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Pulse Detection Using Sub-Optimal Detectors Under Additive non-Gaussian Noise
Having Unknown Level of Impulsiveness

Bz'linmeyen Diirtiisellik Sew'yesz'ne Sa/.zip Toplamsal Gauss Olmayan Grrilti Altinda Alz‘—Opz‘imal
Seziciler Kullanarak Darbe Sezimi

Mehmet Emre Cek* @, Eda Dinc

Dokuz Eylul University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Tzmir, Turkey

Abstract

In this study, real time rectangular pulse detection problem is addressed when the channel noise distribution is not known in advance.
Since there is no information about the noise parameters, sub-optimal detectors such as soft limiter, sign correlator and the proposed
signed power are utilized for real time pulse detection problem using only received noisy samples. Noting that the unknown channel
noise is not necessarily to be Gaussian, symmetric a-stable (SaS) distribution is given as non-Gaussian noise model. Since one of the
main objectives is to detect the existent pulse within minimum observation interval, detector performances characterized by detection
and false alarm probabilities are analyzed with respect to pulse length under both Gaussian and SaS noise. It is shown that not only
the given sub-optimal detectors can exhibit performance close to optimal linear detector under Gaussian noise, but also they provide
superior performance under SaS distribution. When the channel has strong impulsiveness, it is observed that the sign correlator and
signed power detector introduced in this study exhibit better detection performance compared with soft limiter detector. Consequently,
these detectors can be practically implemented to determine existence of pulse within a certain observation interval when there is no
prior information about channel noise which is most likely non-Gaussian. Among the other sub-optimal detectors, the proposed
signed-power detector is observed to exhibit more stable detection performance under channel noise having varying impulsiveness.

Keywords: Binary hypothesis testing, Non-Gaussian noise, Probability of detection, Probability of false alarm, Sign correlator detector,
Signed power detector, Soft limiter detector

Oz

Bu ¢alismada, kanaldaki girtltinin dagilim: 6nceden bilinmiyorken gercek zamanh dikdértgensel darbe algilama problemi ele
alinmaktadir. Gurtltli parametreleri hakkinda bilgi olmadigindan, sadece alinan glirtiltili 6rnekleri kullanan yumusak kirpicy, isaret
ilintileyici ve 6nerilen isaretli glic sezicisi gibi alt-optimal algilayicilardan gercek zamanli darbe sezim problemi i¢in faydalanilir.
Bilinmeyen kanal giirtiltiisinin Gauss olmasinin gerekmedigini dikkate alarak, simetrik o-kararli (SaS) dagilim Gauss olmayan
glrilti modeli olarak verilmektedir. Ana amaglardan birisi mevcut darbenin minimum gézlem araliginda sezilmesi oldugundan, sezim
ve yanlis alarm olasilig: ile tamimlanan sezici bagarimi Gauss ve durtisel davranig gosteren SaS dagilim altinda darbe uzunluguna
gore analiz edilmektedir. Verilen alt-optimal sezicilerin, Gauss dagilim altinda optimal dogrusal seziciye yakin bagarim sergilemekle
kalmayip SaS dagilim altinda Gstiin basarim sagladigi gosterilmektedir. Kanal giirtltisi kuvvetli diirtisellige sahip oldugunda
isaret ilintileyici ve bu ¢alismada tanitilan isaretli gii¢ sezicisinin yumusak kirpici seziciye kiyasla daha iyi sezim basarimu sergiledigi
gozlenmektedir. Sonug olarak, yiiksek olasilikla Gauss olmayan kanal giirtltisi hakkinda 6n bilgi olmadiginda, bu seziciler belirli bir
gozlem aralig: icinde darbenin varligina karar vermek i¢in pratik olarak uygulanabilir. Diger alt-optimal seziciler arasinda, onerilen
isaretli gli¢ sezicisinin degisen diirtiisellik sergileyen kanal giirtltist altinda daha kararli bir sezim bagarimu sergiledigi gézlenmektedir.

