
= (211,%21, " » H xn—1,j,H%“nj)ﬂ"'ﬂ(ﬂil,tl—hxztrh”' ) H mn—l,janxnj)
=1 =1 j=1 j=1
t1—1 to—1 t(n-1)~1 tn—1

= (IT=v: 122> T1 @naso IT 2ni)-
=1 =1 j=1 j=1
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and
m (xlila e 7§jkika e 733m‘n7y): ($117.'L'21, e 7xn71,1ay) N ($117$21, e 7-7/'”717272/)
ij € {1, t;-1}
jefl, .-+, k,---,n}
ke{l,---,n}
n---N (‘Tllvalv e 71.n71,t(n,1)717y) N (x117x217 T 7y7$n1) N (x117x217 T 7y7xn2)
n---N (3711,3721, e 7yaxn,tn—1) n---N (y?‘rz,tz—h T ,xn,tn—l)
t(n—1)—1 tp—1 ta—1
= (z11,221, -, H Tn,j,Y) N (T11,T21, 0, Y, H Tng) N0 (Y, H Taj, s Tpt,1)
J=1 Jj=1 Jj=1
t1—1 to—1 tn1)—1 t1—1 to—1 t,—1
= (HxljaH$2ja"' ; H In—l,jvy)ﬁ(Hmj,H@j,'“ Y Hxnj)m"'
=1 =1 =1 =1 =1 =1
to—1 tp—1
N (yvl_[l'ij' 7Hxn])
=1 =1
Therefore,

IAS(th,f«g‘---,tn) = n ($1i17x2i27"' 7xnin) m (*/Elilv"' 7xkik7"' 7xnin7y)

ij € {1, -+, t;—1} iy € {1, t;—1}
jef{L,---,n} je{l,-+, k- n}
ke{l,---,n}
t1—1 to—1 t(n-1)—1 tn—1 t1—1 to—1 t(n-1)—1
= (Hx1j7H$2j7“'7 H mnfl,jaHxnj)m(Hx1j7Hx2j7"'7 H ‘Tnfl,jﬂy)
j=1 j=1 j=1 Jj=1 Jj=1 Jj=1 Jj=1
t1—1 to—1 tp—1 to—1 tn—1
N (H$1j7H$2j7"' » Y Hxn])ﬁm(y7H$2]7 ’ Hxnj)
j=1 j=1 j=1 j=1 j=1
t1—1 to—1 tn—1
= (y H T15,Y H L2jy Y H Lnj, H TisTji)-
j=1 j=1 Jj=1 1<i<j<n
1<s<t;—1
1<1<t;-1

4. The computation of f-vector of A (Gy, ¢, ... t,)

In this section, we will give a formula for f-vector of Ay(Gy, ¢, .. 1, ) and conse-
quently a formula for Hilbert series of the Stanley-Reisner ring k[As(Gy, 1y, -, 1,)]
under the assumption that the length of every cyclic graph Gy, is t for 1 <1 < n.
But before this we need the following proposition, its proof can be seen in Propo-

sition 2.2 of [1].

Proposition 4.1. For a simplicial complex A on [n] of dimension d, if fr = (tj:l)
for some t < d, then f; = (11’1) for all0<i<t.
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Now, under the assumption that the length of the cyclic graph Gy, is ¢ for every
1 <i < n, we give the formula to compute the f-vector of Ay(Gy, ¢y, ... . ¢,)-

Theorem 4.2. Let t; =t for every 1 < i <n, and b = n(t — 1)+ 1. Then the
f-vector of Ag(Gyy 1y, - 1,,) 1 given by f = (fo, f1,--., fa), where d = n(t —2) and

