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ABSTRACT

In this study, based on progressive type-II censored data, Bayes estimators of the unknown 
parameter of the Topp-Leone distribution are derived by using informative and non-
informative, priors under square error (symmetric), and linex, general entropy, and 
precautionary (asymmetric) loss functions. The Bayes estimators cannot be obtained in closed-
forms, for this reason, Lindley’s approximation method is used to compute the approximate 
estimates. The asymptotic confidence and the highest posterior density credible intervals for 
the unknown parameter are obtained. The performances of the proposed Bayes estimators are 
compared with the corresponding maximum likelihood estimator for different sample sizes 
in terms of average estimate and mean squared error through an extensive simulation study. 
Finally, a real data set is provided to illustrate the results.
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INTRODUCTION

The Topp–Leone (TL) distribution is a univariate con-
tinuous distribution with a finite support set, which was 
originally proposed and used as a model for some failure 
data by Topp and Leone [1]. The probability density func-
tion (pdf) of the TL distribution is given by

f x x x x x; , ,α α αα α( ) = −( ) −( ) <− −2 1 2 0 1 01 1 	 (1)

where α is the shape parameter. Its cumulative distribution 
function (cdf) is also given as

F x

x

x x x
x

;

,

,
,α α α( ) =

≤

−( ) < <
≥









0 0

2 0 1
1 1

	 (2)

MirMostafaee et al. [2] indicated that the TL distribu-
tion can be used as an alternative distribution to the beta 
and Kumaraswamy distributions which have the same sup-
port set. It can also be deduced from Nadarajah and Kotz 
[3] that the TL distribution has two advantages: (i) the cdf
of the TL can be written in closed form; thus, it simplifies
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the computation of the likelihood function for censored 
data; (ii) the TL distribution has a bathtub-shaped hazard 
rate function for the full range of parameter values. 

On the other hand, most lifetime distributions are 
known to have an infinite support set (0, ∞) as the failure 
time of the component can be infinite. However, in prac-
tice, we often encounter physical constraints that are the 
inherent consequence of real-world phenomena such as 
limited power supply, restricted maintenance resources, 
and the design life of component or product. In such cases, 
the distribution with a finite support set may be more suit-
able to model the lifetimes. Thus, the TL distribution pro-
vides the experimenter or researcher with an alternative 
model for representing the lifetimes.

In recent years, the TL distribution has started to attract 
great interest in the literature. For example, Nadarajah and 
Kotz [3] studied the structural properties of the TL distri-
bution and obtained explicit expressions for its moments 
and characteristic function. Ghitany et al. [4] discussed 
some reliability measures of the TL distribution, such as the 
hazard rate, mean residual lifetime, reversed hazard rate, 
expected inactivity time, and their stochastic orderings. 
Ghitany [5] also obtained asymptotic distribution of order 
statistics of the TL distribution. The moments of order sta-
tistics from the TL distribution were derived by Genc [6] 
and MirMostafaee [7]. Moreover, some of the recent stud-
ies on the statistical inference of the TL distribution can be 
provided from MirMostafaee et al. [2], El-Sayed et al. [8], 
Sindhu et al. [9], Feroze and Aslam [10], Bayoud [11], and 
Arora et al [12].

It is well known that in lifetime testing experiments, 
the experimenter may not always observe the failure times 
of all units placed on the test. Samples that result from 
such cases are called censored samples. There are several 
types of censoring schemes. Since progressive censoring 
schemes allow the experimenter to remove units before 
the termination of the experiment, these schemes in the 
last few years have been recently studied more extensively 
than others by many authors. Due to the flexibility fea-
ture, progressive censoring schemes are commonly used 
in reliability experiments, clinical trials, and life-testing 
experiments, etc. For further details about progressive 
censoring, the readers can refer to Balakrishnan and 
Aggarwala [13].

The progressive type-II censoring scheme firstly 
introduced by Cohen [14] can be defined as follows: The 
experimenter places n identical units on a life test at time 
zero and decides to observe only m (< n) failures. When the 
first failure is observed, R1 of the remaining n − 1 surviving 
units are randomly selected and removed. Then after the 
second observed failure, R2 of the remaining n − 1 − R1 
surviving units are randomly selected and removed, and so 
on. Finally, the experiment terminates until the mth failure 
is observed and remaining R n m Rm

i

m

i= − −
=

−

∑
1

1

 surviving units 

all removed. The values of R1, R2,... Rm and n, m are all pre-
fixed. It is to be noted that if R1 = R2, Rm-1, then Rm = n − m 
that corresponds usual type-II censoring. If R1 = ... = Rm = 
0 then n = m that represents the complete sample. 

In the literature, the statistical inference on different 
lifetime distributions under progressive type-II censoring 
has been studied by many authors, including Wingo [15], 
Musleh and Helu [16], Usta and Gezer [17] , and Mahto et 
al. [18]. In these and many similar studies, the estimates of 
the unknown parameters of the distribution are obtained 
based on the maximum likelihood estimators (MLE) 
using Newton-Rapson (NR) algorithm. It is also known 
that significant properties of MLE are provided only when 
the sample size is large enough and when the lifetimes are 
slightly censored Bousqet [19]. However, it is often used 
data with small sample sizes in the lifetime analysis. In 
such cases, it has been emphasized by many authors that 
using the Bayes estimators is more appropriate when prior 
knowledge is available Robert [20].

Although classical and Bayesian estimation methods 
have been applied by some authors to estimate the param-
eter of the TL distribution in recent years, the estimation 
of the parameter of the TL distribution under progressive 
type-II censored data has still not received much attention 
in the literature. For instance, Bayoud [21] studied the clas-
sical and Bayesian estimations for the shape parameter of 
the TL distribution when the sample is progressive type-II 
censored. In this study, the Bayes estimator of the param-
eter was obtained by using the exponential prior and the 
squared error loss function. Feroze et al. [22] considered 
the Bayesian estimation for the parameters and reliabil-
ity characteristics of the two parametric TL distribution 
based on progressive type-II censored data. They applied 
the Bayesian estimation under different loss functions with 
the assumption of the independent gamma and beta priors 
for the scale and shape parameters of the TL distribution. 
An important point to note about these two studies is that 
both of them have assumed the informative prior(s) for the 
parameter(s) of the TL distribution. However, in many real 
cases it is very difficult to know in advance information 
about the parameters. For this reason, assuming different 
informative and non-informative priors, Bayesian esti-
mation of the unknown parameter of the TL distribution 
under different loss functions (symmetrical and asymmet-
rical) in the presence of progressive type-II censoring still 
attracts the attention of researchers.

Therefore, in this study, we aim to examine the perfor-
mance of Bayes estimators of the parameter of the TL dis-
tribution under different loss function assuming different 
prior distribution for different sample sizes when the sam-
ple is progressive type-II censored. In accordance with this 
object, the Bayes estimators of the parameter are derived by 
using a non-informative (Jeffrey’s) prior and an informa-
tive (gamma) prior under different loss functions, namely, 
squared error (symmetric), linear-exponential, general 
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MAXIMUM LIKELIHOOD ESTIMATION

In this section, the Bayes estimators of the shape 
parameter α have been derived by using a non-informa-
tive (Jeffrey’s) prior and an informative (gamma) prior 
under different loss functions, namely, squared error, lin-
ear-exponential, general entropy, and precautionary loss 
functions. 

