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ABSTRACT. We consider the Klein-Gordon equation with non-zero initial data in anti-de Sitter spacetime. L™ decay
estimate is derived for the solutions to the linear Klein-Gordon equations in the anti-de Sitter spacetime without
source term.
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1. INTRODUCTION

In this manuscript, we contribute Cauchy problem for the Klein-Gordon equation in anti-de Sitter spacetime:

[ +nl—#AT+m’T =0, (x,f)e R"XR,
(1.1
[(x,0) =wo(x), Ti(x,0)=wi(x), xeR",

where wy, w; are in Sobolev space win2HL2(R™) and m > 0. The anti-de Sitter model of the universe is to describe
the spatial contraction. The derivation of the equation in (1.1) is given in [5] and [7]. For the sake of completeness, we
give a brief summary that how the equation is deduced. In de Sitter spacetime describing the spatial expansion of the
model of the universe the line element has the following form,
2 ”\ . P\ 2, 20732 2 2
ds® = —(1 - ﬁ)dt +(l - 1?) dr® + r-(da” + sin” adf”).

Here, R denotes the universe radius. If the spherical coordinates and Lemaitre-Robertson transformation are used as
in [3], the line element has the following form

ds* = —dt* + &M (dx% +dx3 + dx%) . (1.2)
where we put H = 1/R. In the 7 spatial dimensional case, we may write (1.2) as ds*> = —dt* +e*!!! (dx% + ...+ dxﬁ) . For

the sake of simplicity, we take H = 1. Hence we get the following diagonal matrix; (g;;)o<i,j<» := diag(-1, e, ... e*)
for the line element. If we apply the determinant g := det(g)o<ik<n, and (g”‘)og,ksm the inverse matrix of (gix)o<ik<n tO

the following equation
1 0 % OF )
i k) = mT,
. («/Iglg M) m
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we get the following equation
[ +nl,—eAT+m’T =0 (x,f) e R"XR, (1.3)
where xj := t. If we set i/ = ¢2'T, the equation (1.3) has the following form in de Sitter spacetime

U —e XAy + T =0, (1.4)

where 72 := m?> — n?/4 and m > 0. The equation (1.4) converts to the following equation

Yy — XAy + 729 =0,

with the inverse transformation of the time from 7 to —¢ that is regarded as the equation in anti-de Sitter spacetime (see

e.g., [5D.
The following problem in de Sitter spacetime;

Ty +nl+ e AT +m*T = f, T(x,0) = wo(x), Ty(x,0) = w(x), (1.5)

where f € C(R"*!) has been extensively investigated. In [6], Yagdjian and Galstian showed L? — L9 decay estimate for
the case n/2 < m to the solution of the problem (1.5);

n _ _ o—p(l_1 t —
8T D)y < Ce21+ 0121 = G0 o4 i) + (1= ) 1ll )

1

! s—n(1-1 .
+Ce f 8t (e = )T bl (14 £ by
0

forz>0whenl < p<2, i + }] =1, 3(n+ 1)(% - é) <2s< n(% - é) < 2s+ 1. In [8], Yagdjian proved the following

LP — L1 decay estimate to the solution of (1.5);

; _n — s—n(L-1 —
18T D)y < €271 = G gl + (1 =€) ol

Dlgaces

!
+ Co-4-Nr f oMb b2s-n(E=1) | £ B)loqan, b
0

forall > 0and 0 < m < Vn2 — 1/2 provided that 1 <ps2,1-1,+§=1,%(n+1)(§—§)s2ssn(§—§)<zs+1.

In [4], Nakamura showed the energy estimate for the initial value problem (1.5) for the case m > n/2. In [11], the
solution of the problem (1.5) has the following L™ estimate

15
ITC Dl < Ce ™2 {llwollyinzrons any + ot llgtnziens ey} + Ce™ " f TP FC D)y b, (1.6)
0

for (x,7) € R" x (0, ), where wg,w; € Co(R") for the case m < Vn?—1/2 and n > 2. Here, we have set N =

Here, we define the Sobolev space as WAS(R") = {u € L*(R") : D% € L*(R"), |a| < k}, with the following norm

1/s
2 f |D“u|é'] L (ss<o),
RYI

lor|<k

||M||Wk~A(R") = [

lleel oo oy = Z ess sup [D7ul.
i<k ®

Galstian and Yagdjian [2] consider the initial value problem for
Ty+nl—e A, )T +m’T = f, t>0, xeR",

in the Besov space B,?, where A(x,8,) = Y42 da(x)0 is a second-order negative elliptic differential operator with
real coeflicients a, € 8% and m € (0, Vn2 — 1/2) U [n/2, o) to show the similar estimates. Here, B> denotes the space
which contains the functions with uniformly bounded derivatives of all orders in C®. For m € (Vn2 — 1/2,n/2), decay
estimates are also considered by Yagdjian [9] in the Besov space.

