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1. Introduction

Let KG denote the group ring of the group G over the field K. The homomor-

phism ε : KG −→ K given by ε


∑

g∈G

agg


 =

∑

g∈G

ag is called the augmentation

mapping of KG. The normalized unit group of KG denoted by V (KG) consists of

all the invertible elements of RG of augmentation 1. For further details and back-

ground see Polcino Milies and Sehgal [10]. In [11], a basis for V (FpG) is determined

where Fp is the Galois field of p elements and G is an abelian p-group.

If G is a finite 2-group and F is a finite field of characteristic 2, then V (FG)

is a finite 2-group of order |F ||G|−1. The structure of the unit group of the group

algebra F2D8 is established in [12] where D8 is the dihedral group of order 8. In

[5], the structure of U(F2kD8) is established.

The map ∗ : KG −→ KG defined by


∑

g∈G

agg



∗

=
∑

g∈G

agg
−1 is an antiau-

tomorphism of of KG of order 2. An element v of V (KG) satisfying v−1 = v∗

is called unitary. We denote by V∗(KG) the subgroup of V (KG) formed by the

unitary elements of KG.

Let char(K) be the characteristic of the field K. In [4], A.Bovdi and A. Szákacs

construct a basis for V∗(KG) where char(K) > 2. Also A. Bovdi and L. Erdei [1]

determine the structure of V∗(F2G) for all groups of order 8 and 16 where F2 is the

Galois field of 2 elements. Additionally in [3], V. Bovdi and A.L. Rosa determine

the order of V∗(F2kG) for special cases of G. Since D8 is extraspecial, V∗(F2kD8)
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is normal in V (F2kD8) by Bovdi and Kovács [2]. In [6], the structure of V∗(F2kQ8)

is established where Q8 ie the quaternion group of order 8.

Let Mn(R) be the ring of n×n matrices over a ring R. Using an established iso-

morphism between RG and a subring of Mn(R) and other techniques, we establish

the structure of V∗(F2kD8) to be C2
5k o C2

k.

2. Background

Definition 2.1. A circulant matrix over a ring R is a square n× n matrix, which

takes the form

circ(a1, a2, . . . , an) =




a1 a2 a3 ... an
an a1 a2 ... an−1

an−1 an a1 ... an−2

...
...

...
. . .

...
a2 a3 a4 ... a1




where ai ∈ R.

Note that the n× n circulant matrices over a commutative ring R form a com-

mutative ring and that inverses of circulant matrices are also circulant. For further

details on circulant matrices see Davis [7].

If G = {g1, . . . , gn}, then denote the matrix M(G) = (gi
−1gj) where i, j =

1, . . . , n. Similarly, if w =
n∑

i=1

αgigi ∈ RG, then denote the matrix M(RG, w) =

(αgi
−1gj

), which is called the RG-matrix of w. The following theorem can be found

in [9].

Theorem 2.2. Given a listing of the elements of a group G of order n there is a

bijective ring homomorphism between RG and the n× n G-matrices over R. This

bijective ring homomorphism is given by σ : w 7→ M(RG,w).

Example 2.3. Let D2n = 〈x, y |xn = 1, y2 = 1, yx = x−1y〉 and κ =
n−1∑

i=0

aix
i +

n−1∑

j=0

bjx
jy ∈ FpkD2n where ai, bj ∈ Fpk and p is a prime, then

σ(κ) =

(
A B

BT AT

)

where A = circ(a0, a1, . . . , an−1) and B = circ(b0, b1, . . . , bn−1).

It is important to note that if κ =
3∑

i=0

aix
i+

3∑

j=0

bjx
jy ∈ F2kD8 where ai, bj ∈ F2k ,

then σ(κ∗) = (σ(κ))T .
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The next result appears in [8].

Theorem 2.4. Let A = circ (a1, a2, . . . , apm), where ai ∈ Fpk , p is a prime and

m ∈ N 0. Then

Apm

=
pm∑

i=1

ai
pm

.Ipm .

The next result can be found in [3].

Theorem 2.5. Let K be a finite field of characteristic 2. If D2n+1 = 〈a, b | a2n

=

1, b2 = 1, ab = a−1〉 is the dihedral group of order 2n+1, then

|V∗(KD2n+1)| = |K|3·2n−1
.

3. The Structure of V∗(F2kD8)

Lemma 3.1. Let N be the set of elements V∗(F2kD8) of the form 1+a2 +a3 +a5 +

a1(x + x3) + a2x
2 + a3y + a4(xy + x3y) + a5x

2y where ai ∈ F2k . Then N ∼= C2
5k.