One of the most commonly used loss functions is the 
squared error loss function (SELF) given as follows

L θ θ θ θ, � �( ) = −( )2
(6)

It is a symmetric loss function that assigns equal weight 
to overestimation as well as underestimation. The Bayes 
estimator of q under Equation 6 is the posterior mean, 
which is given by

θ θπ
� BS E= ( ) 	 (7)

Here, π is the posterior pdf of θ. The SELF is commonly 
used in the Bayesian estimation because it does not need 
extensive numerical computation. However, the use of a 
symmetric loss function might be inappropriate for dif-
ferent estimation problems as emphasized by Zellner [23], 
Basu and Ebrahimi [24]. Due to this reason, the use of 
asymmetric loss functions may be more appropriate.

A useful alternative to the SELF is an asymmetric loss 
function, called the linear-exponential (LINEX) loss func-
tion, introduced by Varian [25] and defined as

L e c ccθ θ θ θθ θ, ,� ��( ) = − −( ) − ≠−( ) 1 0 	 (8)

The magnitude and sign of the loss parameter c in 
Equation 8 represents the degree of symmetry and direc-
tion, respectively. When the value of parameter c closes 
to zero, the LINEX loss function becomes approximately 
the SELF and therefore it becomes almost symmetric. 
According to Zellner [23], the Bayes estimator of q under 
Equation 8 is given as 

θ π
θ� BL

c

c
E e= − ( )−1

ln (9)

provided that Eπ (e–cθ) exists and is finite. Recently, the 
LINEX loss function has been used by various authors; see 
e.g. Muslehv and Helu [16], and Usta and Akdede [26].

Another useful asymmetric loss function is the general
entropy loss function (GELF) suggested by Calabria and 
Pulcini [27]:

L c c
c

θ θ θ
θ

θ
θ

, ,�
� �( ) =





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−




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− ≠ln 1 0 	 (10)

entropy, and precautionary (asymmetric) loss functions. 
The Bayes estimators cannot be obtained in closed-forms, 
therefore Lindley’s approximation method is used for com-
puting the approximate Bayes estimates. Furthermore, an 
extensive simulation study is performed to compare the 
performances of the Bayes estimators with corresponding 
MLE for different sample sizes, and a real data set has been 
analyzed for illustrative purposes.

The remainder of this study is organized as follows. 
The MLE is presented in Section 2. Section 3 provides the 
Bayesian estimation. The asymptotic confidence and the 
highest posterior density credible intervals are constructed 
in Section 4. The results of simulation study are given in 
Section 5. A real data set is analyzed in Section 6, followed 
by conclusions in Section 7. 

MAXIMUM LIKELIHOOD ESTIMATION

Let X = (X1, X2,..., Xm) with X1 ≤ X2 ≤ ... ≤ Xm denote 
the progressively type-II censored sample of size m from a 
sample of size n with progressively censoring scheme R = 
(R1, R2,..., Rm), drawn from the TL distribution whose pdf 
given by (1). The likelihood function for the shape param-
eter a based on a progressively type-II censored sample can 
be written as 

l A f x F x
i

m

i i

Riα α αx( ) = ( ) − ( ) 
=

∏
1

1; ; 	 (3)

where A n n R n R
i

m

i= − −( ) − +( )



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−

∑1 11
1

1

... . The log-likelihood 

function can be derived by using Equations 1–3 as follows: 
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The MLE of the shape parameter α (say α̂MLE) can be
obtained by equating the partial derivative of lnl(α|x) 
function given in Equation 4 to zero as the following 
equation:

∂ ( )
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 −( ) =α ln 2 02x xi i

	(5)

It is clear that an explicit form to the solution of 
Equation 5 does not exist, and hence the numerical meth-
ods, such as the Newton–Raphson, are required to com-
pute the MLE of the parameter a.
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The loss parameter c given in Equation 10 reflects the 
departure from symmetry. The Bayes estimator of q under 
GELF is given by 

θ θπ
� BG

c c
E= ( ) 

− −1/
	 (11)

provided that Eπ (θ–c) exists and is finite. Note that if c = −1 
in Equation (11), the Bayes estimator θ̂ BG coincides with
the Bayes estimator θ̂ BS. Many authors have used this loss
function in different estimation problems, see e.g. Usta and 
Akdede [26] and Pandey and Rao [28].

Norstorm [29] introduced the precautionary loss func-
tion (PLF) as an alternative asymmetric loss function as 
follows:

L θ θ
θ θ

θ
, �

�

�( ) =
−( )2

(12)

The PLF approaches infinitely near the origin to pre-
vent underestimation, hence it gives conservative estima-
tors. The Bayes estimator of θ under PLF is given as

θ θπ
� BP E= ( ) 

2 1 2/ 	 (13)

provided that Eπ(θ2) exists and is finite. Note that if c = 
–2 in Equation 11, the Bayes estimator θ̂ BG is the same
with the Bayes estimator θ̂ BP. This loss function has been
recently applied by several authors, including, Sindhu et al. 
[9], Pandey and Rao [28].

It is well known that prior distribution of the unknown 
parameters need to be assumed for the Bayesian inference. 
In this article, the Bayes estimators for the shape parameter 
are derived under the assumption of the non-informative 
Jeffrey’s prior and the informative gamma prior, separately. 
It is assumed that a follows 

a)	 the non-informative Jeffrey’s prior: 
v1

1
0α

α
α( ) ∝ >, ,

b)	 the informative gamma prior: 
v e a ba b

2
1 0 0 0α α αα( ) ∝ > > >− − , , , .

If X = (X1, X2,..., Xm) is a progressively type-II censored 
sample from TL distribution, then, we can derive the poste-
rior pdfs of a under the prior pdfs vj (α), j = 1,2, as follows:

π α
α α α

α α α

α α α

j
j j

j
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On the other hand, as mentioned before, the Bayes 
estimator of any function of α, say u(α), is the expected 
value of u(α) under the posterior pdf. The expected value 
of u(α) under the posterior pdfs given in Equation 14 is 
obtained by

E u x

u v x x

x x d
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j i ii

m

i i

R

π

α

α

α

α α α

( )( )

=

( ) ( ) −( )
− −( )( )

∞ −

=∫ ∏0

2 1

1

2

2

1 2 αα

α α

α

α

α

v x x

x x d

j
j i ii

m

i i

Ri

( ) −( )
− −( )( )

=∞ −

=∫ ∏0

2 1

1

2

2

1 2

1 2, ,
	 (15)

It can be observed from Equation 15 that the expected 
value of u(α) is expressed as a ratio of two integrals which 
cannot be solved analytically. Hence, Lindley’s approxi-
mation method is employed to obtain the Bayes estimates 
of α.

Lindley’s Approximation Method
Lindley [30] proposed an approximation method for 

evaluating the posterior expectation of an arbitrary func-
tion u(θ) as

E u
u v e d

v e d

l

l
θ

θ θ θ

θ θ

θ

θ
( )( ) =

( ) ( )
( )

∫
∫

( )

( )
x

ln

ln
	 (16)

which can be asymptotically approximated by

E u u u u

L u

i j
ij i j ij

i j k s
ijk ij ks s

θ ρ σ

σ σ

( )( ) ≈ + +( )
+
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x 1
2

2

1
2

	 (17)

where i, j, k, s =1,2...,r, θ = (θ1, θ2,..., θr). 
For a single parameter, θ = (α), Equation 17 reduces to 

the following expression:

E u u u u

L u

α α ρ σ

σ

( )( ) ≈ ( ) + +( )
+ ( )
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� � �

0 5 2

0 5

11 1 1 11

111 1 11
2

.

