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1. Introduction and Preliminaries

Circulant matrices have a wide range of applications, for example in image processing, coding theory, signal
processing, numerical computation, self-regress design, etc. For detail one can see [1], [2].

There are many studies in the literature which is about circulant matrices and their properties such as their
determinants and inverses involving some famous numbers.

Lind studied on the determinant D,, , ofthe circulant matrix circ(F,, Fy41, ..., Frin-1) in 1970 [3].In [4], the author
gave the bounds for the spectral and Euclidean norms of the circulant matrices involving Fibonacci and Lucas
numbers. In [5], [6] the authors defined generalized k-Horadam sequence and investigated some its properties. In
addition, a new generalization to compute determinants and inverses of the circulant matrix C,(H) =
circ(Hkyl, Hy o, ..., Hk,n) where Hy, ,, is the generalized k —Horadam numbers was presented. Also, in another study
of the same authors, a new upper and lower bounds for the spectral norm of an r —circulant matrix H whose
entries are generalized k —Horadam numbers were presented. Furthermore, they obtained new formulas to
calculate the eigenvalues and determinant of the matrix H [7]. Shen et al. obtained the determinants of the circulant
matrix with classical Fibonacci and Lucas numbers. In addition, the inverses of these matrices were derived in [8].
In [9], the determinants and inverses of the circulant matrix involving Jacobsthal and Jacobsthal-Lucas numbers
were obtained in terms of these numbers. In another study, the same authors studied on the r —circulant matrix
W,, = (W, W, ..., W,) associated with the numbers defined by the recurrence relation W, = pW,,_, + qW,,_, with
initial conditions W, = a and W, = b. They obtained determinants, inverses and some bounds for spectral norms
of r —circulant matrix W,, [10]. Jiang et al. studied on some types of circulant matrices. They proved that these
matrices with Gaussian Fibonacci numbers were invertible matrices for n > 2 and they gave the determinants and
inverses of these matrices in [11]. In [12], the authors calculated the determinant of the circulant matrix F,, =
circ(Fy,F;,...,F;) where E; is the complex Fibonacci numbers. In addition, they showed that this matrix is
invertible and inverse matrix can be obtained in terms of complex Fibonacci numbers. In [13], the author used the
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algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper
and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the
generalized k-Horadam numbers and some estimations were obtained.

Horadam and Mahon introduced Pell and Pell-Lucas polynomials. Moreover, some properties related with these
sequences were studied in [14]. In [15], sum formulas for squares of terms of complex Pell and Pell-Lucas number
sequences were studied and certain products of terms of the Pell and Pell-Lucas sequences were determined. In
[16], the gell numbers were defined as the generalization of Pell numbers. Moreover, the authors derived Binet-
like formula, generating function and exponential generating function for this sequence. The authors, introduced
the quadra Fibona-Pell,Fibona-Jacobsthal and Pell-Jacobsthal and the hexa Fibona-Pell-Jacobsthal sequences.
These sequences are the compound sequences of Fibonacci, Pell and Jacobsthal sequences. They derived the Binet-
like formulas, the generating functions and the exponential generating functions of these sequences. Also, some
binomial identities were obtained for them [17]. In [18], the authors considered the Pell, Pell-Lucas and Modified
Pell sequences, and they defined some new 2 X 2 matrices, then showed that the identities presented before can
be produced by using them. In [19], the authors defined the Gaussian Pell and Gaussian Pell-Lucas sequences. They
obtained some identities for these numbers.

In this paper, we consider the circulant matrix M,, = (GP,, GP,, ..., GB,), where GP, is the Gaussian Pell numbers.
Firstly, we obtained the determinant of this matrix in terms of Gaussian Pell numbers. Then we calculate the
inverse of the circulant matrix M,,.

We conclude this section with some preliminaries related our study.

The n X n circulant matrix C,, = circ(cy, ¢4, ..., Cn—1), associated with the numbers ¢y, ¢y, ..., ¢,,_1 is defined as

CO CI e Cn_l
Cpeqy Co o Cpep
Cp, = : : . )
4 €y . G

Determinant and inverse of nonsingular circulant matrix C, are given as in the following

detC, =[IF'Zs g(w"), C;t = circ(ag, ay, ..., an_1)

1 2mi

where a; =~ nlgwhH)Ttws

(s=01,..,n=1), gx) =X cx" and w = exP( ) [2]:

n
Lemma 1.1. [2] Let C,, = circ(cy, ¢4, ..., €n—1) be a circulant matrix. Then we have the following

i.  Cyisinvertible ifand only if f(w*) # 0 (k = 0,1,...,n — 1), where f(x) = X7} ¢;x/ and w = exp (%)
ii. If C, is invertible then its inverse is also a circulant matrix.

