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Tubular Surfaces According to a Focal Curve in E3
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Abstract. A spine curve moves through the middle of a canal or a tubular surface. It might be asked whether it is
possible to carry a spine curve over a tubular surface. For a tubular surface, we have seen that it can be done. In this
study, we have given the general equations of a canal surface and a tubular surface according to a focal curve. In
this case, we found the fundamental curvatures of a tubular surface. We gave theorems and proofs about the focal
curve being a special curve.
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1. Introduction

A canal surface appears as the envelope of a collection of 1-parameter spheres. The center of these spheres is on a
curve, which is named the center curve or the spine curve. If the radii of these spheres are constant, they are named
a tubular surfaces. Canal surfaces occupy an important place in the surface theory of differential geometry. These
surfaces provide a great convenience in engineering applications. Since canal surfaces were first described by the
French mathematician Gaspard Monge in 1850, much work has been done algebraic and geometrical in Euclidean and
non-Euclidean spaces, [1–3, 5, 8, 11, 12]. For these purposes, we carry out this study.

In studies done so far, the spine curve moves through the middle of a canal or a tubular surface. In this study, we
have seen that if we take the focal curve instead of the spine curve of a tubular surface , it can be expressed according
to a curve traveling on a tubular surface. We reinforced this with results, theorems and examples.

2. Preliminaries

In this section, some basic notions of regular curves, which have all velocity vectors different from zero, are given.

Definition 2.1. Let us give a function f : I 7−→ R. The derivative of the function f (δ) of a variable δ is

f ′(δ) =
d f
dδ
= lim
△δ→0

f (δ + △δ) − f (δ)
△δ

,

provided that the limit exists and the function f (δ) is said to differentiable at δ0. If it is differenetiable at every point in
domain I, then it is said to be differntiable on I.
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For X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3, the scalar product of X, and Y is defined by

g(X,Y) = x1y1 + x2y2 + x3y3.

The cross product of X, and Y is defined as

X × Y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) .

Let a curve α = α(δ) : I −→ E3 be given by arclength δ. In other words, let the curve α be a unit speed curve.

Its velocity vector is T (δ) = α′(δ) =
dα(δ)

dδ
. The principal normal N is defined as

T ′

∥T ′∥
and the binormal vectors B is

defined as N × T . The family {T,N, B} is an orthonormal triad and is named the Frenet frame.
For a curve α, the rate of change of the Frenet-Serret vector equations may be expressed as

T ′ = κN,
N′ = −κT + τB,
B′ = −τN,

where the coefficients κ, and τ are the first, and the second curvatures of the curve α, respectively [8].
In R3 curvatures of an arbitrary curve X is derived as

κ =
∥X′ × X′′∥

∥X′∥3
, τ =

g(X′ × X′′, X′′′)
∥X′ × X′′∥2

, (2.1)

where × is the cross product in R3 [5, 9, 10]. According to (2.1), the first, and the second curvatures of the curve α

κα =
∥∥∥α′′∥∥∥ and τα =

g (α′ × α′′, α′′′)

∥α′′∥2
,

respectively
If α′, and α′′ are linearly independent in I, then the curve α is named well defined [11].
From now on, we will assume that the given curves are good.

3. Focal Curves in E3

Let α = α(δ) : I −→ E3 be given by arclength δ. The points of Cα are the centers of the osculating spheres of α,
and it is named the focal curve of the curve α. The sphere ∥Cα − α∥2 = r2 with the center Cα is maned the osculating
sphere [12].

Let us assume

f (δ) =
1
2

(
∥Cα(δ) − α(δ)∥2 − r2

)
.

If there are infinitely close joint 4-points between the curve α with its osculating sphere at δ = δ0, then we have

f (δ0) = f
′

(δ0) = f
′′

(δ0) = f
′′′

(δ0) = 0.

The plane spanned by both the tangent vector, and the principal normal vector of a curve is named the osculating
plane. A point of a smooth curve in E3 for which the derivative of the curve of order 3 belongs to the osculating plane
is named a flattening.

If there are infinitely close 5-points in the neighbourhood of a point with the osculator sphere at δ = δ0 of the curve
α, it is named a vertex of the curve. Conversely, unless there are infinitely close 5-points in the neighbourhood of a
point with the osculator sphere at δ = δ0 of the curve α, it is named non-vertex of the curve.

From now on, we assume that all points of the given curves are non-vertex.

