Turk. J. Math. Comput. Sci.
15(2)(2023) 270-276
(c) MatDer

DOI : 10.47000/tjmcs. 1126267

Ricci Solitons of Three-Dimensional Lorentzian Bianchi-Cartan-Vranceanu Spaces

Murat Altunbaş (iD
Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Ylldırım University, 24100 Erzincan, Turkey.

Received: 05-06-2022 • Accepted: 08-09-2023
Abstract. In this paper, we obtain explicit formulae for homogenous Ricci solitons on three-dimensional Lorentzian Bianchi-Cartan-Vranceanu spaces. We also give a result about Ricci solitons on a three dimensional Minkowski space.

2020 AMS Classification: 53C30, 53C50
Keywords: Lorentzian Bianchi-Cartan-Vranceanu spaces, Lorentzian metric, Ricci solitons.

1. Introduction

A Ricci soliton metric on a manifold M is defined by the condition

$$
\begin{equation*}
L_{X} g+\rho=\gamma g \tag{1.1}
\end{equation*}
$$

where X is a smooth vector field on $M, L_{X} g$ is Lie derivative in the direction of X and γ is a real constant. A Ricci soliton is called shrinking if $\gamma>0$, steady if $\gamma=0$ and expanding if $\gamma<0$. Ricci soliton metrics are a generalization of Einstein metrics.

Ricci solitons and their generalizations have been extensively studied in many works from many points of view, so we may refer [4-6, 11] for more information about geometry of Ricci solitons.

Many researchers have been particularly interested in Ricci solitons on three-dimensional homogenous spaces, such as the Lie group $S L(2, \mathbb{R})$, Heisenberg group $N i l_{3}$, Berger spheres $S_{\text {Berger }}^{3}, S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}$ and the Lorentzian-Heisenberg group (see [1, 3, 7, 10, 12]).

Bianchi-Cartan-Vranceanu spaces are three-dimensional homogenous spaces with four dimensional isometry group. Ricci solitons on Bianchi-Cartan-Vranceanu spaces were studied by Batat et al. in [2].

Lorentzian Bianchi-Cartan-Vranceanu spaces (briefly LBCV-spaces) are considered by several authors in very recent papers, especially when investigating some special curves such as slant, Legendre and biharmonic etc. on it (see $[8,9,13]$).

As we mentioned above, although the subject of Ricci solitons is well-studied on homogenous manifolds, we give a classification of Ricci solitons by obtaining explicit formulae on LBCV-spaces in this paper. In fact, we will prove the following theorem:

[^0]Theorem 1.1. Let LBCV-spaces with the metric in (2.1) are given. Then, the following statements are true:
(i) LBCV-spaces do not admit homogenous Ricci solitons when $\lambda \neq 0$ and $\mu>0$.
(ii) LBCV-spaces admit shrinking homogenous Ricci solitons when $\lambda \neq 0$ and $\mu=0$.
(iii) LBCV-spaces admit expanding homogenous Ricci solitons when $\lambda \neq 0$ and $\mu<0$.
(iv) LBCV-spaces admit shrinking homogenous Ricci solitons when $\lambda=0$ and $\mu>0$.
(v) LBCV-spaces admit expanding homogenous Ricci solitons when $\lambda=0$ and $\mu<0$.

2. Lorentzian Bianchi-Cartan-Vranceanu Spaces (LBCV-Spaces)

In this section, we will recall some fundamental properties of LBCV-spaces (see [8, 13]).
Let $\lambda, \mu \in \mathbb{R}$. An open subset of \mathbb{R}^{3} is given by

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3}: 1+\mu\left(x^{2}+y^{2}\right)>0\right\} .
$$

The Lorentzian metric is equipped as following:

$$
\begin{equation*}
g_{\lambda, \mu}=\frac{d x^{2}+d y^{2}}{\left(1+\mu\left(x^{2}+y^{2}\right)\right)^{2}}-\left(d z+\frac{\lambda}{2} \frac{y d x-x d y}{1+\mu\left(x^{2}+y^{2}\right)}\right)^{2} . \tag{2.1}
\end{equation*}
$$

