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Abstract

In this work, we consider the finite ring F2 + uF2 + vF2, u2 = 1,v2 = 0, u · v = v · u = 0
which is not Frobenius and chain ring. We studied constacyclic and negacyclic codes in
F2+uF2+vF2 with odd length. These codes are compared with codes that had priorly been
obtained on the finite field F2. Moreover, we indicate that the Gray image of a constacyclic
and negacyclic code over F2 +uF2 + vF2 with odd length n is a quasicyclic code of index
4 with length 4n in F2. In particular, the Gray images are applied to two different rings
S1 = F2 + vF2, v2 = 0 and S2 = F2 +uF2, u2 = 1 and negacyclic and constacyclic images
of these rings are also discussed.

1. Introduction

The fundamental problem in coding theory, such as distance, polynomial representation over codes, weight, etc. were
examined in [1]. The Gray images of cyclic and negacyclic codes defined on Z4 were studied, and their relationships on
Z2 were researched in [2]. In [3], differently in the previously studied the ring Z4, the images of the (1+u)− constacyclic
codes on the finite chain ring F2 +uF2 were studied in the case u2 = 0, and the relationship of cyclic codes between this ring
and field F2 has been mentioned. Moreover, in [4] gray images of (1+u2)− constacyclic codes on F2 +uF2 +u2F2 with 8
elements were given on the field F2 by the same authors in [3]. X. Xiaofang [5] investigated (1+ v)− constacyclic codes over
F2 +uF2 +vF2,u2 = v2 = 0,v ·u = u ·v = 0, and (1+v)−constacyclic codes in F2 +uF2 +vF2 of odd length were described
through cyclic codes over F2 +uF2 + vF2.

In this study, unlike in [6], we take the properties of the variables in the ring structure differently. Therefore, a different ring
structure emerged. In the next section, we give the primary form of the ring and define the Gray transformations. In the third
section, we show that the images of the codes on this ring correspond to codes in the finite rings. Finally, in the last part, we
also match the codes found to codes on F2.

2. Preliminaries

We denote R = F2 +uF2 + vF2 as a ring with characteristic 2, where u2 = 1,v2 = 0,u · v = v ·u = 0. It is clearly see that
F2 +uF2 + vF2 ∼= F2[u,v]/〈u2 = 1,v2 = 0,u · v = v ·u = 0〉. Consider R = F2 +uF2 + vF2 = {0,1,u,1+u,v,1+ v,u+ v,1+
u+ v}. Thus R is a ring under ”+ ” and ”.” operations. Also, 1 and 1+ v are units in R, and all the ideals of R can be given
by {0} = I0, Iu, Iv, Iu+v, I1+u = I1+u+v, I1+v = R. We consider R as a natural extension of S1 = F2 + vF2, v2 = 0. Thus,
S1 ∼= F2[v]/〈v2〉. Then, the elements of S1 are 0,1,v,1+ v where the units in S1 are 1 and 1+ v. We consider R as a natural
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extension of S2 = F2 +uF2, u2 = 1. Therefore, S2 ∼= F2[u]/〈u2〉. The elements of S2 are 0,1,u and 1+u. Then, the only units
in S2 are 1 and u. Let us take C as a linear code with length n over R (Sn

1 or Sn
2). Thus C is a R (Sn

1 or Sn
2) submodule of Rn (Sn

1
or Sn

2). If D is a linear code with length n in F2, in this case, D is a F2 subvector space Fn
2. An element of C and D is called a

codeword.

Let Γ1 denote the Gray map on R (see [6]).

Γ1 : R 7→ S2
1

a+ub+ vc 7→ Γ1(a+ub+ vc) = Γ1(r+uq) = (v · r,q)

where r = a+ vc and q = b+ vc. It can be extended to Rn as shown below:
Γ1(c0,c1, . . . ,cn−1) = (v · r0,v · r1, . . . ,v · rn−1,q0,q1, . . . ,qn−1) where ci = ri +u ·qi for all 0≤ i≤ n−1. Let the Gray map Ψ1
on R be defined as indicated below:

Ψ1 : R 7→ S2
2

a+ub+ vc 7→Ψ1(a+ub+ vc) = Ψ1(r+ vq) = (u · r,q) (2.1)

such that r = a+ub and q= c+ub. We will extend Ψ1 to Rn, that is, Ψ1(c0,c1, . . . ,cn−1)= (u ·r0,u·r1, . . . ,u ·rn−1,q0,q1, . . . ,qn−1)
where ci = ri + v ·qi for all 0≤ i≤ n−1.