Lemma 3.1. [1] Let α be given by arclength in E3, and its Frenet frame be {T,N, B}. Then, the focal curve Cα of α is

Cα = α + c1N + c2B, (3.1)

and the focal coefficients of Cα are given by

c1 =
1
κα
, c2 = c

′

1
1
τα
, (3.2)

where κα , 0, and τα , 0 are the curvature, and the torsion of the curve α.
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Lemma 3.2 ( [1]). Let α = α(δ) : I −→ E3 be given by arclength. If a non-flattening point of α is a vertex, then

c′2 + c1τα = 0.

The opposite is also possible.

The forthcoming theorem, lemmas, and corollaries state the relations between a curve α, and its focal curve Cα.

Theorem 3.3. Let α : I −→ E3 be given by arclength. Let {T,N, B} (resp. {t,n,b}) be the Frenet frame of the curve α
(resp. Cα). Let κα, and τα be the curvature, and the torsion of the curve α, respectively. Then, we have the connections
as follows;

t = εtB,

n = εtεnN,

b = −εnT,

where εt =
c′2 + c1τα∣∣∣c′2 + c1τα

∣∣∣ , and εn =
τα
|τα|

.

Proof. Let σ be the arc length parameter of the focal curve Cα. If we take the derivative of both sides of (3.1)
concerning the arclength parameter δ, we reach

dCα
dδ
=

dCα
dσ

dσ
dδ
=

[
c′2 + c1τα

]
B, (3.3)

and if we take the norm of both sides of (3.3), we reach
dδ
dσ
=

1∣∣∣c′2 + c1τα
∣∣∣ ,

and

t =εtB =

(
c′2 + c1τα

)∣∣∣c′2 + c1τα
∣∣∣ B =

dCα
dσ
. (3.4)

Now, differentiating both sides of (3.4) concerning the arclength parameter δ we obtain

n =εtεnN,

and

κCα =
|τα|∣∣∣c′2 + c1τα

∣∣∣ . (3.5)

On the other hand, we may write
b = t × n = (εtB) × (εtεnN) = −εnT.

□

Let κα, and τα (resp. κCα , and τCα ) be the curvature, and the torsion of the curve α (resp. the first and the second
curvatures of the focal curve Cα ). Accordingly to this, we can express the following corollaries.

Corollary 3.4. Taking the derivative of (3) concerning the arclength parameter δ, we obtain

κα =
∣∣∣τCα ∣∣∣ ∣∣∣c′2 + c1τα

∣∣∣ . (3.6)

Corollary 3.5. Let α = α(δ) : I −→ E3 be given by arclength. If the curve α is spherical, then

r2 = ∥Cα − α∥2 ,

= ∥c1N + c2B∥2 ,

= c2
1 + c2

2, (3.7)

where r is the radius of spherical, and differentiating (3.7) with respect to the arc length parameter δ, we obtain(
r2

)′
= 2c2

(
c′2 + c1τα

)
. (3.8)
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The opposite is also true. According to (3.8), if r is a constant, then

c2 = 0.

Since the curve α is a non-vertex curve, c′2 + c1τα , 0.

Corollary 3.6. If we consider (3.2) and (3.8), the focal coefficients of c1, c2 of the curve α satisfy the following
matrix-vector equation 

1
c′1

c′2 −

(
r2

)′
2c2

 =
 0 −κα 0
−κα 0 τα

0 −τα 0


 0

c1
c2

 .
Corollary 3.7. If we consider (3.5) and (3.6), then we obtain that

κCα
|τα|
=

∣∣∣τCα ∣∣∣
κα
=

1∣∣∣c′2 + c1τα
∣∣∣ = 2 |c2|∣∣∣(r2)′∣∣∣ .

Lemma 3.8. Let α = α(δ) : I −→ E3 be given by arclength. If its osculating sphere radius r is constant, then its
curvature κ is constant, and

r = |c1| =
1
κα
,

where c1 is the first focal coefficient of the focal curve Cα, so

C′α = c1ταB.

Proof. Since the curve α is a non-vertex curve, c′2 + c1τα , 0. Using (3.2), and (3.8) we find that c1 =
1
κα

is a

constant. □

Lemma 3.9. According to the parameter δ, derivative changes of Frenet frame {t,n,b} is t′
n′
b′

 =
 0 νκCα 0
−νκCα 0 ντCα

0 −ντCα 0


 t
n
b

 ,
where ν =

dσ
dδ
=

∣∣∣c′2 + c1τα
∣∣∣ . If the radius of the osculating sphere r is a constant, then

ν =
dσ
dδ
= r |τα| ,

where δ and σ are the arc length parameters of the curve α , and the focal curve Cα, respectively.

