

International Journal of

Intelligent Systems and

Applications in Engineering

Advanced Technology and Science

ISSN:2147-67992147-6799 www.atscience.org/IJISAE Original Research Paper

This journal is © ICAT 2016 IJISAE, 2016, 4(Special Issue), 67–72 | 67

Only One Neuron either N-bit Parity Rule Based Modified Translated

Multiplicative or McCulloch-Pitts Models for Some Machine Learning

Problems

Ali Özdemir 1, Melih İnal *2

Accepted 3rd September 2016OI:

Abstract: In this study, solutions to machine learning problems such as Monk’s 2 (M2), Balloon and Tic-Tac-Toe problems employing a

single neuron dependent on rules which use either modified translated multiplicative (πm) neuron or McCulloch-Pitts neuron model is

proposed. Since M2 problem is similar to N-bit parity problem, translated multiplicative (πt) neuron model is modified for M2 problem.

Also, McCulloch-Pitts neuron model is used to increase classification performance. Then either πm or McCulloch-Pitts neuron model is

applied to Balloon and Tic-Tac-Toe problems. When the result of proposed only one πm neuron model that is not required any training

stage and hidden layer is compared with the other approaches, it shows satisfactory performance.

Keywords: Machine learning; Modified translated multiplicative neuron model; Monk’s and Balloon problems; N-bit parity problem;

Translated multiplicative neuron model.

1. Introduction

Translated multiplicative neuron (πt- neuron) is primarily used to

the N-bit parity problem. N-bit parity problem is an approach to

test neural network architectures and learning algorithms. The N-

bit parity problem is considered as a very hard problem to be

solved by neural networks, because a single ‘flip’ of a bit in the

input string requires a complementary classification. The N-bit

parity problem is a generalization of the ‘eXclusive-OR’ (XOR)

problem. N-bit parity problem can be explained as follows. Let x

= [x1,…,xN]T is N-bit binary vector and xi  {0,1} (i = 1, …, N).

The parity generator function which is stated as shown in Eq.1,

can be determined the parity as follows:













otherwise. ,1

even is if ,0
)(

N

1i

ix
xp (1)

There are many neural network architectures applied in N-bit

parity problem [1-8]. (Kim et al. 2005) proposed a method of

improving the learning time and convergence rate to exploit the

advantages of ANN and fuzzy theory to neuron structure. Their

method is applied to the XOR and N-bit parity problems. But,

(Iyoda et al. 2003) make a comparison between neural

architectures for the N-bit parity problem. The comparison result

shows that πt neuron model is not required any hidden neurons

and learning algorithm. πt neuron model is called translated

multiplicative neuron model. It uses threshold activation function.

Since πt neuron model stems from multiplicative neuron model,

then several multiplicative neurons which have been proposed [9,

10, 11] can be examined to comprehend πt neuron model. The

model is defined as follows:

v = b



N

i

ii tx
1

)(y=fth(v) (2)

 where, b  R and ti  R (i = 1,…,N) which are the neuron’s

adjustable parameters, are bias and weights, respectively. The

neuron’s output is defined as y.

The threshold activation function fth: R  {0, 1} is defined as

follows:










0 v0,

0 v1,
f th (3)

In fact, t- neuron model which is shown in Figure 1 is inspired

from McCulloch-Pitts. McCulloch-Pitts neuron model is given by

the following equation:

vm = w0 + 


N

i

iiwx
1

. y=fth(vm) (4)

where, w0 is bias and wi are the weights.

Comparing Eq. 4 with Eq. 2, w0 is equivalent to b and wi are

equivalent to ti parameters. The parameters of multiplicative πt

neuron, which uses threshold activation function, are defined as:

0 < ti < 1 (i = 1,…,N);

If N is even then b < 0, If N is odd then b > 0.