.
	 (18)

where α̂  is the MLE of α, u u�
�1 = ∂ ∂ =/ ,α α α

u u�
�11

2 2= ∂ ∂
=

/ ,α
α α

 ρ α α α
�

�1 = ∂ ( ) ∂ =ln v / ,

L l�
�11

2 2= ∂ ( ) ∂
=

ln / ,α
α α

L l�
�111

3 3= ∂ ( ) ∂
=

ln / α
α α

σ� �11 111= − / .L
Lindley’s method has been applied by many authors 

to obtain the approximate Bayes estimates, see for 
example, Muslehv and Helu [16], and Usta and Akdede 
[26].
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Bayes estimates using non-informative Jeffrey’s prior 
distribution

In this subsection, the approximate Bayes estimates of 
the shape parameter a using the Jeffrey’s prior under dif-
ferent loss functions are obtained by applying Lindley’s 
method.

From Equation 7, it is known that the Bayes estimator of 
a based on the SELF using the Jeffrey’s prior is

α α απ α απ
�

�
BS E x d= ( ) = ( )

∞

∫1
0

1 (19)

After substituting the value of π1(α|x~) from Equation 14, 
it can be written as 

α α
α α

α
π

α ρ α

α ρ α
�
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�

BS

lnl x

lnl x
E u
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e d
= ( )( ) =
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∫
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where u(α) = α, ρ = ln(v1) = –ln(α) and lnl(α|x)  

∝ ( ) + −( ) + − −( )( )
= =
∑ ∑m x x R x x
i

m

i i
i
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i i iln ln lnα α α

1

2

1

22 1 2 .

It can easily be verified that u = 1, u11 = 0, ρ
α1
1

= − .

Thus, using Lindley’s approach given in Equation 18, the 
approximate Bayes estimate of α under the SELF and the 
Jeffrey’s prior, denoted α� BS

J
, , can be derived as follows 

α α α
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where α̂MLE is MLE of α, L
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If u(α) is taken as e–cα and similar process in the SELF 
is followed, then u1 = –ce–cα, u11 = c2e–cα and the approxi-
mate Bayes estimate for α under the LINEX loss using the 
Jeffrey’s prior, denoted α� BL

J
,  can be given by

α π
α� BL

J c

c
E e= − ( )( )−1

1
ln x (22)

where E e
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If u(α) = α–c, then u1 = –cα–c–1, u11 = c(c + 1)α–c–1 and 
approximate Bayes estimate of α under GELF, denoted as 
α� BG

J
,  can be written as follows

α α
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If u(α) = α2, then u1 = 2α, u11 = 2 and the approximate 
Bayes estimate of a under PLF, say α� BP

J
,  can be obtained by

α α α α
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	(24)

Bayes estimates using informative gamma prior 
distribution

In this subsection, the approximate Bayes estimates of a 
under different loss functions using the gamma prior are also 
obtained by applying Lindley’s approximation into our case 
where we get the first derivative of ρ = (v2) = (a – 1)ln(α) –
bα according to α as ρ

α1
1

=
−

−
a

b.

Hence, the approximate Bayes estimates of α under 
the gamma prior, denoted by α� BS

J
, for the SELF, α� BL

J
, for the 

LINEX loss, α� BG
J

, for the GELF, α� BP
J

, for the PLF, respectively, 
can be obtain as
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Table 1. Censoring scheme

n = 20, m = 5 n = 40, m = 10 n = 80, m = 20

C.S 1 (0*4,15) C.S 9 (0*9,30) C.S 17 (0*19,60)
C.S 2 (3*5) C.S 10 (3*10) C.S 18 (3*20)
C.S 3 (0*2,15, 0*2) C.S 11 (0*4,30, 0*5) C.S 19 (0*9,60, 0*10)
C.S 4 (15, 0*4) C.S 12 (30, 0*5) C.S 20 (60, 0*1)

n = 20, m = 10 n = 40, m = 20 n = 80, m = 40
C.S 5 (0*9,10) C.S 13 (0*19,20) C.S 21 (0*39,40)
C.S 6 (1*10) C.S 14 (1*20) C.S 22 (1*40)
C.S 7 (0*4,10, 0*5) C.S 15 (0*9,20, 0*10) C.S 23 (0*19,40, 0*20)
C.S 8 (10, 0*9) C.S 16 (20, 0*19) C.S 24 (40, 0*39)

α α

α α α

π
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�
�

�
� �
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INTERVAL ESTIMATIONS

In this section, the construction of asymptotic confi-
dence and the highest posterior density (HPD) intervals is 
considered for the shape parameter.

Asymptotic Interval Estimation 
In this subsection, the asymptotic confidence interval 

for the parameter α is constructed by using the asymptotic 
distribution of MLE of the parameter. It is well known that 
the MLE of the parameter α (α̂MLE) is asymptotically nor-
mally distributed with the mean α and the variance σ̂11 =
–1/L̂11, 	 which is given in Equation (18). For further details 
see Ferguson [31].

Thereby, the (1–γ) 100% asymptotic confidence interval 
for the parameter α is obtained as follows 

α σγ
� �MLE z± /2 11 	 (29)

Where zγ/2 is the percentile of the standard normal dis-
tribution with right-tail γ/2. 

Highest posterior density credible interval
In this subsection, the construction of the highest pos-

terior density (HPD) credible interval is considered for 
the parameter α. Due to the flexibility and simplicity of 
the Bayesian approach, in recent years, it has been more 
preferable to the frequentist approach in interval estima-
tion. The HPD credible interval is more desirable among 
Bayesian credible intervals because of its two main prop-
erties: first, the density for every point inside the credible 
interval is greater than that for every point outside of it; 
and second, the credible interval has the shortest length 

for a given probability content (1–γ). The (1–γ) 100% 
HPD credible interval [θU, θL] for a random quantity θ is 
defined as

P dU L

L

U

θ θ θ π θ θ γ
θ

θ

≤ ≤( ) = ( ) = −∫ x 1 	 (30)

where π(θ|x) is the posterior pdf of θ. For more details 
about credible intervals, the readers may refer [32].

In order to obtain the (1–γ) 100% HPD interval for the 
parameter α, we use the posterior samples by following the 
method described in detail by Bayoud [21], Chen and Shao [33].

SIMULATION STUDY

In this section, a Monte Carlo simulation study is con-
ducted to compare the performance of the MLE and the 
Bayesian estimators based on the symmetric and asym-
metric loss functions using the non-informative and infor-
mative priors for the shape α parameter. We first use the 
following algorithm given by Balakrishnan and Sandhu 
[34] to generate a progressively type-II censored sample
from the TL distribution for given values of n, m and R =
(R1, R2,..., Rm):

1. Generate m independent uniform U(0,1), random
variables W1, W2,..., Wm.

2. For given values of the progressive scheme R, set

V Wi i

i R
j m i

m

j

=
∑+











= − +

−

1

1

 for i = 1,2,..., m.
3. Set Ui = 1 – Vm × Vm–1 × ... × Vm–i+1, i = 1,2,...,m

then, U1, U2,..., Um, is a progressive type-II cen-
sored sample of size m from U(0,1).