Proof. Let n1 = 1+a2+a3+a5+a1(x+x3)+a2x
2+a3y+a4(xy+x3y)+a5x

2y ∈ N

and n2 = 1 + b2 + b3 + b5 + b1(x + x3) + b2x
2 + b3y + b4(xy + x3y) + b5x

2y ∈ N

where ai, bj ∈ F2k . Then

n1n2 = 1 + a2 + a3 + a5 + b2 + b3 + b5 + δ1 + (a1 + b1 + δ2)(x + x3)

+ (a2 + b2 + δ1)x2 + (a3 + b3 + δ1)y + (a4 + b4 + δ2)(xy + x3y)

+ (a5 + b5 + δ1)x2y

where

δ1 = a2(b3 + b5) + a3(b2 + b5) + a5(b2 + b3)

δ2 = (b1 + b4)(a3 + a5) + (a1 + a4)(b3 + b5).

Therefore N is closed under multiplication. It can easily be shown that N is abelian.

Now n ∈ V∗(F2kD8) if and only if n−1 = n∗ for all n ∈ N . Then

σ(n−1) = σ(n∗) ⇐⇒ σ(n)−1 = σ(n∗)

⇐⇒ σ(n)−1 = σ(n)T

⇐⇒ σ(n)σ(n)T = I.

Let n = 1 + a2 + a3 + a5 + a1(x + x3) + a2x
2 + a3y + a4(xy + x3y) + a5x

2y ∈ N ,

then
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σ(n)σ(n)T = (σ(n))2 =

(
A B

B A

)2

=

(
A2 + B2 2AB

2AB A2 + B2

)

=

(
A2 + B2 0

0 A2 + B2

)

since σ(n)T = σ(n), where A = circ(1 + a2 + a3 + a5, a1, a2, a1),

B = circ(a3, a4, a5, a4). Now, using Theorem 2.4

A2 + B2 = [(1 + a2 + a3 + a5)2 + a1
2 + a2

2 + a1
2 + a3

2 + a4
2 + a5

2 + a4
2]I4

= [1 + a2
2 + a2

2 + a5
2 + a2

2 + a3
2 + a5

2]I4

= I4.

Therefore N ∼= C2
5k < V∗(F2kD8). ¤

Lemma 3.2. Let H be the set of elements V∗(F2kD8) of the form 1 + α

3∑

i=1

xi + α

2∑

j=0

xjy

where α ∈ F2k . Then H ∼= C2
k.

Proof. Let h1 = 1 + α

3∑

i=1

xi + α

2∑

j=0

xjy ∈ H and h2 = 1 + β

3∑

i=1

xi + β

2∑

j=0

xjy ∈

H where α, β ∈ F2k . Then

h1h2 = 1 + (α + β)
3∑

i=1

xi + (α + β)
2∑

j=0

xjy ∈ H.

Therefore H is closed under multiplication. It can easily be shown that H is abelian.

Let h = 1 + α

3∑

i=1

xi + α

2∑

j=0

xjy ∈ H where α ∈ F2k , then

(σ(h))2 =

(
A B

B A

)2

=

(
A2 + B2 0

0 A2 + B2

)

where A = circ(1, α, α, α), B = circ(α, α, α, 0). Now A2+B2 = (1+3α2)I4+3α2I4 =

(1 + 6α2)I4 = I4 by Theorem 2.4. Thus σ(h)−1 = σ(h).

Let Consider σ(h∗). σ(h∗) = (σ(h))T = σ(h) = σ(h)−1. Therefore H ∼= C2
k <

V∗(F2kD8). ¤
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Theorem 3.3. V∗(F2kD8) ∼= C2
5k o C2

k.

Proof. N = {1+a2 +a3 +a5 +a1(x+x3)+a2x
2 +a3y+a4(xy+x3y)+a5x

2y | ai ∈

F2k} and H = {1 + α

3∑

i=1

xi + α

2∑

j=0

xjy |α ∈ F2k}. Clearly N ∩ H = 1. We will

show that NH = {nh |n ∈ N, h ∈ h} is a group.

Let n = 1 + a2 + a3 + a5 + a1(x + x3) + a2x
2 + a3y + a4(xy + x3y) + a5x

2y ∈ N

and h = 1 + α

3∑

i=1

xi + α

2∑

j=0

xjy ∈ H where ai, α ∈ F2k . Therefore

σ−1(h)σ(n)σ(h) = σ(h)σ(n)σ(h)

=

(
A B

B A

)(
C D

DT CT

) (
A B

B A

)

=

(
E F

FT DT

)

where A = circ(1, α, α, α), B = circ(α, α, α, 0), C = circ(1+a2 +a3 +a5, a1, a2, a1),

D = circ(a3, a4, a5, a4) E = circ(1 + a2 + a3 + a5, a1 + δ1, a2, a1 + δ1) F = circ(a3 +

δ2, a4, a5 + δ2, a4), δ1 = α(α + 1)(a3 + a5) and δ2 = α2(a3 + a5).

Clearly h−1nh ∈ N . Thus H−1NH = N , so S and N permute, so 〈N,H〉 =

NH. Now |NH| = 26k and |V∗(F2kD8)| = 26k by Theorem 2.5, therefore NH =

V∗(F2kD8) and N/ NH = V∗(F2kD8). Therefore V∗(F2kD8) ∼= NoH ∼= C2
5koC2

k.

¤
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