Anahtar Kelimeler: Tkili hipotez testi, Gauss olmayan giirtiltl, Sezim olasilif1, Yanlis alarm olasiligs, Isaret ilinti sezici, Isaretli glc
sezicisi, Yumusak kirpici sezici
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1. Introduction

In radar systems, the pulse repetition interval (PRI) is one of
the significant parameters to characterize targets in terms of
variation of duration between adjacent pulses (Wiley, 2006).
Analysis of radar systems containing rectangular pulse is
given in detail (Hao et al., 2022). Basic PRI modulation
type is defined as a function of difference between times
of arrival (TOA) of each pulse (Gencol et al., 2016) for a
specified target. However, these radar pulses are observed
in noisy environment and detection accuracy of a particular
pulse onset directly affects the deviation from exact PRI
modulation pattern. The deviation in PRI modulation
types is analyzed in (Gao and Tian, 2015). In this context,
recent studies concentrate on detecting existence of radar
pulse where short time Fourier transform is used in (Liu
et al., 2019), alternatively the pulses are detected by edge
enhancement (Li et al., 2020), and edge detection is
performed by Haar wavelet filter (Ranney et al., 2021).
Moreover, moving sum filter is used to detect magnitude
change for pulse detection (Ranney et al., 2022).

In (Tsihrintzis and Nikias, 1997), radar clutter is modelled
by @ —stable distribution as an earlier application on
radar signal processing. Moreover, it is reported by (Win
et al, 2009) network interference on wireless systems
can be statistically modelled by symmetrical a — stable
distributions. The evidence of impulsive noise in applications
of communication and radar/sonar signal processing brings
a motivation to construct further analysis to extract the
information related with the application area. Therefore,
it is shown in these studies that the channel noise does
not always exhibit Gaussian behaviour. The pulses need to
be analyzed in presence of non-Gaussian noise which is
modelled by @ — stable distribution in this study.

An earlier approach based on maximum correntropy is
also applied for antipodal signal detection in (Hakimi
and Hodtani, 2018). In (Sun et al., 2021), fractional lower
moment is evaluated within the observed sliding time
interval. Similarly, robust detection of a target is performed
by utilizing fractional lower order moments (Huang et
al., 2021). Receiver design and detection regions under
impulsive noise interference are also investigated in (Clavier
et al., 2021). In the literature, it is seen that the noise in
the channel is generally assumed to be known. However, the
noise distribution may not be known exactly in practice or
its parameters may not remain unchanged. Therefore, the
optimal maximum likelihood detector and Cauchy detector
are not involved in this study since entire noise parameters
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and noise intensity are respectively required to decide the
existence of pulse for these detectors. Consequently, there is
a lack in the literature performing real time pulse detection
in case of unknown noise. Since the detection performance
is assumed to be determined in real time, the length of the
time interval is significant to provide reasonable detection
probability obtained from short signal length.

The main contribution of this study is not only to
implement practical suboptimal detectors used in digital
communication systems in order to detect rectangular
pulse when the statistical information related with channel
noise is unknown, but also a sub-optimal detector called
signed power detector based on fractional power of the
observed signal is proposed in this study to exhibit robust
detection performance under impulsive noise channels with
unknown impulsiveness. The paper is organized as follows.
In the next section rectangular pulse detection problem
and analytical results are derived under Gaussian noise
condition. Subsequently, the sub-optimal detectors together
with the proposed signed power detector are described. The
performances of these detectors are illustrated by computer
simulations in Section 3 under Gaussian and symmetric @ —
stable (SaS) distribution having difterent impulsiveness. In
the last section obtained results are concluded.

2. Method

Pulse detection problem within a certain time interval
is formulated in terms of binary hypothesis testing and
the sub-optimal detectors are described in the following
subsection.

