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Abstract. Given an integer k > 1, let A be the adjacency matrix of the zero-

divisor graph of the finite Boolean ring of order 2k. In this paper, the spectra

of two (k− 1)× (k− 1) matrices P and Q of binomial coefficients are shown to

be linked to the spectrum of the larger matrix A. Since earlier investigations

provide the eigenvalues and eigenvectors of Q, certain eigenvalues and eigen-

vectors of A are obtained.
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1. Introduction

Given any commutative ring R with 1 6= 0, the zero-divisor graph of R is the

(undirected) graph Γ(R) whose vertices are the nonzero zero-divisors of R such that

distinct vertices x and y are adjacent if and only if xy = 0. This construction has

received a significant amount of attention during the past ten years (cf. [1] and [2]),

and provides a means by which tools from graph theory become available to solve

problems in algebra, and vice versa. Furthermore, by representing graph-theoretic

information with a matrix, techniques from linear algebra become accessible to

study graphs, and can therefore be used to investigate rings.

While there are many ways to represent graphs with matrices, one popular con-

struction is achieved by recording the adjacency relations among the vertices of a

graph. If Γ is a graph with vertex set V (Γ) = {v1, . . . , vK}, then an adjacency

matrix of Γ is a K × K matrix A = [Ai,j ] such that

Ai,j =

{

0, if vi 6∈ N(vj)

1, if vi ∈ N(vj)
,

where N(vj) is the set of all vertices of Γ that are adjacent to vj . An eigenvalue

of Γ is then defined to be any eigenvalue of A. It is straightforward to check that
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any two adjacency matrices of Γ are unitarily equivalent ([9, Lemma 8.1.1]). In

particular, the eigenvalues of Γ are independent of the sequence (v1, . . . , vK), and

there will be no harm in referencing A as the adjacency matrix of Γ.

In [10], it was shown that if a ring R is finite and not isomorphic to Z2, Z9 or

Z3[X]/(X2), then R is a Boolean ring (that is, R ≃ Z
k
2 for some k ∈ Z

+) if and

only if the spectrum of the adjacency matrix of Γ(R) is such that λ is an eigenvalue

of multiplicity m if and only if either 1/λ or −1/λ is an eigenvalue of multiplicity

m. More general graphs which satisfy these reciprocal eigenvalue properties were

studied in [3], [4], and [5]. Note that the zero-divisor graphs of finite Boolean

rings can be regarded as generalizations of the well known Kneser graphs, whose

vertices are the j-element subsets of {1, . . . , k} for some fixed integer 1 ≤ j ≤ k/2,

and two vertices are adjacent if and only if their intersection is empty (e.g., the

2-element subsets of {1, . . . , 5} yield the famous Peterson graph). The eigenvalues

of the Kneser graphs are computed in [9, Theorem 9.4.3]. In the investigation that

follows, the numerical values of λ are sought for the zero-divisor graphs of finite

Boolean rings, and are linked to the eigenvalues of certain matrices of binomial

coefficients. Throughout, all matrices are real and symmetric. In particular, all

eigenvalues are real, and can be associated with real eigenvectors.

2. The matrices of binomial coefficients

Let 1 < k ∈ Z
+, and set Γ = Γ(Zk

2). For all integers i, j ∈ {1, . . . , k − 1}, define

Pi,j =















( i

k − j

)

, if i + j ≥ k

0, if i + j < k

and

Qi,j =















( i − 1

k − j − 1

)

, if i + j ≥ k

0, if i + j < k

.

Consider the (k − 1) × (k − 1) matrices P = [Pi,j ] and Q = [Qi,j ]. Of course,

producing P and Q amounts to the construction of the first k rows of Pascal’s

triangle. For example, if k = 4 then

P =









0 0 1

0 1 2

1 3 3









and Q =









0 0 1

0 1 1

1 2 1









.



80 JOHN D. LAGRANGE

Let ϕ denote the golden ratio 1/2 + 1/2
√

5 and let ξ = −ϕ−1. While it ap-

pears that the problem of finding all eigenvalues of P has not been solved, it was

shown in [6] that the eigenvalues of Q are precisely the real numbers ϕk−2, ϕk−3ξ,

ϕk−4ξ2, . . . , ϕξk−3, and ξk−2. More recently, this result was generalized in [7], and

the eigenvectors of Q were later computed in [8].

In this paper, it is shown that if λ is any eigenvalue of Q, then −λ is an eigenvalue

of Γ (Theorem 3.4). Moreover, it is proved that every eigenvalue of P is an eigen-

value of Γ (Theorem 3.1). In [11], it is shown that these eigenvalues make up the

complete set of eigenvalues of Γ. Since the eigenvalues of Q are known, the problem

of finding all eigenvalues of Γ (that is, the eigenvalues of the (2k − 2) × (2k − 2)

adjacency matrix of Γ) is equivalent to the problem of finding all eigenvalues of the

(much smaller) matrix P .