The pair ($D, g_{\lambda, \mu}$) is called Lorentzian Bianchi-Cartan-Vranceanu spaces and it is denoted by $M_{\lambda, \mu}$.
An orthonormal frame field is given by

$$
\begin{equation*}
E_{1}=\delta \frac{\partial}{\partial x}-\frac{\lambda y}{2} \frac{\partial}{\partial z}, E_{2}=\delta \frac{\partial}{\partial y}+\frac{\lambda x}{2} \frac{\partial}{\partial z}, E_{3}=\frac{\partial}{\partial z}, \tag{2.2}
\end{equation*}
$$

where we write $\delta=1+\mu\left(x^{2}+y^{2}\right)$.
Therefore, the Lie brackets are obtained as

$$
\left[E_{1}, E_{2}\right]=-2 \mu y E_{1}+2 \mu x E_{2}+\lambda E_{3},\left[E_{1}, E_{3}\right]=\left[E_{2}, E_{3}\right]=0
$$

Let ∇ and R denote the Levi-Civita connection and the curvature tensor of $M_{\lambda, \mu}$, respectively. We have

$$
\begin{aligned}
\nabla_{E_{1}} E_{1} & =2 \mu y E_{2}, \nabla_{E_{1}} E_{2}=-2 \mu y E_{1}+\frac{\lambda}{2} E_{3}, \nabla_{E_{1}} E_{3}=\frac{\lambda}{2} E_{2}, \\
\nabla_{E_{2}} E_{1} & =-2 \mu x E_{2}-\frac{\lambda}{2} E_{3}, \nabla_{E_{2}} E_{2}=2 \mu x E_{1}, \nabla_{E_{2}} E_{3}=-\frac{\lambda}{2} E_{1}, \\
\nabla_{E_{3}} E_{1} & =\frac{\lambda}{2} E_{2}, \nabla_{E_{3}} E_{2}=-\frac{\lambda}{2} E_{1}, \nabla_{E_{3}} E_{3}=0 .
\end{aligned}
$$

The components of the curvature tensor $R_{i j k}^{l}$ are given by [14]

$$
\begin{aligned}
& R_{121}^{1}=0, R_{313}^{1}=\frac{\lambda^{2}}{4}, R_{323}^{1}=0, R_{221}^{1}=-4 \mu-\frac{3}{4} \lambda^{2}, R_{331}^{1}=-\frac{\lambda^{2}}{4}, \\
& R_{112}^{1}=0, R_{223}^{1}=0, R_{212}^{1}=4 \mu+\frac{3}{4} \lambda^{2}, R_{332}^{1}=0, R_{113}^{1}=0, \\
& R_{121}^{2}=4 \mu+\frac{3}{4} \lambda^{2}, R_{313}^{2}=0, R_{323}^{2}=\frac{\lambda^{2}}{4}, R_{221}^{2}=0, R_{331}^{2}=0, \\
& R_{112}^{2}=-4 \mu-\frac{3}{4} \lambda^{2}, R_{223}^{2}=0, R_{212}^{2}=0, R_{332}^{2}=-\frac{\lambda^{2}}{4}, R_{113}^{2}=0, \\
& R_{121}^{3}=0, R_{313}^{3}=0, R_{323}^{3}=0, R_{221}^{3}=0, R_{331}^{3}=0, \\
& R_{112}^{3}=0, R_{223}^{3}=-\frac{\lambda^{2}}{4}, R_{212}^{3}=0, R_{332}^{3}=0, R_{113}^{3}=-\frac{\lambda^{2}}{4} .
\end{aligned}
$$

Therefore, for the Ricci tensor $\rho(X, Y)=\operatorname{tr}\{Z \rightarrow R(X, Z) Y\}$ with respect to orthonormal basis (2.2), we obtain

$$
\begin{equation*}
\rho_{11}=\rho_{22}=4 \mu+\lambda^{2}, \rho_{33}=\frac{\lambda^{2}}{2}, \tag{2.3}
\end{equation*}
$$

where we set $\rho_{i j}=\rho\left(E_{i}, E_{j}\right)$.