Let us define the Gray map Γ2 on S1 as the following:

Γ2 : S1 7→ F2
2

s+ vt 7→ (s,s+ t) (2.2)

where s, t ∈ F2. The extension of Γ2 to Sn
1 is given by

Γ2 : Sn
1 7→ F2n

2

(c0,c1, . . . ,cn−1) 7→ (s0, . . . ,sn−1,s0 + t0, . . . ,sn−1 + tn−1)

where ci = si + v · ti, si, ti ∈ F2 for all 0≤ i≤ n−1. The Gray map Ψ2 on S2 is given by

Ψ2 : S2 7→ F2
2

s+ut 7→ (s,s+ t) (2.3)

where s, t ∈ F2. The extension of Ψ2 to Sn
2 is given by

Ψ2 : Sn
2 7→ F2n

2

(c0,c1, . . . ,cn−1) 7→ (s0, . . . ,sn−1,s0 + t0, . . . ,sn−1 + tn−1)

where ci = si +u · ti, si, ti ∈ F2 for all 0≤ i≤ n−1. For r ∈ R, we define the weight function w1(r) by

w1(r) =


0 ; r = 0
1 ; r = 1
2 ; r = v,1+u,1+u+ v
3 ; r = u,u+ v,1+ v

For r ∈ R, we define the weight function w2(r) by

w2(r) =


0 ; r = 0
1 ; r = 1,u,u+ v
2 ; r = u,1+ v,1+u+ v
3 ; r = 1+u

Then w1(r) and w2(r) extend to a weight function in Rn. If r = (r0,r1, . . . ,rn−1) ∈ Rn, then we write w1(r) = ∑
n−1
i=0 w1(ri) and

w2(r) = ∑
n−1
i=0 w2(ri). Let x, y ∈ Rn be any distinct vectors. The distance d1(x,y) and d2(x,y) can be defined to be w1(x− y)

and w2(x− y). The d1 and d2 minimum distance of C can be given by d1(C) = min{d1(x,y)} and d2(C) = min{d2(x,y)} for
any x,y ∈C such that x 6= y. The weights w3(t) of t ∈ S1 and w4(t) of t ∈ S2 can be given by
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w3(t) =

 0 ; t = 0
1 ; t = v,1+ v
2 ; t = 1

w4(t) =

 0 ; t = 0
1 ; t = u,1+u
2 ; t = 1

These extend to w3 and w4 weight functions in Sn
1 and Sn

2. If t = (t0, t1, . . . , tn−1) ∈ Sn
1, Sn

2, then we have w3(t) = ∑
n−1
i=0 w3(ti)

and w4(t) = ∑
n−1
i=0 w4(ti). Let x,y ∈ Sn

1,S
n
2 be any distinct vectors. The distance d3(x,y) and d4(x,y) between x,y can be given

by wS1(x− y) and wS2(x− y), respectively. Also, the d3 and d4 minimum distance of C is defined as d3(C) = min { d3 (x,y) }
and d4(C) = min{d4(x,y)} for any x,y ∈C such that x 6= y. Let D as a code with length n over F2 and c = (c0,c1, . . . ,cn−1) be
a codeword of D. The Hamming weight of D is defined as wH(c) = ∑

n−1
i=0 wH(ci) where wH(ci) = 1 if ci = 1 and wH(ci) = 0 if

ci = 0. In addition, we can define the minimum Hamming distance of D such as dH = min {dH(c, c̃)} for any c, c̃ ∈ D, c 6= c̃.
The elements of R as a+ub+ vc = r+ vq where r = a+ub and q = c+ub are in S2, we have

w1(a+ub+ vc) = w1(r+ vq) = w4(ur,q) = w4(b+ua,c+ub) = wH(b,c,b+a,c+b)