2. Main Results

In this section, we consider the circulant matrix M,, with Gaussian Pell numbers. Firstly, we give the determinant
of the matrix M,,. Then we prove that M,, is an invertible matrix and we formulate the inverse matrix in terms of
Gaussian Pell numbers.

Definition 2.1. The Gaussian Pell numbers are defined as

Gpn=2GPn_1+GPn_2, nZZ

with the initial conditions GP, = i,GP; = 1 [19].

Theorem 2.2. Let M,, be a circulant matrix with Gaussian Pell numbers as M,, = circ(GP,, GP,, ..., GB,). Then we
have

n-2
detM, = (1 — GP,41)" 2(1 = 2GP, — iGP) + ) (GP, — iGPyy1)(1 — GP, ) 1 (GB, — )" F 1
k=1

forn > 3.
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Proof. For n > 3, set

1 0 0 0 0 01
-2 0 0 0 0 1
-1 0 0 0 1 -2
K=] 0 0 0 0 -2 -1
0 0 1 -2 0 0
01 -2 -1 0 0
and
r1 0 0 0 - 0 0
( GPp—i )"‘2 0 0
1-GPnyy
_: \n—-3
(M) 00 - 1 0
1-GPnyq
L, = GPp—i \" 7% .
Gza:) 00 - 00
(=2) 10 -« 0 0
1-GPpt1
L0 1 0o 0 - 0 O
Then we have the following matrix
E fn GPn—l GPn—Z GPn—3 GP3
i In GPn—Z GPn—3 GPn—4 GPZ
0 0 GP,—GP,y,q 0 0 0
KM.L. = 0 O GPy,—GP, GP, —GP,4, 0 0
n1Tl0 0 0 GP,—GB, GP, —GP,, 0
0 O 0 0 GPy, — GP, 0
0 O 0 0 0 GPy— GP, GP;
where
n L k+1 1— GPn+1
and

So, we obtain

GP, — )

n-2
detKdetM,detL, = |1 — 2GP, + Z GP, (
L ~GPois

while

1, n=12(mod4)

detK = detl; = {_1, n = 0,3(mod4)

Hence, we get
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n-2

detM, = (1= GPyyy)" (1 = 26B, = iGB) + ) (G, = iGPey) (L = 6Py )¥ 1 (GP, = D" K1,
k=1

Thus, the proofis completed.

Theorem 2.3. Let M,, = circ(GP,, GP,, ..., GB,) be a circulant matrix. For n > 3, M,, is invertible.

Proof. Let n = 3. The Binet formula for Gaussian Pell number is

GP, = ca™+dp"

where ¢ = (V) andd = M. Itis clear that @ + f = 2 and aff = —1. Hence we have
2v2 2v2
n
Fw) = Y R why
j=1

1—a® 1-p"
- (1 - awk) +dp (1 - ﬁw")
ca(l—a™(A - pwk) +d(1 - (A — aw®)
1-2wk —wik
1—GP,,, + wk(i — GP)
1-2wk — w2k

Since GP, = P, + iP,_;,n > 1,w* = cos@ + isinf where § = %and 0 < 6 < 2m. Then

x 1 =GP,y + wk(i — GP,)

[1— P,y — B,cosO + (P,_y — 1)sin@] + i[-B, + (1 — P,_;)cosO — B,sinf].

We assume that

Re(x) =1— Py, — B,cosO + (P,_; — 1)sinf
and

Im(x) = —B, + (1 — P,_;)cosf — B,sinb.

We prove that Re(x) # 0 or Im(x) # 0 for 1 — 2w* — w?* = 0. For the reason that Pell sequence is an increasing
sequence, we have the followings.

If sin@ > 0 and cosf > 0, Re(x) < 0.
If sin@ < 0 and cosf < 0,Im(x) > 0.
If sin@ > 0 and cosf < 0, Re(x) < 0.
If sin@ < 0 and cosf > 0, Im(x) < 0.

It is verified that when sinf = 0 or cosf = 0,x # 0.
Hence, 1 — GPp,q + w*(i — GB,) # 0 for any w* (k = 1,2, ...,n — 1), thatis f(w*) # 0. By Lemma 1.1 the proof is
completed.

Lemma 2.4. Let B = (bi]-) be an (n — 2) X (n — 2) matrix of the form

GPy = GPpyy, 1=
bijj=| GPh—GB,, i=j+1
0, otherwise

then the inverse B~1 = (bi’]-) is given by
(Gpn B GPO)i_j

bi’i = |(GPy — GPy ) IHY’
0, i<j

i>]
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Proof. Let c;j = Y323 bycby;. Itis clear that ¢;; = 0 for i < j. Fori = j, we get

1
it = byb;; = (GP, — GPn+1)m =1

Fori = j + 1, we obtain

Zblkbk] _bl.l. lbl. 1]+b b’

(GB, — GP,)\=Jt +(GP, 4 GP..) (GP, — GPy)™J
(GP; — GPyyy)'J LGPy — GPyyy) M

= (GP, — GPR,)
= 0.