If the same activation function is used in the Eq.2 and Eq.4, the

mathematical procedure’s complexity is equivalent of these two

models. Table 1 and Table 2 show the solutions of 2-bit XOR

1 Kocaeli University, Graduate School of Natural and Applied Sciences,

Electronics and Computer Department, 41380 Kocaeli, Turkey

 2 Kocaeli University, Informatics Department, Umuttepe Campus, 41380

Kocaeli, Turkey

* Corresponding Author: Email: minal@kocaeli.edu.tr

Note: This paper has been presented at the 3rd International Conference

on Advanced Technology & Sciences (ICAT'16) held in Konya (Turkey),

September 01-03, 2016.

mailto:minal@kocaeli.edu.tr

 IJISAE, 2016, 4(Special Issue), 67–72 This journal is © Advanced Technology & Science 2013

parity problem and 10x10-bit parity problem’s. b and ti ([t1, ...

,tN]) are selected as constants: -24 and 0.8, respectively. (Iyoda

et al. 2003) proved that the translated multiplicative πt neuron

model can solve the N-bit parity problem for  N ≥ 1.

Figure 1. Translated multiplicative neuron model

An N-bit Parity problem can easily be solved by only one πt

neuron using threshold activation function and also parameters

defined in certain intervals. This approach has the lowest process

complexity, which is presented between neural network solutions

so far [1]. Therefore, modified translated multiplicative (πm)

neuron or McCulloch-Pitts neuron model, is proposed for

solution of Monk’s M2 problem which has a nonlinear

relationship similar to XOR problem. In Eq. 2 and Eq. 4, all

biases and weights are chosen as constants with their optimum

values. Since, they are chosen as constants; there is no need any

learning stage for the both networks. The main contribution of the

study that it presents modified translated multiplicative neuron

model to solve Monk´s M2 problem by expressing it as an N-bit

parity problem.

In the following section, Monk’s problem is presented. Previous

studies in Monk’s problem are given in Section 3. The πm neuron

model and results obtained from the application of either one πm

neuron model or one McCulloch-Pitts neuron model to Monk’s

M2 problem are given in Section 4. The other results of the

machine learning problems are given are given in Section 5-7.

2. Description of Monk’s Problem

An artificial robot named as Monk’s problem has six attributes

that is defined by [12]:

x1: head_shape  round, square, octagon

x2: body_shape  round, square, octagon

x3: is_smiling  yes, no

x4: holding  sword, balloon, flag

x5: jacket_color  red, yellow, green, blue

x6: has_tie  yes, no

The Monk’s Problem is classified as M1, M2 and M3

problems according to above attributes. These three

problems are defined by:

Problem M1: If head shape and body shape have same value or

jacket color is red, this problem belongs to M1 (head shape =

body shape or jacket color = red).

Problem M2: If exactly two of six attributes of robot have their

first value, this problem belongs to M2.

Problem M3: If jacket_color is green and holding is sword or

jacket_color isn’t blue and body_shape isn’t octagon, it belongs

to M3 ((jacket_color = green and holding = sword) or

(jacket_color ≠ blue and body_shape ≠ octagon)).

Data which are taken from 6 different places of the artificial robot

must be rearranged to simulate to the parity rule. The

arrangement is done by the following statements:

x1: head_shape  1,2,3 (0000, 0001, 0010)

x2: body_shape  1,2,3 (0000, 0001, 0010)

x3: is_smiling  1,2 (0000, 0001)

x4: holding  1,2,3 (0000, 0001, 0010)

x5: jacket_color  1,2,3,4 (0000, 0001, 0010, 0011)

x6: has_tie  1,2 (0000, 0001)

As it is seen above, decimal values are given to attributes for each

point of the robot. These decimal values are converted to 4 bit

binary number system. To adjust the data according to N-bit

parity rule, each decimal value is decreased for one, and then the

decreased decimal number is converted to its binary value.

3. Other Studies Related With Monk’s Problem

(Thurn et al., 1991) summarize the comparison of different

learning techniques in a report which was performed at the 2nd

European Summer School on Machine Learning, held in

Belgium. A variety of symbolic and non-symbolic learning

techniques are compared on Monk’s problems. In Table 3, only

the comparison results of Monk’s M2 problem with this study are

given. One significant characteristic of this comparison is that it

was performed by a collection of researchers, each of whom was

an advocate of the technique they tested. Here some algorithms

that have recognition rate more than this study are explained in

this section. Since Thrun et al. give brief description about their

studies [12], special properties of the algorithms e.g. rules that are

used in their algorithms or other things which are based on neural

networks will reemphasize in the following:

AQ17 Algorithms. AQ17-DCI algorithm is based on AQ

Table 1. Solution of 2–bit XOR Parity Problem

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

Table 2. Solution of 10x10-bit Parity Problem

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

0 0 0 0 0 1 1 1 0 0 1

1 0 0 0 1 0 1 1 0 1 1

1 0 1 0 0 1 0 1 0 1 1

0 1 1 0 0 0 0 0 1 1 0

1 0 1 1 1 0 0 1 1 0 0

0 0 1 1 1 0 0 1 1 1 0

1 1 1 0 0 1 0 0 1 0 1

0 0 0 0 1 0 0 0 1 1 1

1 1 0 1 1 0 1 1 0 0 0

1 1 1 1 0 0 0 1 1 0 0

IJISAE, 2016, 4(Special Issue), 67–72 |

learning programs. Here is a brief description of the AQ

algorithm:

1. Select a seed example from the set of training examples for a

given decision class.

2. Using the extend against operator, generate a set of alternative

most general rules (a star) that cover the seed example, but do not

cover any negative examples of the class.

3. Select the “best" rule from the star according to a multi-criteria

rule quality function (called LEF – the Lexicographical

Evaluation Function), and remove the examples covered by this

rule from the set of positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step

2. Otherwise, if another decision class still requires rules to be

learned, return to step 1, and perform it for the other decision

class.

AQ17-DCI uses 2 rules for Class 0 and 1 rule for Class1.

Backpropagation and Backpropagation with weight decay.

There were 17 input units, all having either value 0 or 1

corresponding to which attribute-value was set. All input units

had a connection to 2 hidden units, which itself were fully

connected to the output unit. An input was classified as class

member if the output, which is naturally restricted to (0; 1), was 

0.5. Training took between ten and thirty seconds on a SUN

Sparc Station. On a parallel computer, namely the Connection

Machine CM-2, training time was further reduced to less than 5

seconds for each problem. The following results are obtained by

the plain, unmodified backpropagation algorithm. After 90

training epochs, the system performance was reached to 100%

accuracy. Weight decay widely used technique often prevents

backpropagation nets from overfitting the training data and thus

improves the generalization. With weight decay α=0.01 Thrun

improved the classification accuracy on this third set for M3

problem significantly and, moreover, the concept learned was the

same for all architectures he tested (i,e, 2, 3, or 4 hidden units).

The Cascade Correlation Algorithm. Cascade Correlation is a

supervised neural network learning architecture that builds a

near-minimal multi-layer network topology in the course of

training. Initially the network contains only inputs, output units,

and the connections between them. This single layer of

connections is trained (using the Quickprop algorithm) to

minimize the error. When no further improvement is seen in the

level of error, the network's performance is evaluated. If the error

is small enough, training stage stops. Otherwise a new hidden

unit is added to the network in an attempt to reduce the residual

error. The result of the Cascade Correlation algorithm for M2

problem: After 82 epochs, 1 hidden unit: 0 Errors on training set

and 0 Errors on test set. Elapsed real time: 7.75 seconds.

4. Modified Translated Multiplicative (πm) Neuron
Model

Only M2 problem is similar to parity problem among these three

Monk’s problems. So, πm neuron model that is formed by the

algorithm of πt is applied to M2 problem. When πm neuron model

is used stand alone, no good classification performance is

obtained. Therefore, πm or McCulloch-Pitts neuron models

alternatively are used according to the rules.

 Data matrix that has size of 169x7 is obtained from ftp server of

University of California, Irvine [13]. According to robot’s

attributes, 64 of the data produced the output 1 while the rest

produced output 0. The first experiment is done for examining the

πt neuron model using 169 data matrix. The b and ti parameters of

πt neuron model are chosen -1 and 0.5, respectively (b=-1, t1,...,tN

= 0.5, where N=24). Since the robot has 6 attributes and each of

them is represented by 4-bit binary number, the model has 24

inputs. For the first classification, 105 of the data have been

correctly classified with 62.130% success. While 115 out of 169

data are already 0, the 62.130% system performance is not

satisfying for the classification given above. If all the outputs of

the model are assumed to be 0, anyway 68.047% performance is

obtained.