Similarly, the elements of R as a+ub+ vc = r+ vq where r = a+ vc and q = b+ vc are in S1 and so we obtain the following

w2(a+ub+ vc) = w2(r+uq) = w3(vr,q) = w3(av,b+ vc) = wH(0,b,a,b+ c)

Definition 2.1. [1] Let C be a linear code over R with length n. A cyclic shift on Rn is a permutation σ such that
σ (c0,c1, . . . ,cn−1) = (cn−1,c0, . . . ,cn−1). If σ(C) =C, the code C is said to be cyclic code. A (1+ v)− constacylic shift µ

act on Rn as µ(c0,c1, . . . ,cn−1) = ((1+v)cn−1,c0, . . . ,cn−2). The code C is called (1+v)−constacyclic code if µ(C) =C. A
negacylic shift δ act on Rn as δ (c0,c1, . . . ,cn−1) = (−cn−1,c0, . . . ,cn−2). If δ (C) =C, C is said to be negacyclic code.

Let P(C) =

{
∑

n−1
i=0 rixi : (r0,r1, . . . ,rn−1) ∈C

}
. P(C) is a polynomial representation of code C with length n over R. Note

that C is cyclic if and only if P(C) is an ideal of R[x]/〈xn−1〉 and C is (1+ v)− constacyclic if and only if P(C) is an ideal of
R[x]/〈xn− (1+ v)〉.

Definition 2.2. [1] Let a ∈ S2n
1 with a = (a0,a1, . . . ,a2n−1) = (a(0)|a(1)), a(i) ∈ Sn

1 for all i = 0,1 and σ be the usual cyclic
shift.

σ∗21 : S2n
1 7→ S2n

1

a 7→ σ∗21 (a) = (σ(a(0))|σ(a(1)))

A code Ĉ of length 2n in S1 is called quasicyclic code with index 2 if σ∗21 (Ĉ) = Ĉ. Let a ∈ S2n
2 with

a = (a0,a1, . . . ,a2n−1) = (a(0)|a(1)), a(i) ∈ Sn
2 for all i = 0,1 and σ be the usual cyclic shift.

σ∗22 : S2n
2 7→ S2n

2

a 7→ σ∗22 (a) = (σ(a(0))|σ(a(1)))

A code Ĉ with length 2n in S2 is called quasicyclic code with index 2 if σ∗22 (Ĉ) = Ĉ. Take a ∈ F4n
2 with

a = (a0,a1, . . . ,a4n−1) = (a(0)|a(1)|a(2)|a(3)), a(i) ∈ Fn
2 for all i = 0,1,2,3 and let σ be the usual cyclic shift.

σ∗4 : F4n
2 7→ F4n

2

a 7→ σ∗4(a) = (σ(a(0))|σ(a(1))|σ(a(2))|σ(a(3)))

A code D̂ of length 4n over F2 is called quasicyclic code with index 4 if σ∗4(D̂) = D̂.

3. Negacyclic codes and their gray images

We get quasicyclic code of index 2 with even length in S2 as the Gray image Ψ1 of negacyclic code over R. Therefore,
we construct the Gray image Ψ2 of quasicyclic code of index 2 in S2 with even length.

Proposition 3.1. σ∗22 Ψ1 = Ψ1δ

Proof. Ψ1, σ∗22 and δ are defined in (2.1) and in [1], respectively. Let c = (c0,c1, . . . ,cn−1) ∈ Rn such that ci = ri + v ·qi for
i = 0,1, . . . ,n−1.