2.1. Pulse Detection

In the given signal detection problem under Additive
White Gaussian Noise (AWGN), the entire observed signal
having N samples including rectangular pulse with known
amplitude 4 having duration NV, samples is modelled as
given in Equation 1.

w[n] ;n=1,2,....No
X[n]=1A+wln] ;n=Ni+1,..No+Ns 1)
wln] ;n=NotNp+1,.,N

where the noise samples are taken from the Gaussian
distribution w[ - | ~ N(0,0%) and the time instant of pulse
onset N, is assumed to be unknown. In order to perform
real time analysis, a running window having length W < N,
is defined in which the existence of pulse is investigated.
Evolution of observed signal within the window length
involving all possible scenarios is illustrated in Figure 1.
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Since the main objective is restricted to online detection of
pulse onset, the problem is localized to construct the binary
hypothesis testing within the duration M < W < N, where
the parameter M is the length of the existing rectangular
pulse within the running window. Accordingly, the binary
hypothesis test becomes as given in Equation 2.

Hoz[n]=w[n] n=12..W
. _ Jwln] n=12 .. W—-M )
H:aln] {A+w[n] n=W-M+1,..W

It is obvious that first W —M samples are common for both
hypotheses and act as irrelevant data since any information
cannot be provided. Thus, the problem is reduced to detecting
existence of pulse only within the length of interval M
given in Equation 3.

Hez[n]=wln] n=12..M

3)
H:z[n]=A+w[n] ,n=12,..M
x[n]
Np
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Figure 1. Evolution of real time pulse detection problem based
on running window.
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Considering the pulse amplitude is reasonably assumed
to be known, the observed signal can be modified as
yln]= x[n]—% and the binary hypothesis test in (3) is
reformulated as in Equation 4.

Hiylnl=—2+uln] n=12,..M
)

Hiy[n]= %er[n], n=1,2..M

where the problem is converted into antipodal signal
detection. The likelihood functions under the Gaussian
noise having zero mean and ¢* variance are given in (5)

and (6)
1 ( (y[n]+‘§)2)
Vore? P\ 20T

p(ylnl Ho) = (5)
and

(y[n]—4)?
pln}i) = J;ij(—%) ©)

Once the investigation of pulse existence is characterized by
samples, Neyman-Pearson test can be apphe t%d?termme
the likelihood ratio (Kay, 1998) L(z) = g) >y by

comparing with threshold 7 and is given in

1 M- l A z]
(7m0 Z (el
7 exXpl—=—= x|n +— 2
(2702 Xp[ 207 e - ]
Analytically, the likelihood ratio is obtained as
- 1 M-1 2
Y=g tyln] > 5 ®)

where y denotes sample mean and is considered as the
test statistics 7' (y) =y . Note that T(y)
characterized by determining mean under each hypothesis
as found in (9) and (10)

is statistically

=B34 +uln) |- -4 ©)

—E[ﬁf:; (g +ulad]=4

and variance, obtained under both hypotheses as in (11)

E(T(y);

E(T(y);H)) (10)

var (T (y);Hox) —UCLT( ZMI_ +w[n]> WZ

Finally, the test statistic for this antipodal signal detection

(11)

problem is expressed in (12)
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2
N(—%,O-V) under H,
Ao (12)
2

)

’V) under H,

'The probability of detection and probability of false alarm
are determined in (13) and (14), respectively,

7’+%
Pu=Pr{T(y) > 7 H}=Q p (13)

Vi

f_A
Py=Pr{T(y) > 7;H,} = Q| ——2 (14)

/o
M

where Q(z) is the right tail probability and is given as

Qz) =" efldt. Relation between detection

probabilitil a%g ﬁlgnal strength is characterized by signal to

noise ratio (in (15)

2
SNR(dB) = 101og% (15)

Since the observed waveform model is converted to
exhibit antipodal behaviour, the decision boundary can be
set 7' =0and the theoretical results for false alarm and
detection probabilities are respectively evaluated as

Jo

M

P,=Q|— A/O_2 )_1 Py (18)
Vir

which results in Pp+Pmn=1. Consider that P, = P
may occur as the worst case and hence the lower bound for
detection probability can be given as P, = 0.5 . In the sequel,
the practical suboptimal detectors are described for pulse
detection problem.