The input data are examined to get a better solution than above.

When any of x1, x2, x4, and x5 has the value “3” in decimal

number system, it is observed that πt neuron model is not good in

classifying according to N-bit parity rule. So, some changes in

algorithm are made by adding rules to multiplicative πt neuron

model. This neuron model is named as modified translated

multiplicative (πm) neuron model. Here, b parameter in πm neuron

model is chosen different from πt that is used for N-bit parity

problem.

The following rules and threshold activation function given in

Eq.3 are used for both πm and McCulloch-Pitts neuron models:

Rule 1: IF (x1=3 or x2=3 or x4=3 or x5=3) THEN b=2 use Eq.2

ELSE b=-2 use Eq.4

If only Rule 1 is used, the 125 of 169 data are correctly classified.

The system performance is 73.964%.

Table 3. The performance sorting for Monk’s M2 problem of different

 methods

Perfor

mance

Sequence

Method and Reference

System

Perfor

mance

(%)

1 AQ17-DCI / Bala et al. 100.00

2 Backpropagation / Thrun 100.00

3 Backpropagation with weight decay / Thrun 100.00

4 Cascade Correlation / Fahlman 100.00

5 m & McC.-P. neuron models / our study 96.45

6 AQ17-HCI / Bala et al. 93.10

7 AQ17-FCLS / Bala et al. 92.60

8 AQ15-GA / Bala et al. 86.80

9 Assistant Professional /Cestnik et al. 81.30

10 AQR / Kreuziger et al. 79.70

11 Prism / Keller 72.70

12 Ecobweb l.p. & information utility / Van de Welde 71.30

13 Mfoil / Dzeroski 69.20

14 ID5R / Kreuziger et al. 69.20

15 ID3, no windowing / Kreuziger et al. 69.10

16 CN2 / Kreuziger et al. 69.00

17 ID3 / Kreuziger et al. 67.90

18 Ecobweb leaf prediction / Reich et al. 67.40

19 TDIDT / Van de Welde 66.70

20 IDL / Van de Welde 66.20

21 ID5R-hat / Van de Welde 65.70

22 Classweb 0.10 / Kreuziger et al. 64.80

23 ID5R / Van de Welde 61.80

24 Classweb 0.15 / Kreuziger et al. 61.60

25 Classweb 0.20 / Kreuziger et al. 57.20

 IJISAE, 2016, 4(Special Issue), 67–72 This journal is © Advanced Technology & Science 2013

Rule 2: IF x5=4 THEN b=-2 use Eq.2

If Rule 1 and Rule 2 are used together, 143 of 169 data are

correctly classified. The system performance is 84.615%.

Rule 3: IF x5=4 and ((x1 = x2 = x3 = 1 and x4 ≠ 1) or (x1=3 and

x2 ≠1 and x3 ≠1 and x4 ≠1 and x6 ≠ 1) or (x1=2, 3 and x2 =2, 3

and x3 =2, 3 and x4 =2, 3 and x6=2)) THEN b=2 use Eq.2 ELSE

b=-2 use Eq.2

If Rule 1, Rule 2 and Rule 3 are used together, 149 of 169 data

are correctly classified. The system performance is 88.166%.

Rule 4: IF (x1=3 or x2=3 or x4=3 or x5=3) and ((x1= x2= x3 =

x6 =1) or (x1=3 and x2 = 2,3 and x3 = 2,3 and x4 = 2,3 and x5 =

2,3 and x6=2) or (x1 = 2,3 and x2 ≠ 2 and x3 ≠ 2 and x4 = x5 =

x6 =1) or (x1 = 2 and x2 = 3 and x3 = 2 and x4 ≠1 and x6 ≠ 1) or

(x1 ≠ 3 and x2 ≠ 2 and x3 = 1 and x4 = 1 and x6 ≠ 2) or (x1 = 3

and x2 = x5 = x6 = 1)) THEN b=-2 use Eq.2 ELSE b=2 use Eq.2

If Rule 1, Rule 2, Rule 3 and Rule 4 are used together, 154 of 169

data are correctly classified. The system performance is 91.124%.