—~
<

<SG
e

fO<j<t—2,
(") (j t+1) ift—1<j<min{2t—3,d+1}—1,

iy
\/v

41

e
<
+ o
—
\_/
/—\
\_/
—~
m
P‘-
+
=

2)\j— (2t 2)4+1
b b— [zt (i—1)]
Gt - D )( [it=(i-1) +1) if min{2t—2,d+1} < j < min{3t—4,d+1}—1,
n 2t—1)
_(2) (] 2(2(1: 2)+1)
GRS ED O
;s = s it if § = min{3t—3,d+1} -1,
_i;(_l) =1 (7)( J—(it—i)+1 )
(jL)"'Z (_l)i (7;) (ﬂ@ﬁ(z(:)lﬂ]ﬂ)
, if min{3t—3,d+1} < j < min{dt—5,d+1}—1,
il ny (b—[it—(i—1
_i;(_l) (=1 ()( jj(itfi)+i])
3 _ L
GEAE D ) Gt
. if j = min{4t—4,d+1} -1,
il b—[i i
2 e a-nE) GG
G+ C0 () ()
m = bty Y min{m(E=1),d+1} <j <min{(m+1)(t-1)—
_Z_;(_l)l(l_ D()( j—zit—z)—i-l )
(o2 0 () (et

s
I
—

KSR b—lit—(i—1)] if j = min{(m+1)(¢—=1),d+1}~1,
(=1 (7)( —(it—i)+1 )

|

|
LR
=

=2

=2 . —[it—(i—
(S E O ()
n—1 o n —lit—(i—
—L =) (D S
nl ; —[it—(i—
(L EDT G )

if min{(n—1)(t~1),d+1} <j <d.
UG armtiel)

=2

if j=min{(n—1)(t—1),d+1}-1,

1,d+1}—1,
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Proof. Let E = {611, €12, " ,€1,¢t-1,€21," " ;€2 t—1,° " ,€nl, " ,€n t—1, 6} be the
edge set of n-cyclic graph Gy, i, ...+, Where e is the common edge. By the def-
inition of f-vector of As(Gy,, ¢y, ,¢,), f; is the number of all those subsets of
the edge set E of graph Gy, ¢, ...,+,, with j + 1 elements, that contain neither
{€i1,€i2,- -+ ,€;,4—1,e} forall1 <i <mnor{egi,er2, - ,€x t—1,€11,€12, €111}
for1<k<l<n.

Take any subset F' C E consisting of ¢t — 1 elements. For every 1 < j < n the
edge set {ej1,--- ,ej—1,¢ of the cyclic graph Gy, has ¢ elements, it is clear that
{€j1,€j2, -+ ,€j1—1,€e} cannot appear in F', so F' € A (G, 1, ... 1, ). It follows that
Ag(Giy, 1y, - 1,) contains all possible subsets of E with cardinality ¢ — 1, therefore
ft—o = ("t_t(fl_l)) = (tfl). Thus, by Proposition 4.1, we have f; = (jil) for all
0<j<t—2.

For t —1 < j < min{2t — 3,d + 1} — 1, we need to count all the subsets FE
with cardinality j + 1 containing the edge set {ej1,ej2, - ,ej+—1,€} of some Gy,
of the n-cyclic graph Gy, ¢,,....+,. The edge set E of the graph Gy, ¢, ...+, has
b(=n(t —1) + 1) elements, and there are () (jf;il) subsets of E with cardinality
j + 1 such that {ej1,€;2, -+ ,€j 1—1,€e} is a part of it. In total, there are (jil)
subsets of E with cardinality j + 1, hence f; = (jil) - (Tll) (jfzj_l).

When j = min{2t—2,d+ 1} — 1, we need to compute all the subsets of E having
the cardinality j + 1 containing such edge sets {eg1, - , ek, t—1,€11, - , € -1} for
1 <k <l < n of some two cyclic graphs Gy, and Gy, of n-cyclic graph Gy, ¢,, ... . ¢,,,

we get that there are (”)( b-(2t-2) ) such subsets. It is clear that we also need to

2/ \j—(2t—2)+1
compute these subsets of E having the cardinality j + 1 containing such edge set
{ei1,€i2, ++ ,€i¢—1,€} of some cyclic graph Gy, of n-cyclic graph Gy, 15, ... ¢,. Wwe

get that there are (711) (jf;il) such subsets. In total, we have (Jil) subsets of F

. e _ (b b—t b—(2t—2)
with cardinality j + 1. Therefore, f; = <j+1) - (j7t+1) -(3) (j—(2t—2)+1)'

