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Bilinmeyen Dürtüsellik Seviyesine Sahip Toplamsal Gauss Olmayan Gürültü Altında Alt-Optimal 
Seziciler Kullanarak Darbe Sezimi
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Öz

Bu çalışmada, kanaldaki gürültünün dağılımı önceden bilinmiyorken gerçek zamanlı dikdörtgensel darbe algılama problemi ele 
alınmaktadır. Gürültü parametreleri hakkında bilgi olmadığından, sadece alınan gürültülü örnekleri kullanan yumuşak kırpıcı, işaret 
ilintileyici ve önerilen işaretli güç sezicisi gibi alt-optimal algılayıcılardan gerçek zamanlı darbe sezim problemi için faydalanılır. 
Bilinmeyen kanal gürültüsünün Gauss olmasının gerekmediğini dikkate alarak, simetrik α-kararlı (SαS) dağılım Gauss olmayan 
gürültü modeli olarak verilmektedir. Ana amaçlardan birisi mevcut darbenin minimum gözlem aralığında sezilmesi olduğundan, sezim 
ve yanlış alarm olasılığı ile tanımlanan sezici başarımı Gauss ve dürtüsel davranış gösteren SαS dağılım altında darbe uzunluğuna 
göre analiz edilmektedir. Verilen alt-optimal sezicilerin, Gauss dağılım altında optimal doğrusal seziciye yakın başarım sergilemekle 
kalmayıp SαS dağılım altında üstün başarım sağladığı gösterilmektedir. Kanal gürültüsü kuvvetli dürtüselliğe sahip olduğunda 
işaret ilintileyici ve bu çalışmada tanıtılan işaretli güç sezicisinin yumuşak kırpıcı seziciye kıyasla daha iyi sezim başarımı sergilediği 
gözlenmektedir. Sonuç olarak, yüksek olasılıkla Gauss olmayan kanal gürültüsü hakkında ön bilgi olmadığında, bu seziciler belirli bir 
gözlem aralığı içinde darbenin varlığına karar vermek için pratik olarak uygulanabilir. Diğer alt-optimal seziciler arasında, önerilen 
işaretli güç sezicisinin değişen dürtüsellik sergileyen kanal gürültüsü altında daha kararlı bir sezim başarımı sergilediği gözlenmektedir.

Anahtar Kelimeler: İkili hipotez testi, Gauss olmayan gürültü, Sezim olasılığı, Yanlış alarm olasılığı, İşaret ilinti sezici, İşaretli güç 
sezicisi, Yumuşak kırpıcı sezici

Abstract

In this study, real time rectangular pulse detection problem is addressed when the channel noise distribution is not known in advance. 
Since there is no information about the noise parameters, sub-optimal detectors such as soft limiter, sign correlator and the proposed 
signed power are utilized for real time pulse detection problem using only received noisy samples. Noting that the unknown channel 
noise is not necessarily to be Gaussian, symmetric α-stable (SαS) distribution is given as non-Gaussian noise model. Since one of the 
main objectives is to detect the existent pulse within minimum observation interval, detector performances characterized by detection 
and false alarm probabilities are analyzed with respect to pulse length under both Gaussian and SαS noise. It is shown that not only 
the given sub-optimal detectors can exhibit performance close to optimal linear detector under Gaussian noise, but also they provide 
superior performance under SαS distribution. When the channel has strong impulsiveness, it is observed that the sign correlator and 
signed power detector introduced in this study exhibit better detection performance compared with soft limiter detector. Consequently, 
these detectors can be practically implemented to determine existence of pulse within a certain observation interval when there is no 
prior information about channel noise which is most likely non-Gaussian. Among the other sub-optimal detectors, the proposed 
signed-power detector is observed to exhibit more stable detection performance under channel noise having varying impulsiveness.