4. Canal Surfaces in E3

Let us state equations for canal or tubular surface around any good curve in E3. Let a regular and unite speed curve
α : I −→ E3 be parametrized by s and the Frenet frame of the curve α be {T,N, B}. The derivative changes of these
vector fields are given by T

′

N
′

B
′

 =
 0 κα 0
−κα 0 τα

0 −τα 0


TNB

 ,
where κα and τα are the curvature, and the torsion of the curve α, respectively.

If we refer to the concepts in [2, 12], a canal surface appears as the envelope of a collection of 1-parameter spheres.
Let these spheres have varying radii r(t) and the centers on a curve α(t) which is named the spine curve. The circle
where the canal surface is tangent to the spheres is named the characteristic circle denoted by K(t). In this framework,
with the help of Figure 1, a canal surface is parameterized as
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Figure 1. The part of a canal surface, [2]

K(t, ϕ) = α(t) − r(t)r
′

(t)
α
′

(t)
∥α
′ (t)∥

± cos ϕr(t)

√
∥α
′ (t)∥2 − r′ (t)2

∥α
′ (t)∥

N(t)

± sin ϕr(t)

√
∥α
′ (t)∥2 − r′ (t)2

∥α
′ (t)∥

B(t).

This surface is named a canal surface around the curve α. The principal vector field N and the binormal vector field B
of the curve α are in the plane with the characteristic circle. If the curve α is a unite speed curve by an arc length δ,
then the canal surface is reparameterized as

K(δ, ϕ) = α(δ) − r(δ)r
′

(δ)T (δ)

± cos ϕr(δ)
√

1 − r′ (δ)2N(δ)

± sin ϕr(δ)
√

1 − r′ (δ)2B(δ).

A canal surface is a tubular surface provided that the radius r(δ) = r is a constand, and in this case the equation will be
as follows;

L(δ, ϕ) = α(δ) + r (cos ϕN(δ) + sin ϕB(δ)) , (4.1)
where 0 ≤ ϕ ≤ 2π.

If we take the focal curve Cα instead of the curve α in E3, (4.1) will be as follows;

L(δ, ϕ) = Cα(δ) + r (∓εtεn cos ϕN(δ) ± εn sin ϕT (δ)) . (4.2)

Without loss of generality in (4.2) we can take εt = εn = 1. By such preference, (4.2) reads as

L(δ, ϕ) = Cα(δ) + r (sin ϕT (δ) − cos ϕN(δ)) . (4.3)

Example 4.1. Let β be a circular helix defined by

β(δ) =
(

1
√

2
cos (δ) ,

1
√

2
sin (δ) ,

δ
√

2

)
.

Since ∥β′(δ)∥ = 1, this curve is regular curve where 0 ≤ δ ≤ 2π.
The Frenet vectors

{
Tβ,Nβ, Bβ

}
of the curve β are as follows;

Tβ(δ) =

(
−

1
√

2
sin (δ) ,

1
√

2
cos (s) ,

1
√

2

)
,

Nβ(δ) = (− cos (δ) ,− sin (δ) , 0) ,

Bβ(δ) =

(
1
√

2
sin (δ) ,−

1
√

2
cos (δ) ,

1
√

2

)
.



Tubular Surfaces According to a Focal Curve in E3 438

The curvatures of the curve β are found to be κβ = 1
√

2
, and τβ = 1

√
2

by using in (2.1). The focal coefficients of the

curve β can be computed from (3.2) as c1 =
√

2, and c2 = 0.
For this specific example, using (3.1) the focal curve Cβ of the curve β may be computed as

Cβ = β +
√

2N. (4.4)

Figure 2. For 0 ≤ δ ≤ 4π, 0 ≤ ϕ ≤ 2π tubular surface around the focal curve Cβ of the curve β.

Using (4.3) and (4.4) with r =
√

2 lead to the components

xβ(δ, ϕ) =
1
√

2
cos (δ) −

√
2 cos (δ) − sin (ϕ) sin (δ) −

√
2 cos (ϕ) cos (δ) ,

yβ(δ, ϕ) =
1
√

2
sin (δ) −

√
2 sin (δ) + sin (ϕ) cos (δ) −

√
2 cos (ϕ) sin (δ) ,

zβ(δ, ϕ) =
δ
√

2
+ sin (ϕ)

of the tubular surface Lβ(δ, ϕ) =
(
xβ(δ, ϕ), yβ(δ, ϕ), zβ(δ, ϕ)

)
. According to the focal curve Cβ the tubular surface Lβ(δ, ϕ)

is given in Figure 2.