3. Ricci Solitons on Lorentzian Bianchi-Cartan-Vranceanu Spaces

In this section, we deal with the Ricci solitons on LBCV-space $M_{\lambda, \mu}=\left(D, g_{\lambda, \mu}\right)$. Let $X=X_{1} E_{1}+X_{2} E_{2}+X_{3} E_{3}$ be an arbitrary vector field on $M_{\lambda, \mu}$, where X_{1}, X_{2}, X_{3} are smooth functions of the variables x, y, z. Then, the Lie derivative of the metric (2.1) satisfies the following relations:

$$
\begin{align*}
& L_{X} g_{\lambda, \mu}\left(E_{1}, E_{1}\right)=2\left(E_{1}\left(X_{1}\right)-2 \mu y X_{2}\right) \tag{3.1}\\
& L_{X} g_{\lambda, \mu}\left(E_{1}, E_{2}\right)=2 \mu x X_{2}+2 \mu y X_{1}+E_{1}\left(X_{2}\right)+E_{2}\left(X_{1}\right), \\
& L_{X} g_{\lambda, \mu}\left(E_{1}, E_{3}\right)=E_{3}\left(X_{1}\right)-E_{1}\left(X_{3}\right)-\lambda X_{2}, \\
& L_{X} g_{\lambda, \mu}\left(E_{2}, E_{2}\right)=2\left(E_{2}\left(X_{2}\right)-2 \mu x X_{1}\right) \\
& L_{X} g_{\lambda, \mu}\left(E_{2}, E_{3}\right)=\lambda X_{1}-E_{2}\left(X_{3}\right)+E_{3}\left(X_{2}\right), \\
& L_{X} g_{\lambda, \mu}\left(E_{3}, E_{3}\right)=-2 E_{3}\left(X_{3}\right) .
\end{align*}
$$

Therefore, if we use (2.1), (2.3) and (3.1) in (1.1) and have in mind (2.2), with a standard calculation, we see that a LBCV space is a Ricci soliton if and only if the following system is satisfied:

$$
\begin{gather*}
2 \mu y X_{2}-\delta \partial_{x} X_{1}+\frac{\lambda}{2} y \partial_{z} X_{1}=\frac{\rho_{11}-\gamma}{2}, \\
2 \mu x X_{2}+2 \mu y X_{1}+\delta \partial_{x} X_{2}-\frac{\lambda}{2} y \partial_{z} X_{2}+\delta \partial_{y} X_{1}+\frac{\lambda}{2} x \partial_{z} X_{1}=0, \\
-\lambda X_{2}-\delta \partial_{x} X_{3}+\frac{\lambda}{2} y \partial_{z} X_{3}+\partial_{z} X_{1}=0, \tag{3.2}\\
2 \mu x X_{1}-\delta \partial_{y} X_{2}-\frac{\lambda}{2} x \partial_{z} X_{2}=\frac{\rho_{11}-\gamma}{2}, \\
\lambda X_{1}-\delta \partial_{y} X_{3}-\frac{\lambda}{2} x \partial_{z} X_{3}+\partial_{z} X_{2}=0, \\
\partial_{z} X_{3}=\frac{\gamma+\rho_{33}}{2},
\end{gather*}
$$

where we set $\partial_{x}=\frac{\partial}{\partial x}, \partial_{y}=\frac{\partial}{\partial y}, \partial_{z}=\frac{\partial}{\partial z}$.
Equation (3.2) ${ }_{6}$ implies that

$$
\begin{equation*}
X_{3}=\left(\frac{\gamma+\rho_{33}}{2}\right) z+A(x, y), A \in C^{\infty}(M) \tag{3.3}
\end{equation*}
$$

for an arbitrary smooth function $A=A(x, y)$.

