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ABSTRACT 
In the paper the conditions are obtained providing existence and 
uniqueness of the regular solution of the boundary problem for class 
of the second order homogeneous operator-differential equation 
with singular coefficients. High term of the equation contains the 
normal operator the spectrum of which is contained in the certain 
sectors.  Further, it is proved the theorem of internal compactness of 
space of regular solutions of the considered problem. 
 

Bir Homojen Sınır-Değer Probleminin İç Kompaktlığı Üzerine 
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ÖZET 

Makalede ikinci mertebe katsayıları singüler (tekil)  olan homojen 
operator diferansiyel denklemler sınıfı için bir sınır değer 
probleminde  regüler (düzgün) çözümlerin varlığı ve tekliğini 
garanti eden koşullar bulunmuştur. Denklemin yüksek terimi, spektri 
belli bir sektörde olan normal operator içermektedir. Daha sonra, ele 
alınan problemin regüler çözümleri uzayının iç kompakt olduğu 
kanıtlanmıştır. 
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1 INTRODUCTION 
 
We consider the boundary problem for 
homogeneous operator-differential equation in 
separable Hilbert space H  
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 moreover 0>0,> βα , operator coefficients 

A  and 0,1,2)=( jAj  satisfy the following 

conditions 
 1) A  is normal, with quite continuous inverse 

1−A  operator, spectrum of which is contained in 
a corner sector, 
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Further we introduce the space e.g. [1] 
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Then from the trace theorem it results that 
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Definition. If for any  

23/H∈ϕ  there exists the 

vector-function )(tu  which satisfies (1), and 
boundary condition (2) in the sense 
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also the estimation takes place 
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then )(tu  is called a regular solution of the 
problem (1),(2), and the problem (1),(2) is called 
regular solvable. 
 
We shall note that when the equations are not 
homogeneous and βα =1,=0A =1 this 
problem is investigated in [2], when 

0>,= * ccEAA ≥ , at βα ≠1,=0A  in 

[3]. When the equation is non homogeneous 
boundary problem (1),(2) is investigated [4] and 
resolvability of the equation (1) on all axis it is 
considered in [5] . 
 
2  Determination of the reguler solution 
 
 First we shall consider the problem 
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 Let's seek the regular solution of the problem (3), 
(4) in the form 
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where 321 ,, ccc  - are unknown elements from 

23/H . From the condition (4) and inclusion 

);()( 2
20 HRWtu +∈  it is obtained the 
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following system of the equations relatively 21,cc  

and 3c  : 
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or in an operational 
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As we have shown )(0 AΔ  that it is 

HHHH ××=3 (see . [4]), therefore, we 
shall unequivocally define 21,cc  and 3c . They 

belong 
23/H , as 

23/H∈ϕ . It is obvious, 

that 
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Now we consider the boundary problem (1),(2). 
For this purpose we take 
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Applying , the theorem of intermediate derivatives, [1] we have 
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Thus, we have reduced a boundary problem 
(1),(2) to the non homogeneous boundary 
problem with a zero boundary condition. Thus 
following theorem is valid. 
 
Theorem 1. Let the operator A  satisfies the 
condition 1), but operators 

0,1)=(= jAAB j
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, moreover 
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Then boundary problem (1), (2) is regularly solvable. 
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3  MAIN RESULT 
 
 Now we shall study one property of 
homogeneous regular solutions. Let numbers 

bbaa ,,, 11  be such, that 
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Denote by )(PN  the space of regular solutions 
of the boundary problem (1), (2). It is obvious, 
that )(PN - linear full subspace in 
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 0>M  , the set 
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),(|  is 

compact on norm 
 ));1,1((1

2 HbaWu we say speak, that space of 

regular solutions of the problem (1), (2) is 
internally compact. 

We note, that definition of internal compactness 
for the first time has entered P.D.Laks [6]. At 
different situations of interior compactness of 
solutions the considered works [7, 8]. Following 
P.D.Laks's [6] work, we have entered concept of 
interior compactness of the solutions of the 
homogeneous equations. 
 
Theorem 2. A condition of the theorem 1 let 
satisfied. Then the space of regular solutions of a 
problem (1), (2) is internally compact. 
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As 0=)(tϕ  at bt ≥ , at ≤  and )(tu  - the regular decision, 
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Hence, for anyone bbaa <<<<0 11 we have: 
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2 . Thus, we have proved internal 

compactness of decisions of a problem (1), (2). The theorem is proved. 
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