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This work focuses on presenting a reliable method, called fractional homotopy pertur-
bation transform method (FHPTM) to solve nonlinear Naviers Stoks equations with the
Caputo type fractional derivatives. The (FHPTM) is a combination of Laplace transform
and homotopy perturbation method (He -Laplace method). He’s polynomial is used to
simplify the nonlinearity which arise in our considered equation. Furthermore, three
numerical examples are presented, it is supported by graphs and tables to compare solu-
tions with little computational effort, which confirms the effectiveness and accuracy of
the current method.

1. Introduction

The origins of the theory of derivative and integrals of non-integer order go back to the end of the 17th century,
when Isaac Newton and Gottfried Wihelm Leibniz developed the foundations of differential and integral calculus.
The merit of the first conference is attributed to B. Ross who organized it at the University of New Aven in June
1974 and the conference was intitled ”Fractional calculus and its applications”. For the first study, another credit
is given to KB. Oldham and J. Spanier [1] who published a book in 1974. Fractional calculus has spread widely
in recent years. Actually, concrete applications, for example, measuring memory with the order of fractional
derivative [2]. There are several definitions of a fractional derivative of order α [3]. The fractional derivative
also appears in many fields such as, viscoelasticity [4], magnetohydrodynamic [5], mechanics [6], and other
applications [7–10]. Because of many phenomenon in our reality are manifested by differential equations, the
focus is on finding exact or approximate solutions to these equations in several methods, such as the tanh method
[11], finite difference method [12], Runge–Kutta method [13], etc. Many authors have focused on studying the
solutions of fractional partial differential equations (FPDEs) using various methods combined with the Laplace
transform. Among these are the homotopy perturbation transform method [14–19], it provides solutions in the
form of an infinite series, and the resulting series can converge to a solution in closed form if the exact solution
exists. The Navier-Stokes (NS) equation is one of the most important equations. This equation describes many
physical things such as ocean currents and fluid flow in tubes [20]. Several procedures have been presented to solve
(NS) equation with fractional order, by discrete Adomian decomposition method [21], in [22] by FRDTM, [23]
using a new homotopy perturbation transform method, modified Laplace decomposition method in [24], authors
of [25], by Adomian decomposition method, the homotopy analysis method in [26], He’s variational iteration
method in [27], etc. The main objective of this work is to apply the fractional homotopy perturbation transform
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method (FHPTM), to build analytical and approximate solutions for the fractional Navier-Stokes equation (FNS)
for an incompressible fluid flow, including the fractional derivative in the sense of Caputo, with 0 < α ≤ 1, as
follows [21, 22]. 

Uα
t +UUx +VUη +WUz = ρ0(Uxx +Uηη +Uzz)− 1

ρ
px,

V α
t +UVx +VVη +WVz = ρ0(Vxx +Vηη +Vzz)− 1

ρ
pη ,

W α
t +UWx +VWη +WWz = ρ0(Wxx +Wηη +Wzz)− 1

ρ
pz,

(1)

where (U,V,W ), t, p, denote the fluid vector at the point (x;η ;z), time and the pressure, respectively, ρ is the
density, ρ0 denotes the kinematic viscosity of the flow.

2. Basic procedure of (FHPTM)

This section describes the implementation of (FHPTM) [14–19], we consider a general (FPDEs) with initial
conditions of the form

Dα
t Ψ(x, t)+RΨ(x, t)+NΨ(x, t) = ϕ(x, t), m−1 < α ≤ m, m ∈ N∗, (2)

∂ kΨ(x,0)
∂ tk = Ψ

(k)(x,0),k = 0,1,2, ...,m−1,

where ϕ is the source term, N represents the general nonlinear differential operator and R is the linear differential,
and Dα

t Ψ(x, t) denotes the Caputo fractional derivative of order α of function Ψ which is defined as

Dα
Ψ(x, t) =

{
Ψ(n)(x, t), α = n,
1

Γ(n−α)

∫ t
0(t − τ)n−α−1Ψ(n)(x,τ)dτ, n−1 < α < n, n ∈ N. (3)

Γ(.) indicates the Gamma function define by,

Γ(z) =
∫

∞

0
tz−1e−tdt, Re(z)> 0. (4)