3. The spectrum of Γ

Fix an integer k > 1, and let A denote the adjacency matrix of the zero-divisor

graph Γ := Γ(Zk
2). Let V (Γ) = {v1, . . . , vK} (so K = 2k − 2). Given any integer

1 ≤ l ≤ K, define rl ∈ {0, 1}K to be the l-row of A. Thus rl(j) = 1 if and only if

vl ∈ N(vj).

For each integer 1 ≤ j ≤ k − 1, define Dj to be the set of all elements in

Z
k
2 having precisely j coordinates that are equal to zero. From a graph-theoretic

perspective, Dj is the set of all v ∈ V (Γ) such that |N(v)| = 2j − 1. Clearly the

sets D1, . . . ,Dk−1 partition V (Γ).

The following theorem shows that each eigenvalue of P is an eigenvalue of A.

Furthermore, it is shown that the corresponding eigenvectors of A are easily ob-

tained from those of P . For the remainder of this paper, the usual inner product

of any vectors x,y ∈ R
n will be given by 〈x,y〉 :=

∑n
m=1 x(m)y(m).

Theorem 3.1. Let u ∈ R
k−1 be any nonzero vector with Pu = λu. Define v ∈ R

K

by v(m) = u(j) if and only if vm ∈ Dj. Then Av = λv.

Proof. Fix an integer 1 ≤ l ≤ K. Say vl ∈ Di, and let k − i ≤ j ≤ k − 1. By

counting the combinations of nonzero coordinates that yield vertices adjacent to vl,

it follows that vl is adjacent to precisely
( i

k − j

)

vertices in Dj . If j < k− i, then

vl is not adjacent to any elements of Dj . Thus

〈rl,v〉 =

k−1
∑

j=k−i

( i

k − j

)

u(j) =

k−1
∑

j=k−i

Pi,ju(j) = λu(i) = λv(l).

Therefore, Av = λv. �
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In the next lemma, it will be shown that there are subgraphs of Γ whose spectra

include λ and −λ for every eigenvalue λ of Q. To construct such a subgraph, fix

two distinct vertices vα, vβ ∈ Dk−1. Let V ′ =
(

N(vα) \N(vβ)
)

∪
(

N(vβ) \N(vα)
)

.

Define Γ′ to be the subgraph of Γ induced by the vertices in V ′ (see Figure 1).

Set N = |V ′|; say V ′ = {vγ1
, . . . , vγN

}. Notice that the adjacency matrix A′ of

Γ′ can be obtained by deleting the i-row and i-column of A if and only if either

vα, vβ ∈ N(vi) or vα, vβ 6∈ N(vi). Let r′1, . . . , r
′
N ∈ {0, 1}N be the rows of A′. Thus

r′l(m) = 1 if and only if vγl
∈ N(vγm

).

vα

vβ

(a) Γ

vα

vβ

(b) Γ′

Figure 1. The graphs Γ and Γ′ for the two fixed vertices vα and

vβ when k = 3.

Lemma 3.2. If λ is an eigenvalue of Q, then λ and −λ are eigenvalues of Γ′.

Proof. Suppose that u ∈ R
k−1 is any nonzero vector with Qu = λu. Define

v ∈ R
N by v(m) = u(j) if and only if vγm

∈ Dj . Fix a vγl
∈ Di, and l et

k − i ≤ j ≤ k − 1. By counting the combinations of nonzero coordinates that yield

vertices adjacent to vγl
, it follows that vγl

is adjacent to precisely
( i − 1

k − j − 1

)

vertices v ∈ V ′ such that v ∈ Dj . If j < k − i, then vγl
is not adjacent to any

vertices v ∈ V ′ with v ∈ Dj . Therefore,

〈r′l,v〉 =

k−1
∑

j=k−i

( i − 1

k − j − 1

)

u(j) =

k−1
∑

j=k−i

Qi,ju(j) = λu(i) = λv(l).

So A′v = λv.

To show that −λ is an eigenvalue of A′, let w ∈ R
N be the vector defined by

w(l) =

{

v(l), if vγl
∈ N(vα)

−v(l), if vγl
∈ N(vβ)

.