Case 1: $\lambda \neq 0$

From (3.2) ${ }_{5}$ and using (3.3), we get

$$
\begin{equation*}
X_{1}=\frac{1}{\lambda}\left(\delta \partial_{y} A-\partial_{z} X_{2}+\lambda\left(\frac{\gamma+\rho_{33}}{4}\right) x\right) . \tag{3.4}
\end{equation*}
$$

Substituting (3.3) and (3.4) in (3.2) ${ }_{3}$, we occur

$$
\lambda^{2} X_{2}+\partial_{z}^{2} X_{2}=\lambda\left(\lambda\left(\frac{\gamma+\rho_{33}}{4}\right) y-\delta \partial_{x} A\right)
$$

Solution of the above equation gives us

$$
\begin{equation*}
X_{2}=-\frac{\delta}{\lambda} \partial_{x} A+\left(\frac{\gamma+\rho_{33}}{4}\right) y+C_{1}(x, y) \cos (\lambda z)+C_{2}(x, y) \sin (\lambda z) \tag{3.5}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary smooth functions of the variables x and y.
It follows that

$$
\begin{equation*}
X_{1}=\frac{\delta}{\lambda} \partial_{y} A+\left(\frac{\gamma+\rho_{33}}{4}\right) x+C_{1}(x, y) \sin (\lambda z)-C_{2}(x, y) \cos (\lambda z) . \tag{3.6}
\end{equation*}
$$

By substituting (3.5) and (3.6) in (3.2) $)_{1}$, we see that

$$
\begin{gather*}
\partial_{x} C_{1}=\left(2 \mu+\frac{\lambda^{2}}{2}\right) \frac{y C_{2}}{\delta}, \\
\partial_{x} C_{2}=-\left(2 \mu+\frac{\lambda^{2}}{2}\right) \frac{y C_{1}}{\delta}, \tag{3.7}\\
\left(1+\mu\left(x^{2}-y^{2}\right)\right)\left(\frac{\gamma+\rho_{33}}{4}\right)+\frac{\delta}{\lambda}\left(2 \mu\left(x \partial_{y} A+y \partial_{x} A\right)+\delta \partial_{x} \partial_{y} A\right)=\frac{\gamma-\rho_{11}}{2} .
\end{gather*}
$$

Again, by substituting (3.5) and (3.6) in (3.2) 4 , we obtain

$$
\begin{gather*}
\partial_{y} C_{1}=-\left(2 \mu+\frac{\lambda^{2}}{2}\right) \frac{x C_{2}}{\delta}, \\
\partial_{y} C_{2}=\left(2 \mu+\frac{\lambda^{2}}{2}\right) \frac{x C_{1}}{\delta} \tag{3.8}\\
\left(1-\mu\left(x^{2}-y^{2}\right)\right)\left(\frac{\gamma+\rho_{33}}{4}\right)-\frac{\delta}{\lambda}\left(2 \mu\left(x \partial_{y} A+y \partial_{x} A\right)+\delta \partial_{x} \partial_{y} A\right)=\frac{\gamma-\rho_{11}}{2} .
\end{gather*}
$$

The last equations in (3.7) and (3.8) show that

$$
\begin{aligned}
\gamma & =2 \rho_{11}+\rho_{33} \\
\gamma & =8 \mu+\frac{3 \lambda^{2}}{2} .
\end{aligned}
$$

Therefore, (3.7) and (3.8) turn to be

$$
\begin{equation*}
\lambda \mu\left(2 \mu+\frac{\lambda^{2}}{2}\right)\left(x^{2}-y^{2}\right)+\delta\left(2 \mu\left(x \partial_{y} A+y \partial_{x} A\right)+\delta \partial_{x} \partial_{y} A\right)=0 \tag{3.9}
\end{equation*}
$$

Taking derivative with respect to y in the first equation of (3.7) and with respect to x in the first equation of (3.8), and having in mind $\partial_{x} C_{2}$ and $\partial_{y} C_{2}$, we see that $C_{2}=0$ (when $\lambda^{2} \neq-4 \mu$) or $C_{2} \in \mathbb{R}$ (when $\lambda^{2}=-4 \mu$). Similarly, C_{1} is zero or constant.