4. Finally, for given values of parameter α, set
X F U Ui i i= ( ) = − −−1 11 1 / ,α  i = 1,2,...,m. Then,

X1, X2,..., Xm is the progressive type-II censored 
sample from the TL distribution with the shape 
parameter α.
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The simulation study is carried out for different sample 
sizes; n = 20, 40, 80, and for different choices of the effec-
tive sample size m in each case; m such that (m/n) = 0.25, 
0.5. Different choices of the progressive type-II censoring 
schemes, presented in Table 1, are considered as: (i) items 
are removed at the end of the experiment (usual type-II 
censoring), (ii) units are uniformly removed, (iii) units 
are removed at the middle of the experiment, (iv) units are 
removed at the beginning of the experiment. In Table 1, for 
instance, the censoring scheme (C.S) with (0*2, 15, 0*2) rep-
resents a censoring scheme with specification R = (R1, R2,..., 
Rm) = (0,0,15,0,0).

In each case, the progressively censored samples with 
the shape parameters α = 0.5, 1, 2, 5 are generated and the 
MLEs and the approximate Bayes estimates, using Lindley’s 
approximation method, are obtained as described in 
Sections 2-3. For computing approximate Bayes estimates, 
the informative gamma prior with a = 4, b = 4/α is selected 

Table 2. AE and MSE of the estimators of when α = 0.5 for n = 20, m = 5,10

n = 20, m = 5 n = 20, m = 10

C. S 1 C. S 2 C. S 3 C. S 4 C. S 5 C. S 6 C. S 7 C. S 8
α̂ MLE 0.5221 0.5267 0.5256 0.5336 0.5229 0.5301 0.5323 0.5219

0.0170 0.0202 0.0212 0.0279 0.0163 0.0178 0.0183 0.0201

α� BS
J 0.5261 0.5333 0.5334 0.5560 0.5236 0.5323 0.5347 0.5305

0.0175 0.0211 0.0223 0.0323 0.0164 0.0181 0.0186 0.0212

α� BP
J 0.5407 0.5496 0.5497 0.5785 0.5368 0.5467 0.549 0.5487

0.0194 0.0237 0.0250 0.0378 0.018 0.0202 0.0208 0.0241

α� BG
J  (−0.75) 0.5223 0.5290 0.5291 0.5499 0.5202 0.5287 0.5311 0.5258

0.0170 0.0206 0.0217 0.0310 0.016 0.0177 0.0181 0.0206

α� BG
J  (0.75) 0.5006 0.5045 0.5046 0.5138 0.5009 0.5076 0.5101 0.4985

0.0152 0.0179 0.0190 0.0251 0.0145 0.0156 0.0159 0.0179

α� BL
J  (−0.75) 0.5323 0.5403 0.5404 0.5662 0.5291 0.5385 0.5409 0.5383

0.0187 0.0228 0.0241 0.0358 0.0174 0.0194 0.0199 0.023

α� BL
J  (0.75) 0.5199 0.5261 0.5262 0.5453 0.518 0.5262 0.5286 0.5226

0.0163 0.0196 0.0207 0.0289 0.0154 0.0169 0.0174 0.0195

α� BS
G 0.5132 0.5160 0.5158 0.5231 0.5122 0.5178 0.5197 0.5124

0.0084 0.0089 0.0094 0.0089 0.0086 0.0087 0.0089 0.008

α� BP
G 0.5270 0.5311 0.5307 0.5417 0.5247 0.5313 0.5331 0.5287

0.0095 0.0101 0.0107 0.0105 0.0095 0.0098 0.0101 0.0094

α� BG
G  (−0.75) 0.5098 0.5123 0.5121 0.5183 0.5091 0.5145 0.5164 0.5083

0.0083 0.0087 0.0092 0.0084 0.0084 0.0086 0.0088 0.0079

α� BG
G  (0.75) 0.4904 0.4913 0.4912 0.4908 0.4918 0.4959 0.4979 0.4852

0.0082 0.0087 0.0092 0.0082 0.0084 0.0084 0.0085 0.0081

α� BL
G  (−0.75) 0.5189 0.5223 0.5220 0.5310 0.5173 0.5234 0.5252 0.5191

0.0090 0.0095 0.0101 0.0094 0.0091 0.0093 0.0095 0.0087

α� BL
G  (0.75) 0.5077 0.5100 0.5099 0.5155 0.5072 0.5124 0.5143 0.5059

0.0080 0.0084 0.0089 0.0082 0.0082 0.0083 0.0085 0.0076

to provide E(α) = a/b is chosen. The values for the loss 
parameter are taken to be c = ± 0.75.

For 5000 repetitions, the performance of all estimators 
is measured with different criteria such as average estimates 
(AE) and mean square error (MSE) which are given as follows: 

AE
i

i=
=
∑1

5000 1

5000

α� (31)

MSE
i

i= −( )
=
∑1

5000 1

5000 2
α α� 	 (32)

where a1 is the estimate of a for the ith simulated sample 
[35].

The simulation results are reported in Tables 2–10. 
Tables 2–10 show the AE and the MSE values for the MLE 
and the proposed Bayes estimates of α. 
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Table 3. AE and MSE of the estimators of α when α = 0.5 for n = 40, m = 10,20

n = 40, m = 10 n = 40, m = 20

C. S 9 C. S 10 C. S 11 C. S 12 C. S 13 C. S 14 C. S 15 C. S 16

α̂ MLE 0.5096 0.5172 0.5166 0.5103 0.5097 0.5145 0.5081 0.5169
0.0076 0.0094 0.0102 0.0146 0.0075 0.0079 0.0067 0.0111