Rule 5: IF (x1≠3 or x2≠3 or x4 ≠3 or x5≠3) THEN b=-2 use

Eq.4

If Rule 1, Rule 2, Rule 3, Rule 4 and Rule 5 are used together,

163 of 169 data are correctly classified. The system performance

is 96.45%. In the all rules, weights of the neuron models are

chosen as 0.5.

A study is carried out to examine the performance of πm neuron

model parameters b and ti as shown in Table 4. To get the best

performance, the parameters b and ti are to be chosen in M2

problem as follows:

• b: ± 1 and ti: 0.3

• b: ± 2 and ti: [0.5-0.6]

• b: ± 3 and ti: [0.8-0.9]

In addition to performance sequence of previous studies on

Monk’s problem, m and McCulloch-Pitts neuron models

proposed in this study are given in Table 3. The results obtained

in this paper have higher performance when compared to the

some of the studies given in Table 3. Studies supplying 100%

performance for M2 problem are already well known. This paper

proposes a new approach which is called m neuron model.

Moreover, 6 individual rules can be defined for the remaining 6

data, which are not correctly classified to make system

performance 100%.

5. Results of the Proposed Model for Balloon
Problem

The application of either πm or McCulloch-Pitts neuron model to

Balloon problem and results are presented in this section. The

data sets of Balloon problems are given in Table 5.

Table 5. The Data Sets of Balloon Problems

DATA A DATA B DATA C DATA D

1

1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1

1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1

1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1

1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1

1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1

0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1

0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0

When the following individual rules are defined for data sets of

Balloon, the classification performance of the proposed model is

100% for each data set. As indicated in the following rules, there

is no need to implement McCulloch-Pitts neuron model except

for Data Set D.

Rule for Data Set A: IF x3=0 or x4=0 THEN b=-2 use Eq.2

ELSE b=2 use Eq.2

Rule for Data Set B: IF x3=0 and x4=0 THEN b=-2 use Eq.2

ELSE b=2 use Eq.2.

Rule for Data Set C: IF x1=0 and x2=0 THEN b=-2 use Eq.2

ELSE b=2 use Eq.2.

Rules for Data Set D:

Rule 1: IF ((x1=1 and x2=1) or (x3=1 and x4=1)) and ((x1=1

and x2=0) or (x1=0 and x2=1) or (x3=1 and x4=0 or x3=0 and

Table 4. Performances due to different b and ti values

b ti
Perfor

mance (%)
b ti

Perfor

mance (%)

± 1

0.1 94.675

± 4

0.1 94.675

0.2 94.083 0.2 94.675

0.3 96.450 0.3 94.675

0.4 93.491 0.4 94.675

0.5 89.941 0.5 94.675

0.6 89.941 0.6 94.675

0.7 89.941 0.7 94.083

0.8 89.941 0.8 94.083

0.9 89.941 0.9 93.491

± 2

0.1 94.675

± 5

0.1 94.675

0.2 94.675 0.2 94.675

0.3 94.675 0.3 94.675

0.4 94.083 0.4 94.675

0.5 96.450 0.5 94.675

0.6 96.450 0.6 94.675

0.7 93.491 0.7 94.675

0.8 93.491 0.8 94.675

0.9 93.491 0.9 94.083

± 3

0.1 94.675

± 6

0.1 94.675

0.2 94.675 0.2 94.675

0.3 94.675 0.3 94.675

0.4 94.675 0.4 94.675

0.5 94.083 0.5 94.675

0.6 93.491 0.6 94.675

0.7 93.491 0.7 94.675

0.8 96.450 0.8 94.675

0.9 96.450 0.9 94.675

IJISAE, 2016, 4(Special Issue), 67–72 |

x4=1)) THEN use b=-2 Eq.2 ELSE b=2 use Eq.2

Rule 2: IF (x1≠1 and x2≠1) or (x3≠1 and x4≠1) THEN use b=-2

Eq.4.

A study, which is implemented for Data Set D, is carried out to

examine the performance of m neuron model parameters b and ti.

To get the 100% performance, the parameters b and ti are to be

chosen for Data Set D as follows:

b: ± 1 and ti: [0.3-0.4] or b: ± 2 and ti: [0.1-0.9]

When we compare the result which are performed for Balloon

problems, of (Solorio et. al., 2002) introduce an algorithm called

Ordered Classification (OC) with our proposed model, while OC

has 0.27938, ours has 0.0 classification error.