The properties of fractional calculus theory due to Liouville and Laplace transform can be found [1, 6–9] . Oper-
ating the Laplace transform (denoted throughout this paper by L and its inverse transformation by L −1) on both
sides of Eq.(2), gives

L [Dα
t Ψ(x, t)]+L [RΨ(x, t)]+L [NΨ(x, t)] = L [ϕ(x, t)]. (5)

By using the formula (6) bellow

L [Dα
Ψ(x, t)] = sαL [Ψ(x, t)]−

m−1

∑
k=0

sα−k−1
Ψ

(k)(x,0), m−1 < α ≤ m, (6)

in the above Eq.(5), we have

sαL [Ψ(x, t)]−
m−1

∑
k=0

sα−k−1
Ψ

(k)(x,0)+L [RΨ(x, t)]+L [NΨ(x, t)] = L [ϕ(x, t)], (7)

simplify more

L [Ψ(x, t)] =
m−1

∑
k=0

Ψ(k)(x,0)
sk+1 +

1
sα

L [ϕ(x, t)]− 1
sα

L [RΨ(x, t)]− 1
sα

L [NΨ(x, t)]. (8)

Operating L −1 on the above equation Eq. (8), we get

Ψ(x, t) = Φ(x, t)−L −1
[

1
sα

L [RΨ(x, t)]+
1
sα

L [NΨ(x, t)]
]
, (9)

where Φ(x, t) represents the term arising from the source term and the prescribed initial conditions. Now, by
(HPM) technique [28, 29]

Ψ(x, t) =
+∞

∑
n=0

pn
Ψn(x, t), (10)
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and

NΨ(x, t) =
+∞

∑
n=0

pnHn(Ψ), (11)

where p ∈ (0,1) is an embedding parameter and Hn is the He’s polynomials shown below see [30, 31]

Hn(Ψ0, · · ·,Ψn) =
1
n!

∂ n

∂ pn

[
N

(
+∞

∑
i=0

(pi
Ψi)

)]
p=0

,n = 0,1,2,3, · · · (12)

Substituting the values of Ψ(x, t) and NΨ(x, t) in Eq. (9) we get

+∞

∑
n=0

pn
Ψn(x, t) = Φ(x, t)− pL −1

{
1
sα

L

[
R

(
+∞

∑
n=0

pn
Ψn(x, t)

)
+N

(
+∞

∑
n=0

pn
Ψn(x, t)

)]}
, (13)

we obtain the following recurrence relation by equating the terms with identical powers in p.

p0 : Ψ0(x, t) = Φ(x, t),

pn+1 : Ψn+1(x, t) =−L −1
[

1
sα

L [RΨn(x, t)]+Hn(Ψ)

]
,n ≥ 0.

(FHPTM) describes the solution of infinite series

Ψ(x, t) =
+∞

∑
n=0

Ψn(x, t). (14)

3. Numerical results and discussion

Now, we present three examples to illustrate the method and its accuracy.
Example 1: Consider 2-dimensional (FNS) equation with 0 < α ≤ 1 [22]:

Uα
t +UUx +VUη = ρ0 (Uxx +Uηη)+q,

V α
t +UVx +VVη = ρ0 (Vxx +Vηη)−q,

(15)

along with the following initial conditions

U(x,η ,0) =−sin(x+η), V (x,η ,0) = sin(x+η). (16)

Operating L on the above in Eqs. (15), we get

L [DαU(x,η , t)]+L [UUx +VUη ] = L [ρ0 (Uxx +Uηη)+q],
L [DαV (x,η , t)]+L [UVx +VVη ] = L [ρ0 (Vxx +Vηη)−q].

(17)

Now, by using the formula (6) for m = 1, in the above Eqs. (17), we have

sαL [U(x,η , t)]− sα−1U(x,η ,0)+L [UUx +VUη ] = L [ρ0 (Uxx +Uηη)+q],
sαL [V (x,η , t)]− sα−1V (x,η ,0)+L [UVx +VVη ] = L [ρ0 (Vxx +Vηη)−q].