Let the inequality $\lambda^{2} \neq-4 \mu$ holds. Equation (3.2) $)_{2}$ leads to

$$
\begin{equation*}
2 \lambda \mu\left(4 \mu+\lambda^{2}\right) x y+\delta\left[\left(4 \mu\left(y \partial_{y} A-x \partial_{x} A\right)+\delta\left(\partial_{y}^{2} A-\partial_{x}^{2} A\right)\right]=0\right. \tag{3.10}
\end{equation*}
$$

So, the vector field $X=X_{1} E_{1}+X_{2} E_{2}+X_{3} E_{3}$ fulfils (3.2) if and only if

$$
\begin{aligned}
X_{1} & =\frac{\delta}{\lambda} \partial_{y} A+\left(\frac{4 \mu+\lambda^{2}}{2}\right) x, \\
X_{2} & =-\frac{\delta}{\lambda} \partial_{x} A+\left(\frac{4 \mu+\lambda^{2}}{2}\right) y, \\
X_{3} & =\left(4 \mu+\lambda^{2}\right) z+A .
\end{aligned}
$$

Here, the function A satisfies (3.9) and (3.10).
Now, suppose that $\lambda^{2}=-4 \mu$. In this case, Equations (3.9) and (3.10) remain valid, but the vector field X reduces to

$$
\begin{gather*}
X_{1}=\frac{\delta}{\lambda} \partial_{y} A+C_{1} \sin (\lambda z)-C_{2} \cos (\lambda z), \\
X_{2}=-\frac{\delta}{\lambda} \partial_{x} A+C_{1} \cos (\lambda z)+C_{2} \sin (\lambda z), \tag{3.11}\\
X_{3}=A
\end{gather*}
$$

$C_{1}, C_{2} \in \mathbb{R}$ and $\gamma=2 \mu$.
(a) If $\mu=0$, Equations (3.9) and (3.10) turn in to be

$$
\partial_{x} \partial_{y} A=0 \text { and } \partial_{y}^{2} A=\partial_{x}^{2} A
$$

So, we have

$$
A=a_{1}\left(x^{2}+y^{2}\right)+a_{2} x+a_{3} y+a_{4}, a_{1}, \ldots, a_{4} \in \mathbb{R}
$$

As a result, when $\mu=0$, the vector field $X=X_{1} E_{1}+X_{2} E_{2}+X_{3} E_{3}$ satisfy the soliton equation (1.1) if and only if

$$
\begin{gathered}
X_{1}=\frac{1}{\lambda}\left(2 a_{1} y+a_{3}\right)-\frac{\lambda^{2}}{4} x, \\
X_{2}=-\frac{1}{\lambda}\left(2 a_{1} x+a_{2}\right)-\frac{\lambda^{2}}{4} y, \\
X_{3}=-\frac{\lambda^{2}}{2} z+a_{1}\left(x^{2}+y^{2}\right)+a_{2} x+a_{3} y+a_{4},
\end{gathered}
$$

where $a_{1}, \ldots, a_{4} \in \mathbb{R}$ and $\gamma=\frac{3 \lambda^{2}}{2}>0$. Thus, we proved Theorem 1.1 (ii).
(b) Now, suppose that $\mu \neq 0$. Set $f=\delta A$ and $\Delta=\lambda \mu\left(2 \mu+\frac{\lambda^{2}}{2}\right)$. Then, Equations (3.9) and (3.10) imply

$$
\begin{gather*}
\partial_{x} \partial_{y} f=\frac{\Delta\left(y^{2}-x^{2}\right)}{1+\mu\left(x^{2}+y^{2}\right)}, \tag{3.12}\\
\partial_{x}^{2} f-\partial_{y}^{2} f=\frac{4 \Delta x y}{1+\mu\left(x^{2}+y^{2}\right)} . \tag{3.13}
\end{gather*}
$$