So, we see that BB~ =I,_,, where I,,_, is (n — 2) X (n — 2) identity matrix. Similarly, it can be shown that
BB = I,_,. Hence, the proof is completed.

Theorem 2.5. Let n > 3, then the inverse of M,, is
M = circ(my, m,, ...,m,)

where

. . n_ -
mo= &Z(_ yerr GPo =GR
fn GPOfn - Gplgn (Gpl - GPn+1)k

1-—2i 2(1-1) . (GPy =GP
m; = + Z(_ ) kPn k-1
fn GPOfn - Gplgn (Gpl - GPn+1)
2(1-1) 1
m3 =
GPOfn - Gplgn (Gpl - Gpn+1)
-2(1-1) GP, — GP,
m =
" GPyfy — GPy gy (GPy — GPpyy)?
and

_ (D200 (6P —GR)I

m; = ) ] = 5,6, W n
/ GPofn — GP1 gy (GPy — GPpyq) ™2

Proof. Let

71 _f_n fnGPn—Z _gnGPn—l fnGPn—S _gnGPn—Z fnGpl _gnGPZ i
GPy GP1gn — GPofy GP1gn — GPofy GP1gn — GPofy

0 1 GPTl—lGPO —GPn_szl GP‘H.—ZGPO _GPn_3GP1 GPzGPO _Gplel

LZ = Gplgn - GPOfn GPlgn - GPOfn Gplgn - GPOfn
0 0 1 0 0
0 0 0 1 0
L0 0 0 0 1

where
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k=1
and

3 GP, — i \"k1
gn =1-—2GP, +ZGP< )

s \1 =GPy
Then we can write
KM,LL, = U @ B,

GP, 0
where U = [GP _ fnGPO] is 2 X 2 matrix, B is as in Lemma 2.4 and U @ B is the direct sum of the matrices U and
0 GP;

B.Let L = L,L,, then we obtain

M;'=LUt P B HK.

By Lemma 1.1, the inverse of the matrix M,, is circulant. Let
Mt = circ(my, my, ..., my).

Since the last row of the matrix L are

0 1 _ (GP()GPn_l - GP]_GPn_z) _ (GPOGPTL—Z - GP]_GPn_3) L (GP()GPZ - GPlel)
Y GPOfn - GPlgn ' GPOfn - Gplgn n GPOfn - Gplgn

and Y,; be the nj-th entry of the product L(U™' @)B~" for 1 < j < n, we have
Y=+
andfor3<j<n

n—j+1

v 2(1—1) Z (C1yet (GPy — GP)k1 .
Y GPfy — GPign £ (GPy =GPk "7

If the row matrix (Y,,1, Yy, ..., ¥,,) and the matrix K is multiplied, the last row of M,;! is obtained. Namely,

my = Ypp =2V — Yy
. . n-2 _
_ L—MZ(—DHM 2(1- i) Z( 1y (6P = GBY !
fo GPofn = GPign & (GP, — GP, )k " * ' "GPy f. — GP.g,, (GP, — GP,, )k "7k=2

. . n_z -
i 21 —-10) Z(—l)kH (GPy — GB)k! .
fn Gpofn - Gplgn =1 (Gpl - GPn+1)k "

m, = —2Yp — Va3
12 2(1-19) Z( 1yt (GPy — GP,)K1
B fn fn GPOfn Gplgn (Gpl GPn+1)k okt

_1-2i 2(1=1) Z( 1k 1(GPO GP)k1
fa Gpofn - GP, g, (GP; — GPpy ¥ okt
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o 2(1 - i) 1
3 = I Py — GPygy GPy — GPryy
m, = Ynn 1_2Ynn

— _ k— .
2(1-1) z( 1)k1(GP0 GR) 1P 41 -1i) 1 P,

GPof — GPrn (GP, — GPyyy)* ™ " GPofy — GPrgy GPy — GPpyy
2(1—-1) GP, — GP,
GPyfy — GP1 gy (GP; — GPyiq)?

andfor5<j<n

= Ynn j+3_2Ynn j+4_Ynn j+5

2(1=1) Z( 1y L (GPy — GRY* ! ) Yk=1 4(1-1) Z( 1y L (GPy — GRY* ! ) Yk=1
GPyf, — GP, g, (GPy =GP, )X 7751 GPyf, — GP.g, (GP; — GP, )k T 7472

_2a-9) JZ( - GP,)k1
GPofo — GPygn (GPy =GPy ) /778

(=1~ 12(1-1) (GP0 —GP,)’ 3

GPofn — GP1gn (GPy — GPpyy)/™2

3. Conclusion

In conclusion, we obtain formulas for the determinant and inverse of circulant matrices whose entries are Gaussian
Pell numbers.
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