α� BS
J 0.5114 0.5204 0.5208 0.524 0.51 0.5156 0.5091 0.5215

0.0077 0.0097 0.0105 0.0159 0.0075 0.0079 0.0068 0.0114

α� BP
J 0.5185 0.5286 0.5291 0.5372 0.5165 0.5226 0.516 0.5314

0.0081 0.0104 0.0113 0.0176 0.0079 0.0084 0.0071 0.0124

α� BG
J  (−0.75) 0.5096 0.5183 0.5187 0.5206 0.5084 0.5138 0.5074 0.519

0.0076 0.0095 0.0104 0.0156 0.0074 0.0078 0.0067 0.0112

α� BG
J  (0.75) 0.4989 0.5061 0.5061 0.4999 0.4988 0.5033 0.4973 0.5042

0.0072 0.0088 0.0096 0.0139 0.0071 0.0073 0.0064 0.0103

α� BL
J  (−0.75) 0.5142 0.5237 0.5242 0.5295 0.5126 0.5184 0.5118 0.5256

0.008 0.01 0.011 0.0169 0.0077 0.0082 0.007 0.012

α� BL
J  (0.75) 0.5085 0.5171 0.5174 0.5184 0.5075 0.5127 0.5064 0.5175

0.0075 0.0093 0.0101 0.015 0.0073 0.0077 0.0066 0.0109

α� BS
G 0.5086 0.5158 0.5159 0.5151 0.5075 0.5122 0.5068 0.5154

0.0059 0.0069 0.0074 0.0087 0.0058 0.006 0.0052 0.0074

α� BP
G 0.5156 0.5239 0.5242 0.5279 0.5139 0.5192 0.5136 0.5252

0.0062 0.0075 0.0081 0.01 0.0061 0.0064 0.0055 0.0081

α� BG
G  (−0.75) 0.5068 0.5137 0.5139 0.5118 0.5059 0.5105 0.5051 0.513

0.0058 0.0068 0.0073 0.0083 0.0058 0.0059 0.0051 0.0073

α� BG
G  (0.75) 0.4964 0.5019 0.5018 0.4927 0.4966 0.5003 0.4952 0.4989

0.0056 0.0064 0.0069 0.008 0.0056 0.0056 0.005 0.0069

α� BL
G  (−0.75) 0.5114 0.519 0.5193 0.5204 0.51 0.515 0.5095 0.5194

0.0061 0.0072 0.0078 0.0093 0.006 0.0062 0.0053 0.0078

α� BL
G  (0.75) 0.5058 0.5125 0.5126 0.5099 0.505 0.5095 0.5042 0.5116

0.0057 0.0067 0.0072 0.0078 0.0057 0.0058 0.005 0.0071
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Table 4. AE and MSE of the estimators of α when α = 0.5 for n = 80, m = 20,40

n = 80, m = 20 n = 80, m = 40

C. S 17 C. S 18 C. S 19 C. S 20 C. S 21 C. S 22 C. S 23 C. S 24

α̂ MLE 0.5048 0.5049 0.5051 0.5083 0.5066 0.5063 0.5072 0.5105
0.0037 0.0043 0.0042 0.0083 0.0035 0.0033 0.0035 0.0061

α� BS
J 0.5057 0.5064 0.507 0.5163 0.5068 0.5068 0.5077 0.5127

0.0037 0.0044 0.0043 0.0088 0.0036 0.0033 0.0036 0.0062

α� BP
J 0.5092 0.5104 0.511 0.5241 0.51 0.5103 0.5111 0.518

0.0038 0.0045 0.0044 0.0094 0.0037 0.0034 0.0037 0.0065

α� BG
J  (−0.75) 0.5048 0.5054 0.506 0.5142 0.506 0.506 0.5068 0.5114

0.0037 0.0043 0.0043 0.0087 0.0035 0.0033 0.0035 0.0062

α� BG
J  (0.75) 0.4995 0.4994 0.4999 0.5021 0.5012 0.5008 0.5017 0.5035

0.0036 0.0042 0.0041 0.0081 0.0034 0.0032 0.0034 0.0059

α� BL
J  (−0.75) 0.507 0.508 0.5086 0.5194 0.508 0.5082 0.509 0.5148

0.0038 0.0044 0.0044 0.0091 0.0036 0.0033 0.0036 0.0064

α� BL
J  (0.75) 0.5043 0.5048 0.5054 0.5131 0.5055 0.5055 0.5063 0.5106

0.0037 0.0043 0.0042 0.0085 0.0035 0.0032 0.0035 0.0061
0.0094 0.008 0.0056 0.0085 0.0052 0.0039 0.004 0.0061

α� BS
G 0.505 0.5055 0.5061 0.513 0.5061 0.5061 0.5069 0.5108

0.0033 0.0038 0.0037 0.0064 0.0032 0.0029 0.0032 0.0051

α� BP
G 0.5085 0.5096 0.5102 0.5209 0.5093 0.5096 0.5103 0.5161

0.0034 0.0039 0.0038 0.007 0.0033 0.003 0.0033 0.0054

α� BG
G  (−0.75) 0.5041 0.5045 0.5051 0.5111 0.5053 0.5052 0.506 0.5095

0.0032 0.0037 0.0037 0.0063 0.0031 0.0029 0.0031 0.0051

α� BG
G  (0.75) 0.4988 0.4985 0.4991 0.4992 0.5005 0.5001 0.501 0.5017

0.0032 0.0036 0.0036 0.006 0.0031 0.0028 0.003 0.0048

α� BL
G  (−0.75) 0.5063 0.5071 0.5077 0.5162 0.5073 0.5075 0.5082 0.5129

0.0033 0.0038 0.0038 0.0067 0.0032 0.003 0.0032 0.0053

α� BL
G  (0.75) 0.5036 0.504 0.5046 0.5099 0.5048 0.5048 0.5056 0.5088

0.0032 0.0037 0.0036 0.0062 0.0031 0.0029 0.0031 0.005
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Table 5. AE and MSE of the estimators of when α = 1 for n = 20, m = 5,10

n = 20, m = 5 n = 20, m = 4

C. S 1 C. S 2 C. S 3 C. S 4 C. S 5 C. S 6 C. S 7 C. S 8
α̂ MLE 1.0523 1.0611 1.0535 1.0451 1.0487 1.0593 1.061 1.0621

0.0699 0.0855 0.0781 0.0983 0.0692 0.0656 0.0715 0.086

α� BS
J 1.0601 1.0743 1.069 1.0886 1.0501 1.0638 1.0659 1.0796

0.0718 0.0893 0.0822 0.1122 0.0695 0.0667 0.0727 0.0912

α� BP
J 1.0896 1.1073 1.1017 1.1326 1.0766 1.0926 1.0944 1.1166

0.0801 0.1006 0.0926 0.1306 0.0763 0.0747 0.081 0.1045

α� BG
J  (−0.75) 1.0526 1.0658 1.0606 1.0767 1.0434 1.0565 1.0586 1.07

0.07 0.0868 0.0799 0.108 0.068 0.065 0.0709 0.0883

α� BG
J  (0.75) 1.009 1.0165 1.0114 1.0062 1.0047 1.0143 1.0168 1.0144

0.0619 0.0753 0.0694 0.0893 0.0614 0.0572 0.0625 0.075

α� BL
J  (−0.75) 1.0849 1.1026 1.0967 1.1262 1.0723 1.088 1.09 1.1113

0.0821 0.1036 0.0952 0.1351 0.0784 0.0763 0.083 0.1077

α� BL
J  (0.75) 1.035 1.0454 1.0406 1.0479 1.0279 1.0394 1.0416 1.0469

0.063 0.0768 0.0708 0.0912 0.0619 0.0585 0.0638 0.0769

α� BS
G 1.0321 1.0368 1.0352 1.0366 1.0259 1.0362 1.037 1.0364

0.0351 0.0377 0.0356 0.033 0.0351 0.034 0.0357 0.035

α� BP
G 1.06 1.0671 1.0657 1.0753 1.0509 1.0636 1.0638 1.0703

0.0398 0.0431 0.0411 0.0416 0.0386 0.0388 0.0402 0.0415

α� BG
G  (−0.75) 1.0252 1.0292 1.0277 1.0268 1.0198 1.0294 1.0303 1.0281

0.0343 0.0369 0.0347 0.0318 0.0346 0.0332 0.0349 0.0341

α� BG
G  (0.75) 0.9866 0.9873 0.9851 0.9704 0.9853 0.9918 0.9934 0.9817

0.0334 0.0364 0.0341 0.0323 0.0345 0.0319 0.0339 0.0338

α� BL
G  (−0.75) 1.0555 1.0625 1.0609 1.07 1.0466 1.0592 1.0596 1.0655

0.0408 0.0444 0.0422 0.0428 0.0397 0.0397 0.0413 0.0429

α� BL
G  (0.75) 1.0104 1.0132 1.0115 1.006 1.0068 1.0148 1.0161 1.0101

0.0319 0.0343 0.0321 0.0296 0.0328 0.0307 0.0325 0.0312
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Table 6. AE and MSE of the estimators of α when α = 1 for n = 40, m = 10,20

n = 40, m = 10 n = 40, m = 10

C. S 9 C. S 10 C. S 11 C. S 12 C. S 13 C. S 14 C. S 15 C. S 16
α̂ MLE 1.0294 1.022 1.0244 1.021 1.0331 1.0244 1.0262 1.0377