Ψ1(c0,c1, . . . ,cn−1) = Ψ1(r0 + v ·q0,r1 + v ·q1, . . . ,rn−1 + v ·qn−1) = (u · r0,u · r1, . . . ,u · rn−1,q0,q1, . . . ,qn−1)

By applying σ∗22 , we have
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Ψ1(c0,c1, . . . ,cn−1) = σ∗22 (u · r0,u · r1, . . . ,u · rn−1,q0,q1, . . . ,qn−1) = (u · rn−1,u · r0, . . . ,u · rn−2,qn−1,q0,q1, . . . ,qn−2)

Conversely, δ (c0, . . . ,cn−1) = (−cn−1,c0, . . . ,cn−2) where −cn−1 = rn−1 + v ·qn−1. Therefore,

Ψ1(δ (c)) = Ψ1(rn−1 + v ·qn−1,r0 + v ·q0, . . . ,rn−2 + v ·qn−2) = (u · rn−1,u · r0, . . . ,u · rn−2,qn−1,q0, . . . ,qn−2)

Equality is obtained by using the above equations.

Theorem 3.1 A code C1 of length n over R is a negacyclic code if and only if Ψ1(C1) is a quasicyclic code of index 2 and
length 2n over S2.

Proof. Assume that C1 is a negacyclic code. Then we write δ (C1) =C1. By applying Ψ1, we have Ψ1(δ (C1)) = Ψ1(C1). By
using Proposition 3.1, we have σ∗22 (Ψ1(C1)) = Ψ1(δ (C1)) = Ψ1(C1). Therefore Ψ1(C1) is a quasicyclic code with index 2.
On the contrary, if Ψ1(C1) is a quasicyclic code with index 2, then σ∗22 (Ψ1(C1)) = Ψ1(C1). Again by Proposition 3.1, we have
σ∗22 (Ψ1(C1)) = Ψ1(δ (C1)) = Ψ1(C1). Since δ (C1) =C1, C1 is a negacyclic code.

Proposition 3.2. σ∗4Ψ2 = Ψ2σ∗22

Proof. Ψ2, σ∗22 and σ∗4 are given in (2.3) and in [1], respectively.

σ∗22 (a) = σ∗22 (a0,a1, . . . ,a2n−1) = (σ(a(0))|σ(a(1)))
= (σ(a0,a1, . . . ,an−1)|σ(an, . . . ,a2n−1))
= (an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

where an−1 = sn−1 +u · tn−1,a0 = s0 +u · t0, . . . ,a2n−2 = s2n−2 +u · t2n−2. By applying Ψ2, we have

Ψ2(σ
∗2
2 (a)) = Ψ2(an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

= Ψ2(sn−1 +u · tn−1,s0 +u · t0, . . . ,sn−2 +u · tn−2,s2n−1 +u · t2n−1, . . . ,s2n−2 +u · t2n−2)
= (sn−1,s0, . . . ,sn−2,s2n−1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Conversely, Ψ2(a) = Ψ2(a0,a1, . . . ,a2n−1) = (s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1) where a0 = s0 +ut0,

a1 = s1 +ut1 , . . . ,a2n−1 = s2n−1 +ut2n−1. By applying σ∗4, we have

σ∗4(Ψ2(a)) = σ∗4(Ψ2(a0,a1, . . . ,a2n−1)) = σ∗4(s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1)
= (σ(s0,s1, . . . ,sn−1)|σ(sn,σ(sn+1, . . . ,s2n−1)|σ(s0 + t0,s1 + t1, . . . ,sn−1 + tn−1)|σ(sn + tn,sn+1 + tn+1, . . . ,s2n−1 + t2n−1))
= (sn−1,s0, . . . ,sn−2,s2n−1,sn+1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Equality is obtained by using the above equations.

Theorem 3.2 A code C2 with length 2n over S2 is a quasicyclic code of index 2 if and only if Ψ2(C2) is a quasicyclic code
with length 4n over F2 and has index 4.

Proof. Assume C2 is a quasicyclic code with index 2. Then σ∗22 (C2) =C2. By applying Ψ2, we get Ψ2(σ
∗2
2 (C2)) = Ψ2(C2).

Using Proposition 3.2, we can write σ∗4(Ψ2(C2)) = Ψ2(σ
∗2
2 (C2)) = Ψ2(C2). So Ψ2(C2) is a quasicyclic code with index 4.