Keywords: Binary hypothesis testing, Non-Gaussian noise, Probability of detection, Probability of false alarm, Sign correlator detector, 
Signed power detector, Soft limiter detector
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1. Introduction
In radar systems, the pulse repetition interval (PRI) is one of 
the significant parameters to characterize targets in terms of 
variation of duration between adjacent pulses (Wiley, 2006). 
Analysis of radar systems containing rectangular pulse is 
given in detail (Hao et al., 2022). Basic PRI modulation 
type is defined as a function of difference between times 
of arrival (TOA) of each pulse (Gencol et al., 2016) for a 
specified target. However, these radar pulses are observed 
in noisy environment and detection accuracy of a particular 
pulse onset directly affects the deviation from exact PRI 
modulation pattern. The deviation in PRI modulation 
types is analyzed in (Gao and Tian, 2015). In this context, 
recent studies concentrate on detecting existence of radar 
pulse where short time Fourier transform is used in (Liu 
et al., 2019), alternatively the pulses are detected by edge 
enhancement (Li et al., 2020), and edge detection is 
performed by Haar wavelet filter (Ranney et al., 2021). 
Moreover, moving sum filter is used to detect magnitude 
change for pulse detection (Ranney et al., 2022). 

In (Tsihrintzis and Nikias, 1997), radar clutter is modelled 
by a - stable distribution as an earlier application on 
radar signal processing. Moreover, it is reported by (Win 
et al., 2009) network interference on wireless systems 
can be statistically modelled by symmetrical a - stable 
distributions. The evidence of impulsive noise in applications 
of communication and radar/sonar signal processing brings 
a motivation to construct further analysis to extract the 
information related with the application area. Therefore, 
it is shown in these studies that the channel noise does 
not always exhibit Gaussian behaviour. The pulses need to 
be analyzed in presence of non-Gaussian noise which is 
modelled by a - stable distribution in this study. 

An earlier approach based on maximum correntropy is 
also applied for antipodal signal detection in (Hakimi 
and Hodtani, 2018). In (Sun et al., 2021), fractional lower 
moment is evaluated within the observed sliding time 
interval. Similarly, robust detection of a target is performed 
by utilizing fractional lower order moments (Huang et 
al., 2021). Receiver design and detection regions under 
impulsive noise interference are also investigated in (Clavier 
et al., 2021). In the literature, it is seen that the noise in 
the channel is generally assumed to be known. However, the 
noise distribution may not be known exactly in practice or 
its parameters may not remain unchanged. Therefore, the 
optimal maximum likelihood detector and Cauchy detector 
are not involved in this study since entire noise parameters 

and noise intensity are respectively required to decide the 
existence of pulse for these detectors. Consequently, there is 
a lack in the literature performing real time pulse detection 
in case of unknown noise.  Since the detection performance 
is assumed to be determined in real time, the length of the 
time interval is significant to provide reasonable detection 
probability obtained from short signal length.   

The main contribution of this study is not only to 
implement practical suboptimal detectors used in digital 
communication systems in order to detect rectangular 
pulse when the statistical information related with channel 
noise is unknown, but also a sub-optimal detector called 
signed power detector based on fractional power of the 
observed signal is proposed in this study to exhibit robust 
detection performance under impulsive noise channels with 
unknown impulsiveness. The paper is organized as follows. 
In the next section rectangular pulse detection problem 
and analytical results are derived under Gaussian noise 
condition. Subsequently, the sub-optimal detectors together 
with the proposed signed power detector are described. The 
performances of these detectors are illustrated by computer 
simulations in Section 3 under Gaussian and symmetric a -
stable ( )S Sa  distribution having different impulsiveness. In 
the last section obtained results are concluded. 

2. Method
Pulse detection problem within a certain time interval 
is formulated in terms of binary hypothesis testing and 
the sub-optimal detectors are described in the following 
subsection.

2.1. Pulse Detection 

In the given signal detection problem under Additive 
White Gaussian Noise (AWGN), the entire observed signal 
having N samples including rectangular pulse with known 
amplitude A having duration NP samples is modelled as 
given in Equation 1.
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where the noise samples are taken from the Gaussian 
distribution ,w 0N 2$ + v^ h6 @  and the time instant of pulse 
onset N0  is assumed to be unknown. In order to perform 
real time analysis, a running window having length W NP1  
is defined in which the existence of pulse is investigated. 
Evolution of observed signal within the window length 
involving all possible scenarios is illustrated in Figure 1. 
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Since the main objective is restricted to online detection of 
pulse onset, the problem is localized to construct the binary 
hypothesis testing within the duration M W NP1#   where 
the parameter M  is the length of the existing rectangular 
pulse within the running window. Accordingly, the binary 
hypothesis test becomes as given in Equation 2.
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It is obvious that first W M-  samples are common for both 
hypotheses and act as irrelevant data since any information 
cannot be provided. Thus, the problem is reduced to detecting 
existence of pulse only within the length of interval M  
given in Equation 3.  
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Considering the pulse amplitude is reasonably assumed 
to be known, the observed signal can be modified as 
y n x n A

2= -6 6@ @  and the binary hypothesis test in (3) is 
reformulated as in Equation 4.  