0.0361 0.0335 0.0376 0.0613 0.0309 0.0301 0.0316 0.0444

α� BS
J 1.033 1.0282 1.0327 1.0488 1.0337 1.0266 1.0284 1.047

0.0365 0.0342 0.0388 0.0667 0.031 0.0304 0.0318 0.0459

α� BP
J 1.0474 1.0444 1.0493 1.0752 1.0468 1.0406 1.0422 1.0669

0.0387 0.0365 0.0413 0.0734 0.0328 0.0321 0.0336 0.0499

α� BG
J  (−0.75) 1.0293 1.0241 1.0285 1.0418 1.0304 1.023 1.0249 1.0419

0.0361 0.0337 0.0382 0.0652 0.0306 0.03 0.0314 0.0451

α� BG
J  (0.75) 1.0078 0.9999 1.0037 1.0002 1.011 1.0022 1.0044 1.0121

0.0338 0.0316 0.0356 0.0584 0.0287 0.0283 0.0296 0.041

α� BL
J  (−0.75) 1.0445 1.041 1.0459 1.0703 1.0441 1.0377 1.0394 1.0631

0.0391 0.0368 0.0418 0.075 0.0331 0.0324 0.0339 0.0506

α� BL
J  (0.75) 1.0213 1.0153 1.0194 1.0261 1.0232 1.0154 1.0174 1.0306

0.0343 0.032 0.0361 0.0592 0.0292 0.0286 0.03 0.0419

α� BS
G 1.0255 1.0211 1.0245 1.0304 1.0271 1.0206 1.0221 1.034

0.0272 0.0247 0.0278 0.0328 0.0239 0.0229 0.0242 0.0298

α� BP
G 1.0398 1.0371 1.0409 1.0559 1.0401 1.0345 1.0358 1.0536

0.029 0.0266 0.03 0.0403 0.0254 0.0244 0.0258 0.0329

α� BG
G  (−0.75) 1.0219 1.0171 1.0204 1.0239 1.0239 1.0171 1.0187 1.0291

0.0268 0.0244 0.0274 0.0307 0.0235 0.0226 0.0239 0.0292

α� BG
G  (0.75) 1.0011 0.9936 0.9964 0.9857 1.005 0.9968 0.9988 1.0008

0.0255 0.0233 0.026 0.0318 0.0224 0.0217 0.0229 0.0274

α� BL
G  (−0.75) 1.037 1.0338 1.0377 1.0514 1.0375 1.0316 1.033 1.05

0.0293 0.0269 0.0304 0.0411 0.0256 0.0246 0.026 0.0333

α� BL
G  (0.75) 1.0143 1.0085 1.0116 1.0099 1.0169 1.0097 1.0114 1.0185

0.0256 0.0231 0.026 0.0279 0.0225 0.0216 0.0229 0.0273
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Table 7. AE and MSE of the estimators of a when α = 1 for n = 80, m = 20,40

n = 80, m = 20 n = 80, m = 40

C. S 17 C. S 18 C. S 19 C. S 20 C. S 21 C. S 22 C. S 23 C. S 24
α̂ MLE 1.0135 1.008 1.0185 1.0188 1.0146 1.016 1.0095 1.0198

0.0145 0.0172 0.0171 0.0347 0.0131 0.0147 0.0139 0.0235

α� BS
J 1.0152 1.011 1.0224 1.0347 1.0149 1.017 1.0105 1.0243

0.0146 0.0174 0.0174 0.0366 0.0131 0.0147 0.014 0.0239

α� BP
J 1.0223 1.0191 1.0306 1.0504 1.0213 1.024 1.0173 1.0349

0.0151 0.0179 0.0181 0.0391 0.0135 0.0152 0.0143 0.025

α� BG
J  (−0.75) 1.0134 1.009 1.0204 1.0306 1.0133 1.0152 1.0088 1.0216

0.0145 0.0173 0.0173 0.0361 0.013 0.0146 0.0139 0.0237

α� BG
J  (0.75) 1.0028 0.997 1.0081 1.0064 1.0037 1.0048 0.9987 1.0057

0.014 0.0168 0.0165 0.0335 0.0126 0.0141 0.0135 0.0226

α� BL
J  (−0.75) 1.0207 1.0172 1.0288 1.0472 1.0199 1.0224 1.0158 1.0326

0.0151 0.018 0.0182 0.0395 0.0135 0.0153 0.0144 0.0252

α� BL
J  (0.75) 1.0097 1.0048 1.016 1.0218 1.0099 1.0116 1.0053 1.0159

0.0141 0.0168 0.0168 0.0341 0.0127 0.0143 0.0136 0.0228

α� BS
G 1.0136 1.0094 1.0201 1.0277 1.0135 1.0153 1.0093 1.0207

0.0129 0.015 0.0151 0.0265 0.0117 0.013 0.0124 0.0196

α� BP
G 1.0207 1.0174 1.0283 1.0433 1.0199 1.0223 1.0161 1.0313

0.0133 0.0155 0.0157 0.0287 0.0121 0.0135 0.0127 0.0206

α� BG
G  (−0.75) 1.0118 1.0074 1.0181 1.0237 1.0119 1.0136 1.0076 1.0181

0.0128 0.0149 0.0149 0.0261 0.0116 0.0129 0.0123 0.0194

α� BG
G  (0.75) 1.0013 0.9955 1.0059 1.0001 1.0023 1.0032 0.9975 1.0024

0.0124 0.0146 0.0143 0.0245 0.0113 0.0125 0.012 0.0186

α� BL
G  (−0.75) 1.0191 1.0156 1.0265 1.0402 1.0184 1.0207 1.0145 1.029

0.0133 0.0156 0.0158 0.029 0.0121 0.0135 0.0128 0.0207

α� BL
G  (0.75) 1.0081 1.0033 1.0138 1.0152 1.0085 1.0099 1.0041 1.0125

0.0125 0.0146 0.0145 0.0246 0.0113 0.0126 0.0121 0.0187
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Table 8. AE and MSE of the estimators of α when α = 2 for n = 20, m = 5,10