6. Application of m to Tic-Tac-Toe Problem

Tic-Tac-Toe is formed data which is taken from a game. The

game, made from nine squares, is defined by (Pilgrim, 1995).

Every one of these squares takes symbol of ‘x’, ‘o’, ‘b’. ‘x’ and

‘o’ show the first and second player, respectively. The symbol ‘b’

shows the space squares in the game.

x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 2. Tic-Tac-Toe game

Each player individually marks their symbol in any square for

writing respectively own letter in any square in Figure 2.

If any player signs with his/her letter with 3 successive places, the

player wins. These successive places can be in column, row or

diagonal. There are 958 data in this database [14, 15]. But the

winner is determined according to first player in this data. Winner

is described with positive, loser is described with negative. 626 of

958 databases are positive, it means that ‘x’ is won, 332 are

negative and it means that ‘x’ is lost.

‘x’ value is selected 1; o and b are selected 0 so that this data

translated to binary. In this way, it simulated to N-bit parity

problem. If first player wins, result of related data groups is 1,

otherwise 0: (x10: positive, negative (1, 0)).

This data matrix of tic-tac-toe is applied to πt neuron model. The

658 of 958 data is correct classified and the system performance

is 63.466% (b<0, ti=0.5). Then, πm neuron model is used for this

database and the above rule is written. The 942 of 958 data is

correct classified, the system performance is 98.330%.

Rule: If space number=2 or 3 Then b <0 use Eq. 2 Else b>0 use

Eq. 2 (b=±2, ti=0.5).

Performance’s row of the other algorithm which solve this

problem and algorithm used in this study is shown in Table 6.

The best algorithm is Newboole and second is IB3-CI (Instance

Based 3-Constructive Induction). In 1991, Pierre Boneli and

Alexander Parodi originated Stewart W. Wilson’s Boole

classification system and developed Newboole. This

classification system is based on genetic and it uses supervised

learning as learning algorithm [14, 15]. In 1991, Aha developed

ib3-ci (1991) algorithm. It is another construction algorithm that

generates Boolean features based on the conjunction operator.

Tic-tac-toe is a simple game often used as a programming

assignment for computer-science students or as an in-class

example of how to develop software [17-20]. Every tic-tac-toe

program should include a way of representing the board and

evaluating the board for a win. Often, this evaluation is done by

checking all eight possibilities (on the traditional 3x3 tic-tac-toe

board).

7. Conclusion

Modified translated multiplicative neuron which is inspired by

the architecture of translated multiplicative neuron that is an

effective ANN model in solving N-bit parity problem and

McCulloch-Pitts neuron models are applied to Monk’s M2 and

Balloon problems. The 100% classification performances of

studies given in Table 3 utilize hidden layer in ANN architecture

such as the Backpropagation and Cascade Correlation models.

The proposed model consists of only one neuron. While AQ17-

DCI algorithm uses 3 rules for obtaining 100% system

performance, the proposed model uses 5 rules with 96.45%

performance. Six additional rules can be individually defined for

the remaining 6 data, which are not correctly classified for

accomplishing 100% performance. Also the comparison with OC

algorithm shows that the proposed neuron model πm can be an

alternative model. Once the weights and bias and also proper

rule(s) are optimally selected, the proposed model can be

classified any desired data without learning stage. The

evaluations of πm model give satisfy result for the three machine

learning datasets such as Monk’s M2, Balloon and Tic-tac-toe.

References

[1] Iyoda, E. M., Nobuhara, H. and Hirota, K.: A Solution for

the N-bit Parity Problem Using a Single Translated

Multiplicative Neuron, Neural Processing Letters, vol.18,

pp. 213-218, 2003.

[2] Arslanov, M.Z., Ashigaliev, D.U. and Ismail, E. E.: N-bit

Parity Ordered Neural Network, Neurocomputing 48

(2002), 1053-1056

[3] Al-Rawi, M.: A Neural Network to Solve the Hybrid N-

parity: Learning with Generalization Issues,

Neurocomputing, vol.68, pp. 273-280, 2005

[4] Hohil, M. E., Liu, D., Smith, S. H., Solving the N-bit parity

problem using neural networks, Neural Networks, vol.12,

pp.1321-1323, 1999.