Example 4.2. Let γ be the Salkowski curve γ [6] defined by

γ(δ) =



8
√

65

− 1− 1
√

65

4
(
1+ 2
√

65

) sin
((

1 + 2
√

65

)
δ
)
−

1+ 1
√

65

4
(
1− 2
√

65

) sin
((

1 − 2
√

65

)
δ
)
− 1

2 sin δ

 ,
8
√

65

 1− 1
√

65

4
(
1+ 2
√

65

) cos
((

1 + 2
√

65

)
δ
)
+

1+ 1
√

65

4
(
1− 2
√

65

) cos
((

1 − 2
√

65

)
δ
)
− 1

2 cos δ

 ,
16
√

65
cos

(
2
√

65
δ
)


.
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Since ∥γ′(δ)∥ =
8
√

65
cos

(
δ
√

65

)
, this curve is regular curve in

−π√65
2
,
π
√

65
2

, where 0 ≤ δ ≤
π
√

65
2

is shown in

Figure 3.
The Frenet vectors

{
Tγ,Nγ, Bγ

}
of the curve γ are

Tγ(δ) = −


cos(δ) cos( δ

√
65

) + 1
√

65
sin(δ) sin( δ

√
65

),
cos( δ

√
65

) sin(δ) − 1
√

65
cos(t) sin( δ

√
65

),
1
√

65
sin( δ

√
65

)

 ,
Nγ(δ) =

(
1
√

65
8 sin (δ) ,−

1
√

65
8 cos (δ) ,−

1
√

65

)
,

Bγ(δ) =


1
√

65
cos( δ

√
65

) sin(δ) − cos(δ) sin( δ
√

65
),

− 1
√

65
cos(δ) cos( δ

√
65

) − sin(δ) sin( δ
√

65
),

1
√

65
cos( δ

√
65

)

 .

The curvatures of γ are found to be κγ = 1, and τγ = tan
(
δ
√

65

)
using in (2.1). The focal coefficients of the curve γ can

be computed from (3.2) as c1 = 1, and c2 = 0. For this specific example, using (3.1) the focal curve Cγ of the curve γ
may be computed as

Cγ = γ + Nγ. (4.5)

Figure 3. For 0 ≤ δ ≤
π
√

65
2

, 0 ≤ ϕ ≤ 2π tubular surface around focal curve Cγ of the curve γ .

Using (4.3) and (4.5) with r = 1 lead to the components



Tubular Surfaces According to a Focal Curve in E3 440

xγ(δ, ϕ) = −
1 − 1

√
65

4
(
1 + 2

√
65

) 8
√

65
sin

((
1 +

2
√

65

)
δ

)

−
1 + 1

√
65

4
(
1 − 2

√
65

) 8
√

65
sin

((
1 −

2
√

65

)
δ

)

−
1
2

8
√

65
sin(δ) +

1
√

65

8
√

65
8 sin (δ)

+ sin (ϕ) cos(δ) cos(
δ
√

65
) +

1
√

65
sin (ϕ) sin(δ) sin(

δ
√

65
)

−
1
√

65
8 cos (ϕ) sin (δ) ,

yγ(δ, ϕ) =
1 − 1

√
65

4
(
1 + 2

√
65

) 8
√

65
cos

((
1 +

2
√

65

)
δ

)

+
1 + 1

√
65

4
(
1 − 2

√
65

) 8
√

65
cos

((
1 −

2
√

65

)
δ

)

−
1
2

8
√

65
cos(δ) −

1
√

65

8
√

65
8 cos (δ)

+ sin (ϕ) cos(
δ
√

65
) sin(δ) −

1
√

65
sin (ϕ) cos(δ) sin(

δ
√

65
)

+
1
√

65
8 cos (ϕ) cos (δ) ,

zγ(δ, ϕ) =
16
√

65
cos

(
2
√

65
δ

)
−

1
√

65

+
1
√

65
sin (ϕ) sin(

δ
√

65
)

1
√

65
sin (ϕ) sin(

δ
√

65
)

+
1
√

65
cos (ϕ)

of the tubular surface Lγ(δ, ϕ) =
(
xγ(δ, ϕ), yγ(δ, ϕ), zγ(δ, ϕ)

)
. According to the focal curve Cγ the tubular surface Lγ(δ, ϕ)

is given in Figure 3.