2.2. Sub-Optimal Detectors for Pulse Detection

Conventional linear detector which is reported to be
optimal under Gaussian noise (Johnson, 1996) and (Sureka
and Kiasaleh, 2013) determines existence of pulse according
to the rule given in (18)

Linear detector (Sureka and Kiasaleh, 2013):

> ylnl2 0 (18)

The soft limiter (SL) detectors clips the observed signal
depending on the predefined threshold x > 0 as formulated
in (19)
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Soft Limiter (SL) Detector (Sureka and Kiasaleh, 2013):

> gkln) % 0 (19)
where
K 2K
g(z) = lz| <K (20)
K 22K

An alternative detector is defined to be the sign correlator
(SC) detector which converts the observed noisy signal
into binary form and determines the existence of a pulse
according to operation in (21)

Sign Correlator (SC) Detector (Saleh et al., 2012):

> sgn(y[n) % 0 1)
1,z=0

where sgn(z) = . The Non-Gaussian channel
noise exhibiting 1mpulzé1ve and infinite variance behaviour
is modelled by distribution which is expressed by its
characteristic function as given in (22) (Nikias and Shao,

1995)
@(0)=

where the parameters « € (0,2] is the characteristic
is the
shift parameter adjusting the location. The impulsive

efd”lﬂl"ﬂ‘é& (22)

exponent tuning the impulsiveness of the noise,

noise is symmetrical around the origin when 6 =0 and
correspondingly the location parameter & is assumed to
be 6 =0 in this study. The scale parameter ¢ arranges the
intensity of the noise. When a = 2, it can be considered
as identical with the standard deviation of Gaussian noise.
Note that pdf of SaS' noise cannot be analytically expressed
except for special cases where Gaussian noise is obtained
for characteristic exponent @ =2 and Cauchy noise is
obtained for @ =1 which is frequently used to characterize
the impulsive noise. In the presence of such an impulsive
noise with infinite variance for a < 2, the term generalized
signal to noise ratio (GSNR) needs to be defined alternative
to SNR (Sureka and Kiasaleh, 2013)

GSNR(dB) = 101og 4,

. 23)

2.3. Signed Power Detector

One of the distinctive properties of @ —stable random
variable X is described in terms of its moments. Note that
a random variable X having alpha-stable distribution for
0 < a <2 is given to have finite moments according to
the satisfaction of the condition in (24) (Nikias and Shao,
1995), (Samorodnitsky and Taqqu, 1994)
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EllXI']<o if0<p<a

El|X)]= 00 if 29

p=a

According to (24), one can conclude only the fractional
lower order moments (FLOM) satisfying p < a is finite,
otherwise they are said to be infinite. This property is utilized
in density parameter estimation from the set of observations
having length to determine the signed fractional moment

(Kuruoglu, 2001) given in (25)

S,= 1Yl X 25)

where X, are taken from SaS distribution and the pth
signed power of a number z is described as (Kuruoglu,

2001)

<

2 =sign(2)| 2 (26)

One of the challenging problems is the selection of moment
order which is comprehensively discussed in different
studies (Ma and Nikias, 1995), (Tsihrintzis and Nikias,
1996), (Kuruoglu, 2001) and (Bibalan et al., 2017). Utilizing
the feedback from the studies in the literature, the moment
order in this study is set constant p=0.01 where the
characteristic exponent of the channel is assumed to be
a > 0.01 although it is declared to be unknown. Under
SasS noise, the signed power (SP) detector is defined as

> sgn(y[n]|y[n]f :> 0 (27)

satisfying the condition p < &. Performances of these
detectors are shown in simulation results in the next section.

3. Simulation Results and Discussion

The experimental results are obtained by Monte Carlo
simulations using Matlab software as a result of ensemble
averaging of 10* realizations. The threshold for soft limiter
and the signed power detector are taken as x =44
consistent with (Sureka, and Kiasaleh, 2013) and p = 0.01
, respectively. For sake of simplicity, the noise intensity for
both Gaussian and SaS' noise is set 0 =1 and the pulse
amplitude is tuned according to the specified SNR or
GSNR value.