:
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where the problem is converted into antipodal signal 
detection. The likelihood functions under the Gaussian 
noise having zero mean and 2v  variance are given in (5) 
and (6)
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Once the investigation of pulse existence is characterized by  
samples, Neyman-Pearson test can be applied to determine 
the likelihood ratio (Kay, 1998) ( )
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comparing with threshold c  and is given in (7) 
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Analytically, the likelihood ratio is obtained as  
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where y  denotes sample mean and is considered as the 
test statistics ( )T y y= . Note that )(T y   is statistically 
characterized by determining mean under each hypothesis 
as found in (9) and (10) 
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and variance, obtained under both hypotheses as in (11)   
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Finally, the test statistic for this antipodal signal detection 
problem is expressed in (12)

       Figure 1. Evolution of real time pulse detection problem based 
on running window.  
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Soft Limiter (SL) Detector (Sureka and Kiasaleh, 2013):
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An alternative detector is defined to be the sign correlator 
(SC) detector which converts the observed noisy signal 
into binary form and determines the existence of a pulse 
according to operation in (21) 

Sign Correlator (SC) Detector (Saleh et al., 2012):
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( . The Non-Gaussian channel 

noise exhibiting impulsive and infinite variance behaviour 
is modelled by  distribution which is expressed by its 
characteristic function as given in (22) (Nikias and Shao, 
1995)

e j{ i = v i di- +a a^ h   (22)

where the parameters ( , ]0 2!a  is the characteristic 
exponent tuning the impulsiveness of the noise,  is the 
shift parameter adjusting the location. The impulsive 
noise is symmetrical around the origin when 0d =  and 
correspondingly the location parameter d  is assumed to 
be 0d =  in this study. The scale parameter v  arranges the 
intensity of the noise. When 2a = , it can be considered 
as identical with the standard deviation of Gaussian noise. 
Note that pdf of S Sa  noise cannot be analytically expressed 
except for special cases where Gaussian noise is obtained 
for characteristic exponent 2a =  and Cauchy noise is 
obtained for 1a =  which is frequently used to characterize 
the impulsive noise. In the presence of such an impulsive 
noise with infinite variance for 21a , the term generalized 
signal to noise ratio ( )GSNR  needs to be defined alternative 
to SNR (Sureka and Kiasaleh, 2013) 

( ) logGSNR dB A10
2

v= a   (23)

2.3. Signed Power Detector

One of the distinctive properties of a - stable random 
variable X  is described in terms of its moments. Note that 
a random variable  X  having alpha-stable distribution for 
0 21 1a  is given to have finite moments according to 
the satisfaction of the condition in (24) (Nikias and Shao, 
1995), (Samorodnitsky and Taqqu, 1994) 
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The probability of detection and probability of false alarm 
are determined in (13) and (14), respectively, 
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where ( )xQ  is the right tail probability and is given as 
( )x e dt
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-c m# . Relation between detection 

probability and signal strength is characterized by signal to 
noise ratio ( in (15)
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Since the observed waveform model is converted to 
exhibit antipodal behaviour, the decision boundary can be 
set  0c =l and the theoretical results for false alarm and 
detection probabilities are respectively evaluated as
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which results in P P 1D FA+ = . Consider that P PD FA=  
may occur as the worst case and hence the lower bound for 
detection probability can be given as .P 0 5D = . In the sequel, 
the practical suboptimal detectors are described for pulse 
detection problem.