n = 20, m = 5 n = 20, m = 10

C. S 1 C. S 2 C. S 3 C. S 4 C. S 5 C. S 6 C. S 7 C. S 8
α̂ MLE 2.0939 2.1109 2.0921 2.0917 2.1119 2.0878 2.1072 2.1112

0.2727 0.3166 0.309 0.3974 0.2671 0.2847 0.2716 0.3361

α� BS
J 2.1097 2.1372 2.1228 2.1792 2.1146 2.0966 2.1169 2.1458

0.2798 0.3308 0.3247 0.4557 0.2684 0.2887 0.2762 0.356

α� BP
J 2.1684 2.2029 2.1877 2.2675 2.168 2.1533 2.1735 2.219

0.3112 0.3727 0.3643 0.531 0.2965 0.3182 0.3069 0.4069

α� BG
J  (−0.75) 2.0947 2.1203 2.106 2.1555 2.1011 2.0822 2.1025 2.1268

0.2729 0.3215 0.316 0.4383 0.2622 0.2823 0.2695 0.3447

α� BG
J  (0.75) 2.0078 2.0221 2.0084 2.0139 2.0232 1.9991 2.0193 2.0167

0.2426 0.2797 0.277 0.3608 0.2342 0.2539 0.2392 0.2947

α� BL
J  (−0.75) 2.2039 2.2434 2.2266 2.3175 2.2014 2.1878 2.2085 2.2637

0.359 0.4343 0.4239 0.6295 0.3395 0.366 0.3528 0.4801

α� BL
J  (0.75) 2.013 2.0265 2.0137 2.0191 2.0274 2.0041 2.0238 2.021

0.2209 0.252 0.2485 0.3101 0.2156 0.2314 0.2193 0.262

α� BS
G 2.0569 2.0681 2.0593 2.0719 2.0643 2.0457 2.0637 2.0638

0.1351 0.1444 0.1387 0.1365 0.1399 0.14 0.1398 0.1373

α� BP
G 2.1123 2.1293 2.1195 2.1499 2.1148 2.0986 2.1175 2.1305

0.1525 0.1665 0.1588 0.1728 0.1556 0.1543 0.158 0.1617

α� BG
G  (−0.75) 2.0432 2.0529 2.0443 2.0521 2.0518 2.0326 2.0504 2.0472

0.1325 0.1411 0.1358 0.1314 0.1374 0.138 0.137 0.1339

α� BG
G  (0.75) 1.966 1.9682 1.9596 1.9395 1.9822 1.9589 1.9763 1.9551

0.1306 0.1387 0.1355 0.1322 0.1338 0.1386 0.133 0.1343

α� BL
G  (−0.75) 2.1503 2.1737 2.1615 2.2105 2.1485 2.1339 2.1552 2.1797

0.1889 0.213 0.2023 0.2465 0.1867 0.1864 0.1948 0.2131

α� BL
G  (0.75) 1.9754 1.9784 1.9708 1.9563 1.99 1.9685 1.9847 1.9668

0.1204 0.1267 0.1238 0.1155 0.1249 0.1291 0.1225 0.1214



Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 9-26, March, 202222

Table 9. AE and MSE of the estimators of α when α = 2 for n = 40, m = 10,20

n = 40, m = 10 n = 40, m = 20

C. S 9 C. S 10 C. S 11 C. S 12 C. S 13 C. S 14 C. S 15 C. S 16
α̂ MLE 2.0409 2.0565 2.0192 2.0503 2.051 2.0503 2.0581 2.0547

0.1332 0.1321 0.146 0.2303 0.1164 0.1302 0.1219 0.1653

α� BS
J 2.0479 2.0691 2.0357 2.106 2.0522 2.0546 2.0625 2.073

0.1347 0.1353 0.1494 0.2522 0.1167 0.1312 0.1229 0.1706

α� BP
J 2.0766 2.1017 2.0682 2.1589 2.0782 2.0827 2.0902 2.1122

0.142 0.145 0.1576 0.2793 0.123 0.1386 0.1304 0.1841

α� BG
J  (−0.75) 2.0407 2.0609 2.0274 2.0921 2.0456 2.0475 2.0555 2.063

0.1332 0.1332 0.1477 0.2461 0.1153 0.1296 0.1213 0.1677

α� BG
J  (0.75) 1.9981 2.0122 1.9784 2.0088 2.0071 2.0058 2.0144 2.0041

0.1261 0.1236 0.1403 0.2183 0.1091 0.1222 0.1137 0.1547

α� BL
J  (−0.75) 2.0925 2.1199 2.0858 2.1881 2.0929 2.0985 2.1059 2.1342

0.1529 0.1579 0.1704 0.3157 0.1319 0.1492 0.1405 0.2032

α� BL
J  (0.75) 2.0028 2.0173 1.9842 2.0159 2.0114 2.0104 2.0188 2.01

0.1209 0.1181 0.1337 0.1999 0.1051 0.1173 0.1094 0.1458

α� BS
G 2.0358 2.0534 2.0235 2.0687 2.041 2.0418 2.0495 2.0518

0.1011 0.098 0.1086 0.1346 0.0901 0.0986 0.0934 0.1124

α� BP
G 2.0641 2.0857 2.0556 2.1201 2.0668 2.0696 2.077 2.0904

0.1072 0.1062 0.1156 0.1546 0.0955 0.1048 0.0998 0.1231

α� BG
G  (−0.75) 2.0287 2.0453 2.0154 2.0556 2.0346 2.0349 2.0427 2.0421

0.1 0.0964 0.1073 0.131 0.0891 0.0975 0.0922 0.1104

α� BG
G  (0.75) 1.9872 1.9981 1.9678 1.9788 1.997 1.9943 2.0026 1.9858

0.0962 0.091 0.104 0.1226 0.0854 0.0934 0.0876 0.1051

α� BL
G  (−0.75) 2.0805 2.1046 2.0739 2.1527 2.0818 2.0859 2.0931 2.1136

0.1173 0.1182 0.1275 0.1876 0.1037 0.1147 0.1092 0.1406

α� BL
G  (0.75) 1.9924 2.0037 1.9742 1.9886 2.0016 1.9993 2.0074 1.9927

0.0921 0.0866 0.0986 0.1125 0.0821 0.0895 0.084 0.0987
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Table 10. AE and MSE of the estimators of α when α = 2 for n = 80, m = 20,40

n = 80, m = 20 n = 80, m = 40

C. S 17 C. S 18 C. S 19 C. S 20 C. S 21 C. S 22 C. S 23 C. S 24
α̂ MLE 2.0199 2.0254 2.0399 2.0419 2.0211 2.028 2.0369 2.0254