If we integrate (3.12) with respect to y, we get

$$
\begin{equation*}
\partial_{x} f=\Delta\left[\frac{y}{\mu}-\frac{\left(1+2 \mu x^{2}\right)}{|\mu|^{3 / 2} \sqrt{1+\mu x^{2}}} \arctan \left(\frac{\sqrt{|\mu| y}}{\sqrt{1+\mu x^{2}}}\right)\right]+\alpha(x) \tag{3.14}
\end{equation*}
$$

and if we integrate (3.12) with respect to x, we obtain

$$
\begin{equation*}
\partial_{y} f=\Delta\left[-\frac{x}{\mu}+\frac{\left(1+2 \mu y^{2}\right)}{|\mu|^{3 / 2} \sqrt{1+\mu y^{2}}} \arctan \left(\frac{\sqrt{|\mu| x}}{\sqrt{1+\mu y^{2}}}\right)\right]+\beta(y) \tag{3.15}
\end{equation*}
$$

where α and β are smooth functions. Remark that if $\mu<0$, we have $\operatorname{arctanh}$ instead of arctan. Differentiating (3.14) by x and (3.15) by y, replacing into (3.13), we deduce that there is a solution if and only if $\Delta=0$, that is, if $\mu=-\frac{\lambda^{2}}{4}<0$. This shows that when $\mu>0$ the solution does not exist which proves the statement Theorem 1.1 (i). Moreover, we occur that

$$
\begin{gathered}
f=a_{1}\left(x^{2}+y^{2}\right)+a_{2} x+a_{3} y+a_{4} \\
\text { and } A(x, y)=\frac{a_{1}\left(x^{2}+y^{2}\right)+a_{2} x+a_{3} y+a_{4}}{1+\mu\left(x^{2}+y^{2}\right)}
\end{gathered}
$$

Thus, if $\mu>0$, Equation (1.1) has no solution and if $\mu<0$ it is satisfied only for $\mu=-\frac{\lambda^{2}}{4}$. Then, from (3.11), we obtain the corresponding solutions as follows:

$$
\begin{aligned}
X_{1}= & \frac{-2 a_{2} \mu x y+a_{3}\left(\mu\left(x^{2}-y^{2}\right)+1\right)-2 a_{4} \mu y+2 a_{1} y}{\lambda\left(1+\mu\left(x^{2}+y^{2}\right)\right)} \\
& +a_{5} \sin (\lambda z)-a_{6} \cos (\lambda z), \\
X_{2}= & \frac{2 \mu x\left(a_{3} y+a_{4}\right)+a_{2}\left(\mu\left(x^{2}-y^{2}\right)-1\right)-2 a_{1} x}{\lambda\left(1+\mu\left(x^{2}+y^{2}\right)\right)} \\
& +a_{5} \cos (\lambda z)+a_{6} \sin (\lambda z), \\
& X_{3}=\frac{a_{1}\left(x^{2}+y^{2}\right)+a_{2} x+a_{3} y+a_{4}}{1+\mu\left(x^{2}+y^{2}\right)},
\end{aligned}
$$

with $a_{1}, \ldots, a_{6} \in \mathbb{R}$ and $\gamma=-\frac{\lambda^{2}}{2}<0$. This completes the proof of Theorem 1.1 (iii). Remark that in this case associated the solitons are Killing vector fields also.
Case 2: $\lambda=0, \mu \neq 0$
In this case the system (3.2) reduces to

$$
\begin{gather*}
2 \mu y X_{2}-\delta \partial_{x} X_{1}=\frac{4 \mu-\gamma}{2} \\
2 \mu x X_{2}+2 \mu y X_{1}+\delta \partial_{x} X_{2}+\delta \partial_{y} X_{1}=0 \\
-\delta \partial_{x} X_{3}+\partial_{z} X_{1}=0 \tag{3.16}\\
2 \mu x X_{1}-\delta \partial_{y} X_{2}=\frac{4 \mu-\gamma}{2} \\
-\delta \partial_{y} X_{3}+\partial_{z} X_{2}=0 \\
\partial_{z} X_{3}=\frac{\gamma}{2} .
\end{gather*}
$$