2.2. Sub-Optimal Detectors for Pulse Detection

Conventional linear detector which is reported to be 
optimal under Gaussian noise ( Johnson, 1996) and (Sureka 
and Kiasaleh, 2013) determines existence of pulse according 
to the rule given in (18) 

Linear detector (Sureka and Kiasaleh, 2013):
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The soft limiter (SL) detectors clips the observed signal 
depending on the predefined threshold 02l  as formulated 
in (19)
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strongly impulsive noise. Although the optimal linear 
detector given in ( Johnson, 1996) is seen to yield the best 
detection performance under Gaussian noise as expected, 
when the channel noise becomes impulsive as  decreases, 
the linear detector performance get worse dramatically 
compared with other detectors. This result indicates the 
necessity of other suboptimal detectors in case the noise 
exhibits non-Gaussian behaviour. Moreover, the suboptimal 
detector performances need to be analyzed in two regions 
according to results in Figure 2 where the soft limiter in 
(Sureka and Kiasaleh, 2013) exhibits superior detection 
probability compared with sign correlator in (Saleh at al., 
2012) and proposed signed power detector as it is observed 
to be .1 22a . However, when the noise samples have 
extreme outliers, especially for 1#a , the signed correlator 
and signed power detector performances become apparently 
better than soft limiter detector. 

Figure 2. Variation of PD with respect to stable noise 
impulsiveness parameter ; ,M GSNR dB50 8a = = - .

Therefore, the remaining analyses investigating the effect of 
observed pulse length M  and SNR  are explained under 
Gaussian noise and a - stable noise simulated at two 
different characteristic exponent, separately. As an overall 
assessment considering entire characteristic exponent range, 
the proposed signed power detector is seen to exhibit more 
stable behaviour compared with the other sub optimal 
detectors sign correlator given in (Saleh et al., 2012) and 
soft limiter detector given in (Sureka and Kiasaleh, 2013). 
This finding is put forward by evaluating the mean detection 
probability and its standard deviation given in Table 1 
obtained from the entire range of characteristic exponents.
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According to (24), one can conclude only the fractional 
lower order moments (FLOM) satisfying p 1 a  is finite, 
otherwise they are said to be infinite. This property is utilized 
in density parameter estimation from the set of observations 
having length  to determine the signed fractional moment 
(Kuruoglu, 2001) given in (25)

S L X
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p k
p

k

L

1
= 1 2

=
/   (25) 

where  Xk are taken from S Sa  distribution and the pth  
signed power of a number z  is described as (Kuruoglu, 
2001)

( )z sign z zp p=1 2   (26)

One of the challenging problems is the selection of moment 
order  which is comprehensively discussed in different 
studies (Ma and Nikias, 1995), (Tsihrintzis and Nikias, 
1996), (Kuruoglu, 2001) and (Bibalan et al., 2017). Utilizing 
the feedback from the studies in the literature, the moment 
order in this study is set constant .p 0 01=  where the 
characteristic exponent of the channel is assumed to be  

.0 012a  although it is declared to be unknown. Under  
S Sa noise, the signed power (SP) detector is defined as 

( )sgn y n y n 0
n

M p

H

H
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1

H
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satisfying the condition p 1 a . Performances of these 
detectors are shown in simulation results in the next section. 

3. Simulation Results and Discussion
The experimental results are obtained by Monte Carlo 
simulations using Matlab software as a result of ensemble 
averaging of 104 realizations. The threshold for soft limiter 
and the signed power detector are taken as A4l =  
consistent with (Sureka, and Kiasaleh, 2013) and .p 0 01=
, respectively. For sake of simplicity, the noise intensity for 
both Gaussian and S Sa  noise is set 1v =   and the pulse 
amplitude is tuned according to the specified SNR  or  
GSNR value. 

3.1. Effect of Channel Impulsiveness

The simulation results reflecting the effect of impulsiveness 
on detection probability of rectangular pulse is shown 
in Figure 2 as a function of characteristic exponent a
according to fixed observed pulse length M  and GSNR  
values. The characteristic exponent range lies between 
2a =  (Gaussian noise) and .0 6a =  corresponding to 
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reasonable selection rather than other detectors under 
moderate impulsiveness. However, if the channel exhibits 
strongly impulsive characteristic, the sign correlator (Saleh 
et al., 2012) and the proposed signed power detector 
performances are observed to be apparently superior to both 
linear ( Johnson, 1996) and soft limiter (Sureka, Kiasaleh, 
2013) detectors as shown in Figure 4B. 

Figure 4. Detection probabilities with respect to GSNR  under   
S Sa noise; A) ( .1 6a = ),  B) ( .0 8a = ) .