0.0596 0.0711 0.0703 0.1382 0.0521 0.0611 0.0569 0.0892

α� BS
J 2.0232 2.0316 2.0478 2.0738 2.0216 2.0301 2.039 2.0344

0.0599 0.0718 0.0715 0.1465 0.0521 0.0614 0.0571 0.0905

α� BP
J 2.0374 2.0477 2.0642 2.1056 2.0344 2.044 2.0527 2.0554

0.0616 0.0743 0.0745 0.1567 0.0535 0.0632 0.0591 0.0942

α� BG
J  (−0.75) 2.0196 2.0275 2.0437 2.0656 2.0184 2.0266 2.0355 2.0292

0.0596 0.0713 0.0709 0.1442 0.0518 0.061 0.0567 0.0897

α� BG
J  (0.75) 1.9985 2.0033 2.019 2.0166 1.9992 2.0058 2.0151 1.9978

0.0579 0.0689 0.0677 0.1334 0.0505 0.059 0.0545 0.0861

α� BL
J  (−0.75) 2.0449 2.0563 2.0731 2.123 2.0412 2.0515 2.0601 2.0666

0.064 0.0775 0.078 0.17 0.0554 0.0657 0.0615 0.0995

α� BL
J  (0.75) 2.0015 2.0066 2.0222 2.022 2.0019 2.0086 2.0178 2.0019

0.0568 0.0675 0.0663 0.1274 0.0496 0.058 0.0536 0.0836

α� BS
G 2.0204 2.0277 2.043 2.0592 2.0192 2.0268 2.0355 2.0285

0.0528 0.0623 0.0617 0.1061 0.0465 0.0541 0.0506 0.0745

α� BP
G 2.0345 2.0438 2.0594 2.0908 2.032 2.0408 2.0492 2.0494

0.0544 0.0646 0.0641 0.1153 0.0478 0.0559 0.0521 0.0779

α� BG
G  (−0.75) 2.0169 2.0236 2.0388 2.0512 2.016 2.0234 2.032 2.0233

0.0525 0.0618 0.0612 0.1043 0.0462 0.0537 0.0502 0.0738

α� BG
G  (0.75) 1.9958 1.9996 2.0144 2.0035 1.9969 2.0027 2.0117 1.9923

0.0512 0.0599 0.0585 0.0976 0.0452 0.0522 0.0484 0.0713

α� BL
G  (−0.75) 2.0421 2.0525 2.0684 2.1091 2.0388 2.0483 2.0566 2.0608

0.0567 0.0677 0.0669 0.128 0.0496 0.0582 0.0538 0.083

α� BL
G  (0.75) 1.9988 2.0029 2.0176 2.0094 1.9997 2.0056 2.0145 1.9965

0.0502 0.0586 0.0573 0.0929 0.0444 0.0512 0.0475 0.0691

Table 11. Progressively type-II censored samples

n m Scheme Censoring Scheme Censored Data
23 11 1 ( 0*5,12) 0.0060  0.0080  0.0110  0.0140  0.0210  0.0290  0.0360  0.0480  0.0590  0.0700  

0.0920
23 11 2 (0*8,8, 0*8) 0.0060  0.0080  0.0110  0.0140  0.0210  0.0290  0.7170  0.7590  0.8090  0.8530  

0.8660
23 11 3 (1*5,2, 1*5) 0.0060  0.0110  0.0210  0.0360  0.0590  0.0920 0.2130  0.4030  0.5440  0.7590  

0.8530
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Table 12. Results for a real data set

Methods Complete Scheme 1 Scheme 2 Scheme 3
α̂ MLE 0.5890 0.5511 0.6724 0.8709

α� BS L
J

,
0.5890 0.5520 0.6768 0.8748

α� BP L
J

,
0.6016 0.5643 0.6933 0.8959

α� BG L
J

,  (-0.75) 0.5858 0.5489 0.6725 0.8694

α� BG L
J

,  (0.75) 0.5673 0.5309 0.6480 0.8383

α� BL L
J

,  (-0.75) 0.5946 0.5572 0.6852 0.8887

α� BL L
J

,  (0.75) 0.5833 0.5469 0.6682 0.8608

%95 Asymptotic Intervals (0.3514, 0.8372) (0.3214, 0.7807) (0.3769, 0.9678) (0.4920, 1.2498)
%95 Credible Intervals (0.3768, 0.8550) (0.2373, 0.6899) (0.3570, 0.8384) (0.3708, 0.9903)

Some of the points are quite clear from Tables 2–10. For 
instance, for fixed effective sample size m as the sample size 
n increases MSEs of all estimates decrease. Similarly for 
fixed n as m increases MSEs decrease. Therefore, it can be 
deduced that the MLE and the proposed Bayes estimators 
are consistent. Moreover, as expected, the Bayes estimates 
based on the informative gamma prior perform better than 
those based on the non-informative Jeffrey’s prior in terms 
of MSE. 

On the other hand, in comparison of the MLE and the 
Bayesian estimators, for fixed sample size n and for any 
censoring scheme the proposed Bayes estimators obtained 
using Lindley’s approximation of α under the gamma prior, 
except PLF, exhibit the best performance in terms of AE 
and MSE. Among the Bayes estimates under the gamma 
prior, α� BL

G
 for loss parameter c = 0.75 has the smallest MSE 

values, followed by α� BG
G

 with c = 0.75 for most of the cases 
considered, or vice versa. On the other hand, in case of the 
non-informative Jeffrey’s prior, the approximate Bayes esti-
mates obtained using Lindley’s method of a under LINEX 
and GELF (α� BL

J
 and α� BG

J
) with c = 0.75 perform better than 

the MLE in most cases. 
It should also be noted that the proposed Bayes estima-

tors outperform the MLE, especially for small sample sizes. 
This result will be quite attractive to researchers in the life-
time analysis.

In addition, from Table 2–10, it can be observed that 
for fixed n and m, the MSEs of the considered estimators 
for the usual type-II censoring scheme are usually less than 
that of any other censoring schemes. 

APPLICATION TO A REAL DATA SET

In this section, a real data set is investigated to verify 
the applicability of the proposed estimators. The dataset 
taken from Mazumdar and Gaver [36] represents the 

numerical values of the capacity factors for different units 
within the system. The dataset with 23 observations is as 
follows: 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 
0.403, 0.344, 0.213, 0.116, 0.116, 0.092, 0.070, 0.059, 
0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, and 0.006. 
This dataset was also studied by Arora et al. [12] under the 
type- 2 censoring scheme. They confirmed that the data-
set follows the TL distribution using the Kolmogorov–
Smirnov test. 

We consider three different censoring schemes to gen-
erate the progressive type-II censored samples from the 
data, which is give in Table 11.

For the real dataset, the non-informative Jeffrey’s prior 
is used for the shape parameter a. The MLE, the proposed 
Bayes estimates and the corresponding confidence intervals 
for a under the complete and progressive type-II censored 
samples are obtained and summarized in the following 
table.

It can be observed from Table 12 that all the Bayes esti-
mates of the shape parameter a are nearly the same. Another 
point worth mentioning is the fact that the estimates for a 
based on progressively type-II censored sample according 
to Scheme 1 are close to that of the complete sample. The 
corresponding confidence intervals for the parameter are 
satisfactory in all the cases. The HPD credible intervals per-
form better than asymptotic confidence intervals in terms 
of interval lengths.

CONCLUSIONS 

In this study, we consider the problem of Bayesian 
estimation for the shape parameter of the Topp-Leone 
(TL) distribution based on progressively type-II censored 
data. The Bayes estimators are derived by using a non-
informative (Jeffrey’s) prior and an informative (gamma) 
prior under both the symmetric (Squared Error) and 
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asymmetric (LINEX, General Entropy and Precautionary) 
loss functions. The proposed Bayes estimators cannot be 
obtained in closed-forms and, for this reason, Lindley’s 
approximation method is used to compute the estimates. 
Furthermore, the maximum likelihood estimator (MLE) 
is obtained to estimate the shape parameter of the TL 
distribution. 

The performances of the proposed Bayes estimators are 
compared with the corresponding MLE through an exten-
sive simulation study. From the results, it is observed that 
for all of the cases, the Bayes estimates under the informa-
tive prior are better than the MLE and the Bayes estimates 
under non-informative prior in terms of the MSE and AE. 
In addition, the Bayes estimates under the LINEX or the 
general entropy loss functions with the loss parameter c = 
0.75 have the smallest MSE. Therefore, it can be said that 
the LINEX and the general entropy loss functions are bet-
ter than other loss functions. It should also be emphasized 
that the proposed Bayes estimators outperform the MLE, 
especially for small sample sizes.

Consequently, the Bayes estimators under LINEX and 
general entropy loss functions can be suggested for estimat-
ing the shape parameter of the Topp-Leone distribution 
based on progressively type-II censoring sample.
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