For min{2t — 2,d + 1} < j < min{3¢t — 4,d + 1} — 1, on the one hand, we
need to count all the subsets of F having the cardinality j + 1 containing such
edge set {ei1, €52, - L€ t—1,€51,€52," 7ej,t,he} of some two cyclic graphs G,
and Gy, of n-cyclic graph Gy, ¢, ... +,, by the inclusion exclusion principle, we
get there are (g) (jEZZ(tziI)lil) such subsets. On the other hand, we need to com-
pute all the subsets of F having the cardinality j 4+ 1 containing such edge set
{ei1,€i2, -+ ,€; t—1,€e} of some cyclic graph Gy, of n-cyclic graph Gy, ¢, .. ¢, , We

et that there are (7)[( bt ) = ("7H( b-(2t-1) )] such subsets. It is obvious
g DALV RS 1 ) —t—1)+1 : v

that we also need to compute all the subsets of F having the cardinality j +
1 containing {eg1, ek, " €k t—1,€11,€12, - ,er,¢t—1} for 1 < k < [ < n, there

are (g)[(]féffg)?_l) — (]ﬁzz(ffz)lll)] = (%) (jf&(fi;)lll) such subsets. Therefore

fi= (j-li)-l) o (g) (jﬁzz(zi)llﬂ B (T) [(gﬁ;t-l) B ("Il) (;Eaﬁ;)ﬁo] o (g) (jEZQ(tQi;)lJ)rl) =
2 i (n —[it—(i— n —(2t—
(jil) + i;(_l)z(z)(jE[igi(i(—l)l])-&]-l) - (2) (ji(2(152f2)1-3-1)'
When j = min{3t — 3,d + 1} — 1, on the one hand, we not only need to com-
pute all the subsets of F having the cardinality j 4+ 1 containing such edge set
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{er1ser2, - ent—1,€11,€12, €1 1—1,€51,€52, "+ ,€s¢—1} for 1 <k <l <s<n
of some three cyclic graphs G, , Gy, and G, of n-cyclic graph Gy, ¢, ... +,, we get
that there are (g)[(}izﬁfﬁll) — (Jf@(f’f;)al)} = (g) (jf?;ffg)zll) such subsets. we
also need to compute all the subsets of E having the cardinality j + 1 contain-
ing {eg1,exr2, - ,ext—1,€1,€12, - e, 4—1} for 1 < k <1 < n, by the inclusion
exclusion principle, we obtain that there are (}) [(Jf?z(ff;)lll) - (”IQ) (jfz?ff’f;)zll)]
such subsets. On the other hand, we not only need to count all the subsets of F
having the cardinality j + 1 containing {eg1,€r2,- - , €k, t—1, €11, €12, - ,€1,¢—1} for
1 <k <1< n,but also need to compute all the subsets of F having the cardinality
j + 1 containing {ex1, ex2,- - , €k 1—1, €} for 1 <k <n. By the inclusion exclusion

principle, there are (%) (jf&(ft;)lj_l) and (7) [(] b;_il) (";1) (J b?;ft;)lll)] such sub-

sets respectively. There are ( +1) subsets of E with cardinality j+1 in total. Hence,

k )
by the use of repetition of combinatorial formula - (~1)7("}) = (=D)k (™), we
=0

)G e ) () ()
Ga ) ~(IGE0) - ()G )
bletyh)

have that

fi =

—(2t—1)
(2t—1)+1

e () - GG )
@”f>GM o)

; @QLLﬁﬁM©@%fﬁJ
§>[ 3) - @1 <g - (?ff 3>2i 1>

) 2GRS ) - ()6 )
n 2 b—(3t—2

3 D) 3t—3)+1

>( )1(>(J <( )l)

e () )

- i(—l)i(z’ ~1) (?) (bj__[z(i t__(z)_;i}).

|
/\/\@/\
\_/\/_‘_@

+

—_

Il
N T T
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For min{3t — 3,d + 1} < j < min{4¢t — 5,d + 1} — 1, on the one hand, we
not only need to count all subsets of F having the cardinality 7 + 1 containing
{er1,en2, -+ €k, t—1,€11,€12, " €1, t—1,€s1,€52, - €5 t—1,ef for 1 <k <l <s<
n of some three cyclic graphs Gi,, Gy and Gy, of n-cyclic graph Gy, ¢, ... +,.,
but also need to count all subsets of E having the cardinality j + 1 containing
{eir,eia, - eit-1,€51,€52, -+ €5 t-1,e} of some two cyclic graphs Gy, and Gy;.