(18)

We find more detailed

L [U(x,η , t)] =
[
−sin(x+η)

s + q
sα+1

]
− 1

sα L [UUx +VUη ]+
1
sα L [ρ0(∇

2U)],

L [V (x,η , t)] =
[

sin(x+η)
s − q

sα+1

]
− 1

sα L [UVx +VVη ]+
1
sα L [ρ0(∇

2V )].
(19)

where ∇2 = ∂

x2 +
∂

η2 . Thus, we apply L −1, to the above Eqs. (19), we get

U(x,η , t)] =−sin(x+η)+ qtα

Γ(α+1) −L −1
{ 1

sα

[
L [UUx +VUη ]−L [ρ0(∇

2U)]
]}

,

V (x,η , t) = sin(x+η)− qtα

Γ(α+1) −L −1
{ 1

sα

[
L [UVx +VVη ]−L [ρ0(∇

2V )]
]}

,
(20)
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by, substituting (10) and (11) in (20), we find

∑
+∞

n=0 pnUn =−sin(x+η)+ qtα

Γ(α+1) − pL −1
{ 1

sα

[
L [Hn(U,V )]−L [ρ0(∇

2
∑
+∞

n=0 pnUn)]
]}

,

∑
+∞

n=0 pnVn = sin(x+η)− qtα

Γ(α+1) − pL −1
{ 1

sα

[
L [Kn(U,V )]−L [ρ0(∇

2
∑
+∞

n=0 pnVn)]
]}

,
(21)

where Hn(U,V ), and Kn(U,V ) are He’s polynomials that represent nonlinear term UUx +VUη and UVx +VVη ,
respectively, the first terms for Hn and Kn are given by

H0 =U0U0x +V0U0η

H1 =U0U1x +U1U0x +V0U1η +V1U0η

H2 =U0U2x +U1U1x +U2U0x +V0U2η +V1U1η +V2U0η

...

Similarly

K0 =U0V0x +V0V0η

K1 =U0V1x +U1V0x +V0V1η +V1V0η

K2 =U0V2x +U1V1x +U2V0x +V0V2η +V1V1η +V2V0η

...

Comparing the coefficient of like powers of p, in (21) we have

p0 : U0(x,η , t) = −sin(x+η)+
qtα

Γ(α +1)
,

V0(x,η , t) = sin(x+η)− qtα

Γ(α +1)
,

p1 : U1(x,η , t) = −L −1
{

1
sα

[
L [H0]−L [ρ0(∇

2U0)]
]}

,

= sin(x+η)
2ρ0tα

Γ(α +1)
,

V1(x,η , t) = −L −1
{

1
sα

[
L [K0]−L [ρ0(∇

2V0)]
]}

,

= −sin(x+η)
2ρ0tα

Γ(α +1)
,

p2 : U2(x,η , t) = −L −1
{

1
sα

[
L [H1]−L [ρ0(∇

2U1)]
]}

,

= −sin(x+η)
(2ρ0)

2t2α

Γ(2α +1)
,

V2(x,η , t) = −L −1
{

1
sα

[
L [K1]−L [ρ0(∇

2V1)]
]}

,

= sin(x+η)
(2ρ0)

2t2α

Γ(2α +1)
,

p3 : U3(x,η , t) = −L −1
{

1
sα

[
L [H2]−L [ρ0(∇

2U2)]
]}

,

= sin(x+η)
(2ρ0)

3t3α

Γ(3α +1)
,

V3(x,η , t) = −L −1
{

1
sα

[
L [K2]−L [ρ0(∇

2V2)]
]}

,

= −sin(x+η)
(2ρ0)

3t3α

Γ(3α +1)
,
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The solution of Eqs. (15,16) is given by

U(x,η , t) = −sin(x+η)
+∞

∑
k=0

(−2ρ0tα)k

Γ(kα +1)
+

qtα

Γ(α +1)

= −sin(x+η)Eα,1(−2ρ0tα)+
qtα

Γ(α +1)

V (x,η , t) = sin(x+η)
+∞

∑
k=0

(−2ρ0tα)k

Γ(kα +1)
− qtα

Γ(α +1)

= sin(x+η)Eα,1(−2ρ0tα)− qtα

Γ(α +1)
.