3.1. Effect of Channel Impulsiveness

'The simulation results reflecting the effect of impulsiveness
on detection probability of rectangular pulse is shown
in Figure 2 as a function of characteristic exponent «
according to fixed observed pulse length M and GSNR
values. The characteristic exponent range lies between
a =2 (Gaussian noise) and @ =0.6 corresponding to
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strongly impulsive noise. Although the optimal linear
detector given in (Johnson, 1996) is seen to yield the best
detection performance under Gaussian noise as expected,
when the channel noise becomes impulsive as decreases,
the linear detector performance get worse dramatically
compared with other detectors. This result indicates the
necessity of other suboptimal detectors in case the noise
exhibits non-Gaussian behaviour. Moreover, the suboptimal
detector performances need to be analyzed in two regions
according to results in Figure 2 where the soft limiter in
(Sureka and Kiasaleh, 2013) exhibits superior detection
probability compared with sign correlator in (Saleh at al.,
2012) and proposed signed power detector as it is observed
to be a > 1.2. However, when the noise samples have
extreme outliers, especially for @ <1, the signed correlator
and signed power detector performances become apparently
better than soft limiter detector.

“‘“ﬂ\A

o
o —a—Linear
0.7 —a—Sign Correlator
—&—Soft Limiter
——
0.6 {Powfr
0.5

2 1.5 1 0.5

(e}

Figure 2. Variation of P, with respect to stable noise
impulsiveness parameter a;M = 50, GSNR = —8dB.

Therefore, the remaining analyses investigating the effect of
observed pulse length M and SNR are explained under
Gaussian noise and @ —stable noise simulated at two
different characteristic exponent, separately. As an overall
assessment considering entire characteristic exponent range,
the proposed signed power detector is seen to exhibit more
stable behaviour compared with the other sub optimal
detectors sign correlator given in (Saleh et al., 2012) and
soft limiter detector given in (Sureka and Kiasaleh, 2013).
This finding is put forward by evaluating the mean detection
probability and its standard deviation given in Table 1
obtained from the entire range of characteristic exponents.
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Table 1. Mean Detection Performance and its standard
deviation in the range.

Method Mean Value of P, Std. Dev. of P,
Gaussian 0.65 0.1234
Soft Limiter 0.80 0.0296
Sign Correlator 0.81 0.0349
Signed Power 0.82 0.0269

As it can be clearly seen, the best detection performance
with lowest standard deviation can be achieved by the
proposed signed power detector.

3.2. Effect of SNR

The detection probability with respect to signal to noise
ratio is illustrated in Figure 3 under Gaussian noise and in
Figure 4 under SaS noise, respectively. It is seen in Figure
3 that, linear detector has the best detection probability
compared with other detectors. However, when the channel
noise becomes impulsive as the results shown in Figure 4A,
especially for lower value i.e. increased impulsiveness as the
detector performances shown in Figure 4B, the distinctive
degradation on detection performance of linear detector is
apparent although it is optimal under Gaussian case.

0.9
0.8 —&—|inear
a —é&—Sign Correlator
o —&—Soft Limiter
0.7 —&—Signed Power
0.6
0.5

SNR (dB)

Figure 3. Detection probabilities with respect to SNR under

Gaussian noise.

On the other hand, soft limiter detector can be said to
exhibit better detection probability according to Figure
4a compared with other sub-optimal detectors such as
signed correlator and signed power detector when noise
slightly deviates from Gaussian behaviour and soft limiter
detector given in (Sureka and Kiasaleh, 2013) may be a
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reasonable selection rather than other detectors under
moderate impulsiveness. However, if the channel exhibits
strongly impulsive characteristic, the sign correlator (Saleh
et al, 2012) and the proposed signed power detector
performances are observed to be apparently superior to both
linear (Johnson, 1996) and soft limiter (Sureka, Kiasaleh,
2013) detectors as shown in Figure 4B.

1 - A
0.9t
0.8
a —&—Linear
o —a—Sign Correlator
0.7+ ~&—Soft Limiter
‘ —a—Signed Power
0.6
0.5 - : : : ; :
-20 -15 -10 -5 0 5
@A GSNR (dB)
1 a
3
0.9
0.8 —&—|inear
D.D —a—Sign Correlator
~—&—Soft Limiter
0.7 —a— Signed Power
3
0.6
0. T
-20 -15 -10 -5 0 5
GSNR (dB)

Figure 4. Detection probabilities with respect to GSNR under
SasS noise; A) (¢ =1.6), B) (¢ =0.8).