5. Fundamental Forms of the Tubular Surfaces

Let α = α(δ) : I −→ E3 be any unit speed curve. A parametrization of the tubular surface L(s, ϕ) around focal curve
Cα(δ) is presented (4.3). The partial derivatives of L concerning the surface parameters δ , and ϕ can be written as
follows

Lδ = cos ϕT + sin ϕN + rτ (1 − cos ϕ) B,

Lϕ = r cos ϕT + r sin ϕN,

Lδδ = −κ sin ϕT +
[
κ cos ϕ − rτ2 (1 − cos ϕ)

]
N +

[
τ sin ϕ + rτ′ (1 − cos ϕ)

]
B,

Lδϕ = − sin ϕT + cos ϕN + rτ sin ϕB,

Lϕϕ = −r sin ϕT + r cos ϕN.
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and

N =
Lδ × Lϕ∥∥∥Lδ × Lϕ

∥∥∥ = − sin ϕT + cos ϕN,

where N is a unit normal vector field of the tubular surface L(δ, ϕ) . We can easly obtain∥∥∥Lδ × Lϕ
∥∥∥2
= EG − F2 = r4τ2 (1 − cos ϕ)2 . (5.1)

The first fundamental form I of the tubular surface L is defined as

I = Edδ2 + 2Fdδdϕ +Gdϕ2,

where

E =g(Lδ, Lδ) = 1 + r2τ2 (1 − cos ϕ)2 ,

F =g(Lδ, Lϕ) = r,

G =g(Lϕ, Lϕ) = r2.

The second fundamental form II of the tubular surface L is defined as

II = edδ2 + 2fdδdϕ + gdϕ2,

where

e =g(N, Lδδ) = κ − rτ2 cos ϕ(1 − cos ϕ),
f =g(N, Lsϕ) = 1,
g =g(N, Lϕϕ) = r.

Definition 5.1. [2] Let M be any surface, and the set {E,F,G} be the coefficients of its first fundamental form. M is
named a regular surface if EG − F2 , 0.

Lemma 5.2. L (δ, ϕ) is a regular tubular surface, when cos ϕ , 1, κ , 0, and τ , 0.

Proof. If we use (5.1) and consider definition 5.1, the proof ends. □

Theorem 5.3. For the tubular surface L (δ, ϕ), Gaussian, and the mean curvatures are

K =
eg − f2

EG − F2 =
(1 − 2 cos ϕ)

2r2 (1 − cos ϕ)
,

and

H =
eG − 2fF + gE

2
(
EG − F2

) = − cos ϕ
r2 (1 − cos ϕ)2

respectively.

Let us now give the following theorems about parameter curves on a tubular surface.

Theorem 5.4. [7] Let a curve γ be on a regular surface. The curve γ is an asymptotic curve provided that its
acceleration vector γ

′′

is orthogonal to the normal vector N of the aforementioned surface. Namely, g(N, γ′′ ) = e = 0.

Theorem 5.5. Let L(δ, ϕ) be a tubular surface and the curve γ(δ) be its focal curve.
(1) If δ−parameter curves Lδ are asymptotic, then κ = rτ2 cos ϕ(1 − cos ϕ), and cos ϕ , 0
(2) ϕ−parameter curves Lϕ are not asymptotic.

Proof. The first coefficient e of the second fundamental form II as follows

e = g(N, Lδδ) = κ − rτ2 cos ϕ(1 − cos ϕ).

If δ−parameter curves Lδ are asymptotic, then κ = rτ2 cos ϕ(1 − cos ϕ). Due to κ , 0,then cos ϕ , 0. Similarly, the
third coefficient g of the second fundamental form II as follows

g = g(N, Lϕϕ) = r , 0.

If so, the ϕ−parameter curves Lϕ are not asymptotic curves. □
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Theorem 5.6 ( [4]). Let a curve γ be on a regular surface. The curve γ is a geodesic curve provided its acceleration
vector γ

′′

and the normal vector N of the surface is linearly dependent. Namely, N × γ′′ = 0.

Theorem 5.7. Let L(δ, ϕ) be a tubular surface and the curve γ(δ) be its focal curve.
(1) The δ−parameter curves Lδ can not be geodesic,
(2) The ϕ−parameter curves Lϕ curves are geodesic.

Proof. For any δ and ϕ, r2τ (1 − cos ϕ) , 0 since L(δ, ϕ) is a regular tubular surface (see (5.1)). Therefore,

N × Lδδ = cos ϕ
[
τ sin ϕ + rτ′ (1 − cos ϕ)

]
T

+ sin ϕ
[
τ sin ϕ + rτ′ (1 − cos ϕ)

]
N

+rτ2 sin ϕ (1 − cos ϕ) B , 0. (5.2)

On the other hand, since
N × Lϕϕ = N × rN = 0

the ϕ−parameter curves Lϕ are geodesics. The opposite is also true. □
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