For α = 1 and q = 0, the exact solution of Eqs. (15,16) reduces to

U(x,η , t) =−sin(x+η)e−2ρ0t , V (x,η , t) = sin(x+η)e−2ρ0t .

The fourth approximate solution is

U4 =−sin(x+η)

(
1− 2ρ0tα

Γ(α +1)
+

4ρ2
0 t2α

Γ(2α +1)
−

8ρ3
0 t3α

Γ(3α +1)

)
,

V4 =−U4.

4. Tables and Figures

Table 1: Numerical results for Example 1 when ρ0 = 0.5, for various values of α.

α = 0.75 α = 0.75 α = 0.9 α = 0.9 α = 1 α = 1
(x,η) t Exact U U4 Exact V V4 U4 V4 U4 V4

(0.1,0.3) 0.1 -0.3524 -0.3225 0.3524 0.3225 -0.3420 0.3420 -0.3524 0.3524
0.2 -0.3188 -0.2848 0.3188 0.2848 -0.3059 0.3059 -0.3188 0.3188
0.3 -0.2885 -0.2556 0.2885 0.2556 -0.2754 0.2754 -0.2884 0.2884
0.4 -0.2610 -0.2310 0.2610 0.2310 -0.2487 0.2487 -0.2607 0.2607
0.5 -0.2362 -0.2089 0.2362 0.2089 -0.2248 0.2248 -0.2353 0.2353

(0.5,0.4) 0.1 -0.7088 -0.6487 0.7088 0.6487 -0.6878 0.6878 -0.7088 0.7088
0.2 -0.6413 -0.5729 0.6413 0.5729 -0.6153 0.6153 -0.6413 0.6413
0.3 -0.5803 -0.5142 0.5803 0.5142 -0.5540 0.5540 -0.5801 0.5801
0.4 -0.5251 -0.4646 0.5251 0.4646 -0.5003 0.5003 -0.5243 0.5243
0.5 -0.4751 -0.4203 0.4751 0.4203 -0.4521 0.4521 -0.4733 0.4733

Figure 1: The exact U and U4 for Example 1. when t = 0.5, α = 1, ρ0 = 0.5, and q = 0.
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Table 2: Absolute error in Example 1, when ρ0 = 1, for various values of α.

α = 0.75 α = 0.9 α = 1
(x,η) t |U −U4|= |V −V4| |U −U4| |U −U4|

(0.1,0.3) 0.1 0.0499 0.0181 0.000025
0.2 0.0529 0.0203 0.000384
0.3 0.0567 0.0209 0.001874
0.4 0.0709 0.0249 0.005711
0.5 0.1004 0.0359 0.013453

(0.5,0.4) 0.1 0.1004 0.0365 0.000050
0.2 0.1065 0.0408 0.000773
0.3 0.1140 0.0420 0.003769
0.4 0.1425 0.0502 0.011485
0.5 0.2019 0.0723 0.027061

Figure 2: The exact V and V4 for Example 1. when t = 0.5, α = 1, ρ0 = 0.5, and q = 0.

Figure 3: U4 and V4 for Example 1., when t = 0.5, α = 0.8, ρ0 = 0.5, and q = 0.

Example 2: Consider 2-dimensional (FNS) Eq. (15) subject to the following initial conditions [22]:

U(x,η ,0) =−ex+η , V (x,η ,0) = ex+η , (22)