From the equations $(3.16)_{3},(3.16)_{5}$ and $(3.16)_{6}$, we obtain

$$
\begin{gather*}
X_{1}=\delta\left(\partial_{x} A\right) z+F(x, y), \\
X_{2}=\delta\left(\partial_{y} A\right) z+E(x, y), \tag{3.17}\\
X_{3}=\frac{\gamma}{2} z+A(x, y),
\end{gather*}
$$

where A, E and F are smooth functions of x and y. Putting these expressions of X_{1} and X_{2} in (3.16) $)_{1}$ gives us

$$
-\delta\left[2 \mu\left(x \partial_{x} A-y \partial_{y} A\right)+\delta \partial_{x}^{2} A\right] z+2 \mu y E-\delta \partial x F=\frac{4 \mu-\gamma}{2}
$$

Since this equation holds for all z, we have

$$
\begin{equation*}
2 \mu\left(x \partial_{x} A-y \partial_{y} A\right)+\delta \partial_{x}^{2} A=0,2 \mu y E-\delta \partial x F=\frac{4 \mu-\gamma}{2} \tag{3.18}
\end{equation*}
$$

Again, substituting the expressions of X_{1} and X_{2} in (3.17) into (3.16) $)_{4}$ and (3.16) $)_{2}$ we obtain, respectively

$$
\begin{equation*}
2 \mu\left(y \partial_{y} A-x \partial_{x} A\right)+\delta \partial_{y}^{2} A=0,2 \mu x F-\delta \partial y E=\frac{4 \mu-\gamma}{2} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \mu\left(x \partial_{y} A+y \partial_{x} A\right)+\delta \partial_{x} \partial_{y} A=0,2 \mu(x E+y F)+\delta\left(\partial_{x} E+\partial_{y} F\right)=0 \tag{3.20}
\end{equation*}
$$

Combining the first equations in (3.18) and (3.19), we get

$$
\begin{equation*}
\partial_{x}^{2} A+\partial_{y}^{2} A=0 \tag{3.21}
\end{equation*}
$$

If we derive the first equation in (3.18) with respect to x and the first equation with respect to y in (3.19), and have in mind (3.21), we occur

$$
\begin{equation*}
2 \partial_{x} A+x \partial_{x}^{2} A+y \partial_{x} \partial_{y} A=0 \tag{3.22}
\end{equation*}
$$

Now, if we derive the first equation in (3.18) with respect to y and the first equation with respect to x in (3.19), and by virtue of (3.21), we deduce

$$
\begin{equation*}
2 \partial_{y} A-y \partial_{x}^{2} A+x \partial_{x} \partial_{y} A=0 \tag{3.23}
\end{equation*}
$$

Therefore, from (3.22) and (3.23), after using the first equation in (3.18), we obtain that $\partial_{x}^{2} A=\partial_{y}^{2} A=0$. So, the first equations in (3.18) and (3.19) become $x \partial_{x} A-y \partial_{y} A=0$, which together with the first equation of (3.20) shows that A is a constant function.