Returning to anti de-Sitter spacetime, the next theorem proved by Galstian [1] provide the inequality.
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Theorem 1.1. Let ¥ = y(x,t) be the solution of the initial value problem

Yu =AY+ 7Y = fo Y(x,0) = wo, Yil(x,0) = w; (1.7)
for (x,1) € R" X (0, 00), where f € C°(R"™™"). Let m > n/2 and n > 2. Then, there exists a constant C > 0 such that

1

(=) w, t)”Lq(R”) < C(e' - )4) {”wO“LP(R") +(1—e (1 +p)'7eT ”LUIHLP(R")}
+ celPr-3) f £ Co )l gy (1 + £ = B) "l
0

forallt > 0and 5 < m when 1 <p£2,%+ = 1,%(n+1)(%—%])SZsSn(%—}])<2s+l.Here,wehaveset

1
q
T= /m? - "72.

It is proved in [10] that for the solution of (1.7) with zero initial conditions, the following decay estimate holds with

the case n/2 < m,

!
W Dll oy < C f LG By (1 4+ 1= 6) =27,
0

T

The decay estimate is an essential technique for showing the global existence of nonlinear partial differential equa-
tions. Therefore, we consider the L™ decay estimate for the solution of (1.1). In this manuscript, we deal with the case
of m > n/2 and prove the following theorem.

where (x,7) € R" x (0,00), f € C*(R™!), n>2and 7 = Jm? - 2

Theorem 1.2. Let & = ¥ (x,t) be the solution of the initial value problem

Uu— Ay + 7Y =0, Y(x,0) = wo(x), ¥i(x,0) = wi(x) (1.8)
Jor (x,1) € R" X (0, 00), where wy, wy € C7(R"). Then, there exists a constant C > 0 such that
I Dl ny < C {lwolltoonagen + (1 + 8 E (1 = €™ lwy Iy e | (1.9)

forallt > 0. Here, we have set T = AJm? = %.

Throughout this manuscript, the same letters C and Cj, are used to indicate the positive constants that can vary.

2. THE KELIN-GorDON EqQuaTION

In this section, we take into account the solutions in (1.1) which were given by Yagdjian-Galstian [7]. For (xo, fy) €
R"*!, the backward and forward light cones are denoted by

D_(xo.10) :={(x,) €R™" : |x = x| < € €'},
D, (x0, %) := {(x, HeR™ : |x—xo|<eé - e’”},

respectively. The function, introduced by Yagdjian-Galstian [7] and Galstian [1] is given as

1 fo 2 2
- ; 2 n-3-ir (1 1 (e —e")” —|x — xol
B(x, t; X0, ty) := (4e'*! ’T(et°+e’ —|x = xo ) Fl=+ir,= +it; 1; ,
( )= ” - | 2 2 (e + e0)2 — |x — xof?

for (x,f) € D_U D,, where T = /m? — % and (x — xo)? is the inner product for x, xo € R". The function is crucial for
the solution of (1.1). Here, F(v, y; z; {) describes the hypergeometric function denoted by the power series

O (Da)a &

F(v,y;z;g“):n:() BT

Il < 1,

where v,y,z € Cwithz # 0,-1,-2, ..., and

o =1,
Wy =vy+D...v+n-1), n=1,2,3,...
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The kernels Ny(z, f) and N (z, 7) are set by Yagdjian-Galstian [7] and Yagdjian [1] as follows
0
No(z,1) :== — [—E(Z, 1,0, b)]
ob b0
. —ir—1 —
— _(4et)lT ((l + et)2 _ ZZ) 2 ((1 _ el‘)z _ Z2) 1
X [(e’ —1-ir(e® - 1-2%))

1 1 (1 —¢)? - 22
XxFl=+ir,= +in; 1, ————=
(2 T A vy -2

1
+(1-e"+ 12)(5 - i‘r)
[ S (e et
XF(—§+IT,§+IT,1,m ]
and
Ni(z,1) := E(z,1;0,0)
1_; t 2 2
_ 1NiT n2 2\ 27T o1 -,.(e_l) —Z
= (4¢€") ((1+e) —z) F(§+z‘r,§+l‘r,l,m,
where 0 < z < ¢’ — 1. Thus, the solution ¢ = ¥(x, f) of (1.8) is given by Yagdjian-Galstian [7] as follows
1

1
Y(x, 1) = e‘éﬁw(](x, o(t) + 2f By (X, () )R (0 (D)5, t)o(t)ds + 2f P, (X, (@) )N 1 (0 () s, 1) (t)dSs, 2.1
0 0

where o(¢) := ¢’ — 1 with 7 > 0. Here, for w € CyR™), B,(x, 1) is the solution of the following wave equation with the
initial conditions,
I —AI =0, Hx0)=wkx), FHhx0 =0 (x1)eR"x(0,c0). 2.2)

3. L EsTIMATE FOR THE KLEIN-GORDON EQUATION

In this section, we derive the L™ estimate of the initial value problem for the Klein-Gordon equation in anti-de Sitter
spacetime. We need to use the following two lemmas to show the estimate.