3.3.Effectof M

It is seen that the sub-optimal detectors soft limiter and
sign correlator together with signed power detector are not
critically affected from variation of noise distribution whereas
the linear detector performance degrades dramatically when
the noise distribution becomes impulsive. Rather than the
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method in the literature (Li et al., 2020) which processes
entire data, it is concentrated on instant detection within
the observation length much smaller than pulse length.
Since the observed data length is one of the parameters to
compare detection performance within short time length,
the time-frequency techniques as given in (Liu et al, 2019)
are not considered since the spectral resolution becomes
poor to yield satisfactory result for the signal within short
time interval. Sensitivity of the sub-optimal detectors to the
length of observed pulse length M are shown in terms of
P, and P in Figure 5 and Figure 6 under Gaussian and
SaS noise, respectively. It is clear that the linear detector
achieves the theoretical result and exhibits the best Py — Pr
characteristic among the other detectors as shown in Figure
5 under Gaussian case. As the channel impulsiveness
increases, the linear detector yields the lowest detection
performance for specified M as illustrated in Figure 6A
and 6B, respectively.

1
L '
0.9 3
0.8f ——P_, Linear
0.7} ——P, Theoretical
_._PFA Linear
06} ——P_, Theoretical
—a—P, SC
051 —e—P_ SC
FA
0.4F by S
——P,, SL
0.3F ~8~P, SP
o —o—PFA SP
B
011 4
0 i
0 10 20 30 40 50
M

Figure 5. P, — Pr of detectors as a function of M samples
under Gaussian noise. (SNR = —8dB).

According to the results in Figure 6A, soft limiter has more
sensitivity to the observed pulse length under SaS noise
whereas its performance gets worse than other suboptimal
detectors under stronger impulsive noise condition as
shown in Figure 6B. Additionally, P»—Pr performances
of sign correlator and the proposed signed power detectors
are close to that of soft limiter detector as given in Figure
6A under weak impulsiveness condition and better results
are observed under strong impulsive channel as shown in

Figure 6B.
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0.8
0.7 —s— P, Linear
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06 —a—P, SC
05l _Q_PFA SC
e PD SL
0.4} -l PFA SL
—a—P, SP
0.3 ——P,, SP
0.2 B
0.1F
0 . i .
0 10 20 30 40 50
@ M
1
09r 1
p
0.8r 1
3
0.7 —a— P Linear
—'—PFA Linear
061 —a—P, SC
——
0.5 g —— ——P,, SC
— ¥ v +Pn SL
0.4 ——P., SL
—a—P, SP
L —e—P_, SP
FA
0.2r 1
-3
0.1r
0 . | 1 |
0 10 20 30 40 50
.

Figure 6. Pp— P of detectors as a function of M samples
under SaS noise, (GSNR =—8dB);A) (¢ =1.6),
B) (¢ =0.8).

Nevertheless, one can generally conclude that the given sub
optimal detectors yield notable robust behaviour against
the variation of noise impulsiveness and it can be said that
improved detection performance can be achieved for the

fixed observed pulse length.

4. Conclusions

This paper proposes utilization of the sub-optimal detectors
in detection problem of rectangular pulse in real time within
a limited observation interval when the channel noise is
assumed to be unknown in advance. The proposed approach
is shown to provide a detection mechanism independent of
the noise distribution parameters and can be designed to
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exhibit robust performance against the outlier components
in channel noise. It should be noted that the soft limiter
detector yields a reasonable pulse detection performance
unless the channel exhibits strongly impulsive characteristic.
'The sign correlator and the proposed signed power detectors
come forward if the impulsive outlier samples become
dominant in observed data. In terms of different channel
noise distribution conditions, the proposed detector can be
said to exhibit better detection performance with smaller
fluctuation, i.e., more robust stability in detection probability
and this can be considered as superiority compared with
other sub-optimal detectors.
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