Similarly, by considering the second equations of (3.18), (3.19) and (3.20), we have

$$
\partial_{y}(\delta E)-\partial_{x}(\delta F)=0, \partial_{x}(\delta E)+\partial_{y}(\delta F)=0 .
$$

The solution of this system is $\delta E=c_{1}, \delta F=c_{2}$, where $c_{1}, c_{2} \in \mathbb{R}$. Putting this in (3.18), we obtain $E=F=0$ with $\gamma=4 \mu$. So, by setting $A=a \in \mathbb{R}$, the system (3.17) turns in to be

$$
X_{1}=X_{2}=0, X_{3}=2 \mu z+a .
$$

This completes the proof of Theorem 1.1.
Case 3: $\lambda=\mu=0$
In this final case we deal with a Minkowski three-space. If $\lambda=\mu=0$, the system (3.17) becomes

$$
\begin{gathered}
\delta \partial_{x} X_{1}=\frac{\gamma}{2}, \\
\partial_{x} X_{2}+\partial_{y} X_{1}=0, \\
-\partial_{x} X_{3}+\partial_{z} X_{1}=0, \\
\partial_{y} X_{2}=\frac{\gamma}{2}, \\
-\partial_{y} X_{3}+\partial_{z} X_{2}=0, \\
\partial_{z} X_{3}=\frac{\gamma}{2} .
\end{gathered}
$$

By direct computation, we see that, for $X=X_{1} E_{1}+X_{2} E_{2}+X_{3} E_{3}$, the corresponding soliton has the following form:

$$
\begin{aligned}
& X_{1}=\frac{\gamma}{2} x-a_{1} y+a_{2} z+a_{3}, \\
& X_{2}=a_{1} x+\frac{\gamma}{2} y+a_{4} z+a_{5}, \\
& X_{3}=a_{2} x+a_{4} y+\frac{\gamma}{2} z+a_{6},
\end{aligned}
$$

for every $\gamma \in \mathbb{R}$ with $a_{1}, \ldots, a_{6} \in \mathbb{R}$.

4. Conclusion

In this work, we gave a classification for Ricci solitons on Lorentzian Bianchi-Cartan-Vranceanu spaces. We showed that there exist significant differences from the Riemannian case, which is studied in the reference [2], when $\lambda \neq 0$.

Acknowledgements

The author would like to express his sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.

Authors Contribution Statement

The author has read and agreed to the published version of the manuscript.

References

[1] Baird, P., Danielo, L., Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math., 608(2007), 65-91.
[2] Batat, W., Sukilovic, T., Vukmirovic, S., Ricci solitons of three-dimensional Bianchi-Cartan-Vranceanu spaces, J. Geom., 111(1)(2020), 1-10.
[3] Batat, W., Onda, K., Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geo. Phys., 114(2017), 138-152.
[4] Cao, H.D., Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, 27B(2006), 121-142.
[5] Chow, B., Knopf, D., The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, 2004.
[6] Haseeb, A., Bilal, M., Chaubey, S.K., Khan, M.N.I., Geometry of indefinite Kenmotsu manifolds as *eta-Ricci-Yamabe solitons, Axioms, 11(9)(2022), 461
[7] Jablonski, M., Homogenous Ricci solitons, J. Reine Angew. Math.,699(2015), 159-182.
[8] Lee, J.E., Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8(1)(2020), 46.
[9] Lee, J.E., Biharmonic curves in 3-dimensional Lorentzian-Sasakian space forms, Comm. Korean Math. Soc., 35(3)(2020), 967-977.
[10] Onda, K., Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147(2010), 313-322.
[11] Sardar, A., Khan, M.N.I., De, U.C., h-*-Ricci solitons and almost co-Kähler manifolds, Mathematics, 9(24)(2021), 3200.
[12] Vazquez, M.B., Calvaruso, G., García-Rí E., Gavino-Fernández, S., Three-dimensional Lorentzian homogeneous Ricci solitons, Isr. J. Math., 188(2012), 385-403.
[13] Yildirim, A., Slant curve in Lorentzian BCV spaces, J. Geo. Symm. Phys., 56(2020), 67-85.
[14] Yildirim, A., On Lorentzian BCV spaces, Int. J. Math. Archive, 3(4)(2012), 1365-1371.

[^0]: Email address: maltunbas@erzincan.edu.tr (M. Altunbaş)