Conversely, if Ψ2(C2) is a quasicyclic code of index 4, then we say that σ∗4(Ψ2(C2)) = Ψ2(C2). From Proposition 3.2, we
have σ∗4(Ψ2(C2)) = Ψ2(σ

∗2
2 (C2)) = Ψ2(C2). Since Ψ2 is injective, it follows that σ∗22 (C2) =C2.

4. Constacyclic codes and their gray images

In this part, we present even length quasicyclic code of index 2 over S1 as the Gray image Γ1 of constacyclic code over R
and we also give the Gray image Γ2 of constacyclic code with index 2 over S1 with even length.

Proposition 4.1. σ∗21 Γ1 = Γ1δ

Proof. The proof is given in [5].

Theorem 4.1 A code C3 of length n in R is a constacyclic code if and only if Γ1(C3) is a quasicyclic code with length 2n over
S1 and has index 2.

Proof. The proof is given in [5].

Proposition 4.2. σ∗4Γ2 = Γ2σ∗21
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Proof. Γ2, σ∗21 and σ∗4 are given in (2.2) and in [1], respectively.

σ∗21 (a) = σ∗21 (a0,a1, . . . ,a2n−1) = (σ(a(0))|σ(a(1)))
= (σ(a0,a1, . . . ,an−1)|σ(an, . . . ,a2n−1))
= (an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

where an−1 = sn−1 + v · tn−1,a0 = s0 + v · t0, . . . ,a2n−2 = s2n−2 + v · t2n−2. By applying Γ2, we have
Γ2(σ

∗2
1 (a)) = Ψ2(an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

= Ψ2(sn−1 + v · tn−1,s0 + v · t0, . . . ,sn−2 + v · tn−2,s2n−1 + v · t2n−1, . . . ,s2n−2 + v · t2n−2)

= (sn−1,s0, . . . ,sn−2,s2n−1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Conversely, Γ2(a) = Γ2(a0,a1, . . . ,a2n−1) = (s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1) where a0 = s0 + v · t0,

a1 = s1 + v · t1, . . . ,a2n−1 = s2n−1 + v · t2n−1. By applying σ∗4, we have
σ∗4(Γ2(a)) = σ∗4(Γ2(a0,a1, . . . ,a2n−1)) = σ∗4(s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1)

= (σ(s0,s1, . . . ,sn−1)|σ(sn,σ(sn+1, . . . ,s2n−1)|σ(s0 + t0,s1 + t1, . . . ,sn−1 + tn−1)|σ(sn + tn,sn+1 + tn+1, . . . ,s2n−1 + t2n−1))
= (sn−1,s0, . . . ,sn−2,s2n−1,sn+1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Equality is obtained by using the above equations.

Theorem 4.2 A code C4 with length 2n over S1 is a quasicyclic code of index 2 if and only if Γ2(C4) is a quasicyclic code of
index 4 over F2 with length 4n.

Proof. Assume that C4 is a quasicyclic code with index 2. So σ∗21 (C4) =C4. By applying Γ2, we have Γ2(σ
∗2
1 (C4)) = Γ2(C4).

From Proposition 4.2, it follows that σ∗4(Γ2(C4)) = Γ2(σ
∗2
1 (C4)) = Γ2(C4). Hence Γ2(C4) is a quasicyclic code with index 4.

Conversely, if Γ2(C4) is a quasicyclic code of index 4, then σ∗4(Γ2(C4)) = Γ2(C4). By Proposition 4.2, it can be written as
σ∗4(Γ2(C4)) = Γ2(σ

∗2
1 (C4)) = Γ2(C4). Since Γ2 is injective, it follows that σ∗21 (C4) =C4.

5. Conclusion

We examined the constacyclic and negacyclic codes over R = F2 +uF2 + vF2, u2 = 1, v2 = 0, u · v = v ·u = 0 which is not
Frobenius and chain ring. We compare these codes with the codes over finite field F2. Besides, we mention the Gray image of
constacyclic and negacyclic codes over R with odd length n, and it is a quasicyclic code of index 4 with length 4n in F2.
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