By the inclusion exclusion principle, there are ( ) (] b (B(ft 2)23_1) and (g) [(35?2(2;)21) -

("1 2) (jf (?)(f’fz)zll)] such subsets respectively. On the other hand, we need to com-

pute all the subsets of E having the cardinality j+1 containing {e;1,€;2, - ,€;,1—1,€}

of some cyclic graph Gy,, we get that there are (?){(]fﬁrl) — ("Il) [(jf&(fiz)lj_l) —

(nIQ) (szg(ff;i)_l)} - (”;1) (]fzg(f’fgfll)} such subsets. Of course, we have to count

all the subsets E with cardinality j+1 containing {eg1, exo, - , €x, t—1, €11, €12, ,
€l,t—1,€s1,€52, " ,€s.¢—1} for 1 < k <1 < s < mn, and all subsets £ with cardi-
nality j + 1 containing such edge set {ex1,er2, " ,€k, t—1,€11,€12, - €111} for

1 < k <1 < n. By the inclusion exclusion principle, there are (g)[(jfz?ff’fg;’ll) -

(Uaar)) = ()G and ()G M50 - (7 (UGl In to-

tal, there are ( subsets of E with cardinality j + 1. By the use of repetition of
the combinatorial formula Z (=1)7("F) = (=1)™~", we have that
i=0

)

p= (GGG )

o [ & G [ Sy |

G CUG )G e
()G -GG (353311)
GG ) )G et
()G ?)("11> <>(]_ o)
() - OO0 D0 e )
S [y R [ G B [ ity
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ﬁl)@ (j :j 1)@ [@ - ®]<J f&ff I)ll 1>
()-GO -GG )
-y eva-n ()G

)G GG )
D) - () GG ata)
-ene-n() (L)
-GG GG )66 o)
-eva-n ()G
(2 () G )
-ene-n() ()

|
AN N
.

)

Other cases can be shown in a similar way as the above. O

We can now give a formula for Hilbert series of k[As(Gy, 1y, .-, 1, )] under the
condition that the length of every cyclic graph Gy, is t for 1 < ¢ < n.

Theorem 4.3. Let Ay(Gy, 1y, ,1,) be the spanning simplicial complex of n-cyclic
graph Gy, +,, ... t,, where t; =t for each 1 < i < n. Then Hilbert series of the
Stanley-Reisner ring k[As(Gy 1y, -, 1,)] 15 given by

t=2 (b )i+l 2—4 (b} _ (n)y( b=t )], itl
H(k[As(Gt1,t2,m,tn)]7Z)1+Z(({+_1)z)i+1+ Z [(J+1) (1(1_)£J):j_1‘—1)}

K2

i=t—1

2 ; —[it—(i— -
(GRS O Gty

+ (1 _ Z)Qt—Q
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2 i —[et—(i— n —(2t— i
5“2*5 [(ji1)+§(*1)z(i)(jﬁ[igi(i(q)l])h)* (2) (jﬁ(2(t2i2)14)r1)]z i
+ = ,
i=2t—2 (1 —2)*
: i (m —[it—(i— 3 iz n\ (b—[it—(i— _
{(jil) + i;(_l)l(i)(jg[iz[fj(i(—l)l])-&]-l)_i;(_l) (2_1)(1') (bj—[(it—(i)—:i])}z?)t ’
(1—z)3t=3

(= —[it—(i— =S ny (b—[it—(i— n—1)(t—
{(ji1)+i;(71)l(i)(ji[igi(i(fl)l])}rl)iz(il) (171)(1')(bjf[(ztf(i)q&i])}z( R

+ (1 _ Z)(n—l)(t—l)
iy b—[it—(i— i ny (b—lit—(i— i
e [ E O ) (L S-S 0 =D () G )
+ 1= 1:‘
_ (1 - 2)i+t
i=(n—1)(t-1)

Proof. From [5, Corollary 5.4.5], we have that if A is a simplicial complex and
f(A) = (fo,..., fa) is its f-vector, then the Hilbert series of Stanley-Reisner ring
E[A] is given by

f z‘ZiH .
The desired formula follows from the above theorem at once. O
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