[5] Li, D., Hirasawa, K., Hu, J., Murata, J., Studying the effects

on multiplication neurons for parity problem, 41st Society

of Instrument and Control Engineers-SICE,2002.

[6] Kim, K., Kim, S., Joo, Y., Oh, A.S.: Enhanced fuzzy single

layer perceptron, Advances in Neural Networks,

vol.3496,pp. 603-608, 2005.

[7] Setino, R.: On the solution of the parity problem by a single

hidden layer feedforward neural network, Neurocomputing,

vol.16 (3), pp. 225-235, 1997.

[8] Setiono, R., Hui, L. C. K.: Some N-bit parity problems are

Table 6. Order of performance of different algorithms for Tic-tac-

toe problem

Order Algortihms Performance(%)

1 NEWBOOLE 100.00

2 IB3-CI 99.10

3 πm Model 98.33

4 IB1 98.10

5 CN2 98.10
6 IB3 82.00

7 MBRtalk 88.40

8 NewID 88.00

 IJISAE, 2016, 4(Special Issue), 67–72 This journal is © Advanced Technology & Science 2013

solvable by feed-forward networks with less than n hidden

units, Int. Joint Conf. on Neural Networks, 1993, pp. 305-

308.

[9] Schmitt, M.: On the complexity of computing and learning

with multiplicative neurons, Neural Computation,

vol.14(2), pp. 241-301, 2002.

[10] Zhang, B.-T.: A Bayesian Evolutionary Approach to The

Design and Learning of Heterogeneous Neural Trees,

Integrated Computer-Aided Engineering, vol. 9(1), pp. 73-

86, 2002.

[11] Bas, E., Uslu, V. R. and Egrioglu, E.: Robust learning

algorithm for multiplicative neuron model artificial neural

networks, Expert Systems with Applications, vol.56, pp.

80-88, 2016.

[12] Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B.,

Cheng, J., De Jong, K., Dzeroski, S., Fahlman, S.E., Fisher,

D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I.,

Kreuziger, J., Michalski, R.S., Mitchell, T., Pachowicz, P.,

Reich, Y., Vafaie, H., Van de Welde, W., Wenzel, W.,

Wnek, J., and Zhang, J.: The Monk’s Problems: A Perfor.

Comparison of Different Learning Algorithm, a Report,

Carnegie Mellon University CMU-CS-91-197, 1991.

[13] University of California, Irvine Dataset: [Online].

Available: ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/monks-problems/, retrieved November 16 2016.

[14] Pilgrim, R., A., “Tic-Tac-Toe: Introduction Expert Systems

to Middle School Students”, Acm Sigcse Bulletin, Vol. 27,

340–344, (1995).

[15] Gordon, A., “A General Algorithm for Tic-Tac-Toe Board

Evaluation”, Journal of Computing Sciences in Colleges,

Vol. 21, 42-46, (2006).

[16] Solorio, T. and Fuentes, O.: Taking Advantage of

Unlabelled Data with the Ordered Classification Algorithm,

ACTA, Proc. of AI and Soft Computing ASC 2002, 357-

200, (2002).

[17] Noughts And Crosses - The oldest graphical computer

game, http://www.pong-story.com/1952.htm, retrieved

November 16, 2016.

[18] Wachsmuth, B. G., Tic-tac-toe game,

http://pirate.shu.edu/~wachsmut/Teaching/CSAS1111/Assi

gns-CPP/assign7.html, retrieved November 17, 2016.

[19] Massey, B., Tic-tac-toe board evaluation,

http://web.cecs.pdx.edu/~bart/cs541-fall2001/homework/3-

learn.html, retrieved November 17, 2016.

[20] Appel, A. W., Game player programs,

http://www.cs.princeton.edu/courses/archive/spr05/cos217/

asgts/gameplayer/, retrieved November 16, 2016.

http://pirate.shu.edu/~wachsmut/Teaching/CSAS1111/Assigns-CPP/assign7.html
http://pirate.shu.edu/~wachsmut/Teaching/CSAS1111/Assigns-CPP/assign7.html