3.3. Effect of M

It is seen that the sub-optimal detectors soft limiter and 
sign correlator together with signed power detector are not 
critically affected from variation of noise distribution whereas 
the linear detector performance degrades dramatically when 
the noise distribution becomes impulsive. Rather than the 

Table 1. Mean Detection Performance and its standard 
deviation in the range.

Method Mean Value of PD Std. Dev. of PD

Gaussian 0.65 0.1234
Soft Limiter 0.80 0.0296
Sign Correlator 0.81 0.0349
Signed Power 0.82 0.0269

As it can be clearly seen, the best detection performance 
with lowest standard deviation can be achieved by the 
proposed signed power detector.

3.2. Effect of SNR

The detection probability with respect to signal to noise 
ratio is illustrated in Figure 3 under Gaussian noise and in 
Figure 4 under S Sa  noise, respectively.  It is seen in Figure 
3 that, linear detector has the best detection probability 
compared with other detectors. However, when the channel 
noise becomes impulsive as the results shown in Figure 4A, 
especially for lower  value i.e. increased impulsiveness as the 
detector performances shown in Figure 4B, the distinctive 
degradation on detection performance of linear detector is 
apparent although it is optimal under Gaussian case.

Figure 3. Detection probabilities with respect to SNR under 
Gaussian noise.

On the other hand, soft limiter detector can be said to 
exhibit better detection probability according to Figure 
4a compared with other sub-optimal detectors such as 
signed correlator and signed power detector when noise 
slightly deviates from Gaussian behaviour and soft limiter 
detector given in (Sureka and Kiasaleh, 2013) may be a 

A

B
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Figure 6. P PD FA-  of detectors as a function of  M  samples 
under  S Sa  noise, ( )GSNR dB8= - ; A) ( . )1 6a = ,              
 B) ( . )0 8a = .

Nevertheless, one can generally conclude that the given sub 
optimal detectors yield notable robust behaviour against 
the variation of noise impulsiveness and it can be said that 
improved detection performance can be achieved for the 
fixed observed pulse length.

4. Conclusions
This paper proposes utilization of the sub-optimal detectors 
in detection problem of rectangular pulse in real time within 
a limited observation interval when the channel noise is 
assumed to be unknown in advance. The proposed approach 
is shown to provide a detection mechanism independent of 
the noise distribution parameters and can be designed to 

method in the literature (Li et al., 2020) which processes 
entire data, it is concentrated on instant detection within 
the observation length much smaller than pulse length. 
Since the observed data length is one of the parameters to 
compare detection performance within short time length, 
the time-frequency techniques as given in (Liu et al, 2019) 
are not considered since the spectral resolution becomes 
poor to yield satisfactory result for the signal within short 
time interval. Sensitivity of the sub-optimal detectors to the 
length of observed pulse length M  are shown in terms of  
PD  and PFA  in Figure 5 and Figure 6 under Gaussian and 
S Sa  noise, respectively. It is clear that the linear detector 
achieves the theoretical result and exhibits the best P PD FA-  
characteristic among the other detectors as shown in Figure 
5 under Gaussian case. As the channel impulsiveness 
increases, the linear detector yields the lowest detection 
performance for specified M  as illustrated in Figure 6A 
and 6B, respectively. 

Figure 5.  P PD FA-  of detectors as a function of M  samples 
under Gaussian noise. ( SNR dB8= - ).

According to the results in Figure 6A, soft limiter has more 
sensitivity to the observed pulse length under S Sa  noise 
whereas its performance gets worse than other suboptimal 
detectors under stronger impulsive noise condition as 
shown in Figure 6B. Additionally,  P PD FA-  performances 
of sign correlator and the proposed signed power detectors 
are close to that of soft limiter detector as given in Figure 
6A under weak impulsiveness condition and better results 
are observed under strong impulsive channel as shown in 
Figure 6B. 

A

B
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exhibit robust performance against the outlier components 
in channel noise. It should be noted that the soft limiter 
detector yields a reasonable pulse detection performance 
unless the channel exhibits strongly impulsive characteristic. 
The sign correlator and the proposed signed power detectors 
come forward if the impulsive outlier samples become 
dominant in observed data. In terms of different channel 
noise distribution conditions, the proposed detector can be 
said to exhibit better detection performance with smaller 
fluctuation, i.e., more robust stability in detection probability 
and this can be considered as superiority compared with 
other sub-optimal detectors.
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