as shown in Example 1, we have

∑
+∞

n=0 pnUn =−ex+η + qtα

Γ(α+1) − pL −1
{ 1

sα

[
L [Hn]−L [ρ0(∇

2
∑
+∞

n=0 pnUn)]
]}

,

∑
+∞

n=0 pnVn = ex+η − qtα

Γ(α+1) − pL −1
{ 1

sα

[
L [Kn]−L [ρ0(∇

2
∑
+∞

n=0 pnVn)]
]}

.
(23)
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Then, we get

p0 : U0(x,η , t) = −ex+η +
qtα

Γ(α +1)
,

V0(x,η , t) = ex+η − qtα

Γ(α +1)
,

p1 : U1(x,η , t) = −ex+η 2ρ0tα

Γ(α +1)
,

V1(x,η , t) = ex+η 2ρ0tα

Γ(α +1)
,

p2 : U2(x,η , t) = −ex+η (2ρ0)
2t2α

Γ(2α +1)
,

V2(x,η , t) = ex+η (2ρ0)
2t2α

Γ(2α +1)
,

p3 : U3(x,η , t) = −ex+η (2ρ0)
3t3α

Γ(3α +1)
,

V3(x,η , t) = ex+η (2ρ0)
3t3α

Γ(3α +1)
,

The solution of Eqs.(15,22) is given by

U(x,η , t) = −ex+η
+∞

∑
k=0

(2ρ0tα)k

Γ(kα +1)
+

qtα

Γ(α +1)
,

= −ex+ηEα,1(2ρ0tα)+
qtα

Γ(α +1)
.

V (x,η , t) = ex+η
+∞

∑
k=0

(2ρ0tα)k

Γ(kα +1)
− qtα

Γ(α +1)
,

= ex+ηEα,1(2ρ0tα)− qtα

Γ(α +1)
.

For α = 1 and q = 0, the exact solution of Eqs. (15,22) reduces to

U(x,η , t) =−ex+η+2ρ0t , V (x,η , t) = ex+η+2ρ0t .

Example 3: Consider 3-dimensional (FNS) equation [22]:

Uα
t +UUx +VUη +WUz = ρ0 (Uxx +Uηη +Uzz) ,
V α

t +UVx +VVη +WVz = ρ0 (Vxx +Vηη +Vzz) ,
W α

t +UWx +VWη +WWz = ρ0 (Wxx +Wηη +Wzz) ,
(24)

along with the following initial conditions

U(x,η ,z,0) =−0.5x+η + z,V (x,η ,z,0) = x−0.5η + z,W (x,η ,z,0) = x+η −0.5z. (25)

Operating L on both sides of Eqs.(24), we get

L [DαU(x,η ,z, t)]+L [UUx +VUη +WUz] = L [ρ0 (Uxx +Uηη +Uzz)],
L [DαV (x,η ,z, t)]+L [UVx +VVη +WWz] = L [ρ0 (Vxx +Vηη +Vzz)],

L [DαW (x,η ,z, t)]+L [UWx +VWη +WWz] = L [ρ0 (Wxx +Wηη +Wzz)].
(26)

Using the formula (6) for m = 1, in the above Eqs.(26), and applying L −1, we have

U(x,η ,z, t) =−0.5x+η + z−L −1
{ 1

sα

[
L [UUx +VUη +WUz]−L [ρ0(∇

2U)]
]}

,

V (x,η ,z, t) = x−0.5η + z−L −1
{ 1

sα

[
L [UVx +VVη +WVz]−L [ρ0(∇

2V )]
]}

,

W (x,η ,z, t) = x+η −0.5z−L −1
{ 1

sα

[
L [UWx +VWη +WWz]−L [ρ0(∇

2W )]
]}

,

(27)
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where ∇2 = ∂

x2 +
∂

η2 +
∂

z2 . Assume that with homotopy perturbation method, we get

∑
+∞

n=0 pnUn =−0.5x+η + z− pL −1
{ 1

sα

[
L [Hn]−L [ρ0(▽2

∑
+∞

n=0 pnUn)]
]}

,

∑
+∞

n=0 pnVn = x−0.5η + z− pL −1
{ 1

sα

[
L [Kn]−L [ρ0(▽2

∑
+∞

n=0 pnVn)]
]}

,

∑
+∞

n=0 pnWn = x+η −0.5z− pL −1
{ 1

sα

[
L [Jn]−L [ρ0(▽2

∑
+∞

n=0 pnWn)]
]}

,

(28)

where Hn, Kn and Jn are He’s polynomials that represent nonlinear term UUx +VUη +WUz, UVx +VVη +WVz;
and UWx +VWη +WWz respectively, and we have a few terms of Hn, Kn and Jn which are given by

H0 =U0U0x +V0U0η +W0U0z

H1 =U0U1x +U1U0x +V0U1η +V1U0η +W0U1z +W1U0z

H2 =U0U2x +U1U1x +U2U0x +V0U2η +V1U1η +V2U0η +W0U2z +W1U1z +W2U0z

...