Suppose that vγl
∈ N(vα). So w(l) = v(l). Also, in the ring Z

k
2 , it follows that

vγl
vβ = vβ . Thus, if vγm

∈ N(vγl
), then vγm

vβ = vγm
vγl

vβ = 0. Hence, if
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vγm
∈ N(vγl

) then w(m) = −v(m). Therefore, 〈r′l,w〉 = −〈r′l,v〉 = −(λv(l)) =

(−λ)w(l). Similarly, if vγl
∈ N(vβ) then w(l) = −v(l), and w(m) = v(m) whenever

vγm
∈ N(vγl

). In this case, 〈r′l,w〉 = 〈r′l,v〉 = λv(l) = λ(−w(l)) = (−λ)w(l).

Hence A′w = (−λ)w. �

Remark 3.3. There are well known theorems that support the ideas in the above

results. However, proofs of Theorem 3.1 and Lemma 3.2 that employ these known

theorems are less enlightening, and the simplicity that might be gained from any

such application is at best marginal. On the other hand, it is intriguing to observe

how the above results are connected to existing theory.

In the language of equitable partitions (cf. [9, Section 9.3]), it follows from the

proof of Theorem 3.1 that P is the adjacency matrix of the quotient of Γ over the

partition {Dj}k−1
j=1 of V (Γ). Furthermore, the proof of Lemma 3.2 shows that Q is

the adjacency matrix of the quotient of Γ′ over the partition {Dj ∩ V ′}k−1
j=1 of V ′.

By [9, Theorem 9.3.3], it follows that every eigenvalue of P is an eigenvalue of Γ,

and that each eigenvalue of Q is an eigenvalue of Γ′. Moreover, it is not difficult to

show that Γ′ is bipartite with bipartition given by {N(vα)\N(vβ), N(vβ)\N(vα)},
and thus [9, Theorem 8.8.2] implies that λ is an eigenvalue of Γ′ if and only if −λ

is an eigenvalue of Γ′.

Theorem 3.4. Suppose that u ∈ R
k−1 is any nonzero vector with Qu = λu, and

define v and w as in the proof of Lemma 3.2. If x ∈ R
K is defined such that

x(m) =

{

w(j), if vm = vγj
∈ V ′

0, otherwise
,

then Ax = (−λ)x.

Proof. Let vi ∈ V .

Case 1. Let vi ∈ V ′; say vi = vγl
. Then it is straightforward to check that

〈ri,x〉 = 〈r′l,w〉 = (−λ)w(l) = (−λ)x(i), where the second equality holds as in the

proof of Lemma 3.2.

Case 2. Suppose that vi 6∈ N(vα) ∪ N(vβ), i.e., vi is not adjacent to either vα

or vβ . Then x(i) = 0. If vm ∈ V ′, then either vαvm or vβvm is a nonzero element

in the ring Z
k
2 . Without loss of generality, assume that vαvm is nonzero. Clearly

vivα = vα, and thus vivαvm = vαvm is nonzero. In particular, vivm is nonzero.

Hence ri(m) = 0 whenever vm ∈ V ′. Therefore, 〈ri,x〉 = 0 = (−λ)x(i).

Case 3. Suppose that vi ∈ N(vα) ∩ N(vβ), i.e., vi is adjacent to both vα and

vβ . Assume that vα(s) = vβ(t) = 1, and let V be the collection of all two-element

subsets {v, w} of V ′ ⊆ Z
k
2 such that v(j) = w(j) if and only if j ∈ {1, . . . , k}\{s, t}.
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Clearly the elements of V partition V ′. Also, if {v, w} ∈ V, then v ∈ N(vi) if and

only if w ∈ N(vi) (indeed, vi(s) = vi(t) = 0 since vi ∈ N(vα) ∩ N(vβ)).

Let vγl
∈ V ′ such that vγl

∈ N(vi); say {vγl
, vγm

} ∈ V and vγl
∈ N(vα) (so

vγm
∈ N(vβ)). Thus ri(γl) = ri(γm) = 1. Also, vγl

and vγm
have the same

number of coordinates that are equal to zero, and thus v(l) = v(m). Therefore,

the equalities w(l) = v(l) and w(m) = −v(m) imply that x(γl) = −x(γm). Thus

ri(γl)x(γl) + ri(γm)x(γm) = 0. But x(i) = 0 since vi 6∈ V ′, and it follows that

〈ri,x〉 =
∑

{vγl
,vγm}∈V

(

ri(γl)x(γl) + ri(γm)x(γm)
)

= 0 = (−λ)x(i).

Therefore, Ax = (−λ)x. �

It is proved in [11] that every eigenvalue of Γ is either an eigenvalue of P or the

negative of an eigenvalue of Q. By the above results, since the eigenvalues of Q

are known (see [6]), the problem of finding all eigenvalues of A is equivalent to the

problem of finding the eigenvalues of the (much smaller) matrix P .
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