Lemma 3.1. Let v > 0 and o(t) = ' — 1. Then

1
f a1+ a'(t)s)’% N1 (o (D)5, D o (D)ds < Cpg(1 + 1) 7(1 — &™) 3.D
0
forallt> 0.

Proof. If we set r = 1 + o(f)s and use the definition of N, we obtain

t

1 ¢
f 1+ 0097 [Ni(o®)s, D o(n)ds = f T (e - (= DY)
0 1

F(l 1 (1—ef)2—(r—1)2)

X dr

LIS
2 T T e — (o 1)

s

e'—1 t 2 2

N e T el R

<C 412 —y? éF—+ =+t ————
< L ((e ) ) ) I, > T (er+1)2_y2

where y = r — 1 variable changing is used in the last inequality. In [1], the integral in the last inequality is estimated as

e’ —1 . 5 5
1 1 —1)2 -
f (¢ + D =y F(_+iT,—+iT;1;(e T )
0

2 2 (el +1)2 —y?
for 7 > 0. Hence, we have

dy < Cpy(1 + 0757 = (e + 1)7!

1
f (1 +0(0)s) 7 IN1(o(D)s, D (s < Coy(1 + 1) 77! = 1)(e' + 1),
0
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which leads to (3.1). |

Lemma 3.2. Let v > 0 and o(t) = €' — 1. Then,

1
f (1 + 0 ()s)""T [No(o ()5, D) o(t)ds < Cae(1 — ™)
0

forallt > 0.

Proof. Since the proof is similar to the previous one, we obtain

-1

1 o —1
f (1+0(0)s)™7 No(e(t)s, Dl o(dds < C f (e + 1 =y (¢ = 1) =y?)
0 0

T )
w) (3.2)

1 1
X [(et —1-ir(e® -1 —yz))F(z +it, — +it; 1;

2 (e +1)2 —y?

t_12_2
e -y y)]dy,

1 1 1
2t 2 ; j iIT;
+(1-e*+y )(5_’7)F(_§+’T’§+lT’1’(e’+1)2—y2

where we have set o(f)s = y. In [1], the estimate of the integral in the right hand side of (3.2) yields the following
inequality

e'—1
[ e =t e - -y

1 1 (¢ - 1)* —y*
. .2 2 . 1.

X [(e’—l—zr(e’—l—y))F(§+1T,§+lT,1,(e,+1)2_y2)

1 11 (-1 —y?

%2 1.
+(1_e +y)(E—lT)F(—E+lT,§+lT,1,(et+1)2_y2)]
<Cy(l-e€
forall ¢ > 0. .

Proof of Theorem 1.2. The solution of (1.8) in the case of w; = 0 is first considered. From (2.1), we have

Y(x, 1) = e_5t9w0(x, o) +2 fo‘ 1 D, (X, (@) )R (07 (2) s, o (t)ds,
Then, we get
s Dllzesceny < €2 Wy (o TNl ey + 2f01 [0, (., (D92 [No (0 ()5, D] 07 (D)ds.
Here, we remark from [12] that the solution J(x, ¢) of (2.2) satisfies the estimate
B Dllzsry < CA+ 07T [lwllygimarons oy (3.3)
fort > 0,if n > 2. For all > 0, from (3.3) we have

_1 i _ut
e 2|[Puy (., o@)llpo@ny < Ce2(1 + 0 ()™ 2 llwollwimarri gy

(3.4
< Cllwollwwigny,
where o(f) = e’ — 1. On the other hand, from (3.3) we obtain
1 1
2[ 18w (., (@Ol [Ro(a (D)5, D] o (t)ds < Cllwollwwﬂﬂ-l(Rn)f (1 + o(0)5)™"% [Ro(a(t)s, Dl (t)dss.
0 0
From Lemma 3.2, we have
1
f 1+ o'(t)s)_% IRo(o(®)s, D o (H)ds < C(1 —e™"). 3.5)
0

Hence, from (3.4) and (3.5) we get
”(J/(, t)“Loo(Rn) < C ||(L)()||W[n/2]+l.l(Rn) (36)
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for wy = 0. If we consider the case wy = 0, from (2.1), we have

1
U(x, 1) = 2f B, (X, () )N (0°(D)s, o (2)d s.
0

From (3.3) we obtain

1 1
2f [, (., 0@ 9|y N1 (0 (D)5, Dl o (D)ds < C||wl||Wl"/21+‘~‘(R“)f (1+0(0s)™% Ni(0(0)s. Do (0)ds.
0 0

From Lemma 3.1, we have

1
f 1+ o-(t)s)’% N1 (0 (D)s, B) o (t)ds < C(1 + 1) €7 (1 — ™).
0

Hence, we obtain
(s Dl oy < C(1 + NI — ™) lwt llwnarera gy « 3.7
Thus, (3.6) and (3.7) leads to (1.9). O
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