And

K0 =U0V0x +V0V0η +W0V0z

K1 =U0V1x +U1V0x +V0V1η +V1V0η +W0V1z +W1V0z

K2 =U0V2x +U1V1x +U2V0x +V0V2η +V1V1η +V2V0η +W0V2z +W1V1z +W2V0z

...

Similarly

J0 =U0W0x +V0W0η +W0W0z

J1 =U0W1x +U1W0x +V0W1η +V1W0η +W0W1z +W1W0z

J2 =U0W2x +U1W1x +U2W0x +V0W2η +V1W1η +V2W0η +W0W2z +W1W1z +W2W0z

...

Then, we get

p0 : U0(x,η , t) = −0.5x+η + z,

V0(x,η , t) = x−0.5η + z,

W0(x,η , t) = x+η −0.5z,

p1 : U1(x,η , t) = −L −1
{

1
sα

[
L [H0]−L [ρ0(∇

2U0)]
]}

,

= − 2.25xtα

Γ(α +1)
,

V1(x,η , t) = −L −1
{

1
sα

[
L [K0]−L [ρ0(∇

2V0)]
]}

,

= − 2.25ηtα

Γ(α +1)
,

W1(x,η , t) = −L −1
{

1
sα

[
L [J0]−L [ρ0(∇

2W0)]
]}

,

= − 2.25ztα

Γ(α +1)
,
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p2 : U2(x,η , t) = −L −1
{

1
sα

[
L [H1]−L [ρ0(∇

2U1)]
]}

,

=
2(2.25)t2α

Γ(2α +1)
U0,

V2(x,η , t) = −L −1
{

1
sα

[
L [K1]−L [ρ0(∇

2V1)]
]}

,

=
2(2.25)t2α

Γ(2α +1)
V0,

W2(x,η , t) = −L −1
{

1
sα

[
L [J1]−L [ρ0(∇

2W1)]
]}

,

=
2(2.25)t2α

Γ(2α +1)
W0,

p3 : U3(x,η , t) = −L −1
{

1
sα

[
L [H2]−L [ρ0(∇

2U2)]
]}

,

= − (2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

xt3α ,

V3(x,η , t) = −L −1
{

1
sα

[
L [K2]−L [ρ0(∇

2V2)]
]}

,

= − (2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

ηt3α ,

W3(x,η , t) = −L −1
{

1
sα

[
L [J2]−L [ρ0(∇

2W2)]
]}

,

= − (2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

zt3α ,

...

The solution of Eqs. (24,25) in series form is given by

U(x,η ,z, t) = U0 −
2.25xtα

Γ(α +1)
+

2(2.25)t2α

Γ(2α +1)
U0 −

(2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

xt3α + · · · ,

V (x,η ,z, t) = V0 −
2.25ηtα

Γ(α +1)
+

2(2.25)t2α

Γ(2α +1)
V0 −

(2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

ηt3α + · · · ,

W (x,η ,z, t) = W0 −
2.25ztα

Γ(α +1)
+

2(2.25)t2α

Γ(2α +1)
W0 −

(2.25)2

Γ(3α +1)

(
Γ(2α +1)
Γ2(α +1)

+4
)

zt3α + · · · .

Why α = 1, as in [22]

U(x,η ,z, t) = (−0.5x+η + z−2.25xt)(1+2.25t2 +2.252t4 +2.253t6 + · · ·)

=
−0.5x+η + z−2.25xt

1−2.25t2

V (x,η ,z, t) = (x−0.5η + z−2.25ηt)(1+2.25t2 +2.252t4 +2.253t6 + · · ·)

=
x−0.5η + z−2.25ηt

1−2.25t2 ,

W (x,η ,z, t) = (x+η −0.5z−2.25zt)(1+2.25t2 +2.252t4 +2.253t6 + · · ·)

=
x+η −0.5z−2.25zt

1−2.25t2 .

5. Conclusions

In this paper, (FHPTM) has been successfully and easily applied to obtain approximate solutions for fractional
multi-dimensional Navier-Stokes equation. Through the three examples of the studied model and through tables
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[1-2] and figures [1-3], it can be seen that this method is effective and accurate for different values of time, space
and fractional order.
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