Turk. J. Math. Comput. Sci. 15(2)(2023) 270–276 © MatDer DOI : 10.47000/tjmcs.1126267



# Ricci Solitons of Three-Dimensional Lorentzian Bianchi-Cartan-Vranceanu Spaces

Murat Altunbaş<sup>D</sup>

Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.

Received: 05-06-2022 • Accepted: 08-09-2023

ABSTRACT. In this paper, we obtain explicit formulae for homogenous Ricci solitons on three-dimensional Lorentzian Bianchi-Cartan-Vranceanu spaces. We also give a result about Ricci solitons on a three dimensional Minkowski space.

2020 AMS Classification: 53C30, 53C50

Keywords: Lorentzian Bianchi-Cartan-Vranceanu spaces, Lorentzian metric, Ricci solitons.

#### 1. INTRODUCTION

A Ricci soliton metric on a manifold M is defined by the condition

$$L_X g + \rho = \gamma g, \tag{1.1}$$

where *X* is a smooth vector field on *M*,  $L_X g$  is Lie derivative in the direction of *X* and  $\gamma$  is a real constant. A Ricci soliton is called *shrinking* if  $\gamma > 0$ , *steady* if  $\gamma = 0$  and *expanding* if  $\gamma < 0$ . Ricci soliton metrics are a generalization of Einstein metrics.

Ricci solitons and their generalizations have been extensively studied in many works from many points of view, so we may refer [4-6, 11] for more information about geometry of Ricci solitons.

Many researchers have been particularly interested in Ricci solitons on three-dimensional homogenous spaces, such as the Lie group  $SL(2,\mathbb{R})$ , Heisenberg group  $Nil_3$ , Berger spheres  $S^3_{Berger}$ ,  $S^2 \times \mathbb{R}$ ,  $H^2 \times \mathbb{R}$  and the Lorentzian-Heisenberg group (see [1, 3, 7, 10, 12]).

Bianchi-Cartan-Vranceanu spaces are three-dimensional homogenous spaces with four dimensional isometry group. Ricci solitons on Bianchi-Cartan-Vranceanu spaces were studied by Batat *et al.* in [2].

Lorentzian Bianchi-Cartan-Vranceanu spaces (briefly LBCV-spaces) are considered by several authors in very recent papers, especially when investigating some special curves such as slant, Legendre and biharmonic etc. on it (see [8,9,13]).

As we mentioned above, although the subject of Ricci solitons is well-studied on homogenous manifolds, we give a classification of Ricci solitons by obtaining explicit formulae on LBCV-spaces in this paper. In fact, we will prove the following theorem:

Email address: maltunbas@erzincan.edu.tr (M. Altunbaş)

**Theorem 1.1.** Let LBCV-spaces with the metric in (2.1) are given. Then, the following statements are true:

- (i) LBCV-spaces do not admit homogenous Ricci solitons when  $\lambda \neq 0$  and  $\mu > 0$ .
- (ii) LBCV-spaces admit shrinking homogenous Ricci solitons when  $\lambda \neq 0$  and  $\mu = 0$ .
- (iii) LBCV-spaces admit expanding homogenous Ricci solitons when  $\lambda \neq 0$  and  $\mu < 0$ .
- (iv) LBCV-spaces admit shrinking homogenous Ricci solitons when  $\lambda = 0$  and  $\mu > 0$ .
- (v) LBCV-spaces admit expanding homogenous Ricci solitons when  $\lambda = 0$  and  $\mu < 0$ .

# 2. LORENTZIAN BIANCHI-CARTAN-VRANCEANU SPACES (LBCV-SPACES)

In this section, we will recall some fundamental properties of LBCV-spaces (see [8,13]). Let  $\lambda, \mu \in \mathbb{R}$ . An open subset of  $\mathbb{R}^3$  is given by

$$D = \{(x, y, z) \in \mathbb{R}^3 : 1 + \mu(x^2 + y^2) > 0\}.$$

The Lorentzian metric is equipped as following:

$$g_{\lambda,\mu} = \frac{dx^2 + dy^2}{(1 + \mu(x^2 + y^2))^2} - \left(dz + \frac{\lambda}{2} \frac{ydx - xdy}{1 + \mu(x^2 + y^2)}\right)^2.$$
 (2.1)

The pair  $(D, g_{\lambda,\mu})$  is called Lorentzian Bianchi-Cartan-Vranceanu spaces and it is denoted by  $M_{\lambda,\mu}$ . An orthonormal frame field is given by

$$E_1 = \delta \frac{\partial}{\partial x} - \frac{\lambda y}{2} \frac{\partial}{\partial z}, \ E_2 = \delta \frac{\partial}{\partial y} + \frac{\lambda x}{2} \frac{\partial}{\partial z}, \ E_3 = \frac{\partial}{\partial z},$$
(2.2)

where we write  $\delta = 1 + \mu(x^2 + y^2)$ .

Therefore, the Lie brackets are obtained as

$$[E_1, E_2] = -2\mu y E_1 + 2\mu x E_2 + \lambda E_3, \ [E_1, E_3] = [E_2, E_3] = 0.$$

Let  $\nabla$  and *R* denote the Levi-Civita connection and the curvature tensor of  $M_{\lambda,\mu}$ , respectively. We have

$$\nabla_{E_1} E_1 = 2\mu y E_2, \ \nabla_{E_1} E_2 = -2\mu y E_1 + \frac{\lambda}{2} E_3, \ \nabla_{E_1} E_3 = \frac{\lambda}{2} E_2,$$

$$\nabla_{E_2} E_1 = -2\mu x E_2 - \frac{\lambda}{2} E_3, \ \nabla_{E_2} E_2 = 2\mu x E_1, \ \nabla_{E_2} E_3 = -\frac{\lambda}{2} E_1,$$

$$\nabla_{E_3} E_1 = \frac{\lambda}{2} E_2, \ \nabla_{E_3} E_2 = -\frac{\lambda}{2} E_1, \ \nabla_{E_3} E_3 = 0.$$

The components of the curvature tensor  $R_{ijk}^l$  are given by [14]

$$\begin{aligned} R_{121}^{1} &= 0, \ R_{313}^{1} = \frac{\lambda^{2}}{4}, \ R_{323}^{1} = 0, \ R_{221}^{1} = -4\mu - \frac{3}{4}\lambda^{2}, \ R_{331}^{1} = -\frac{\lambda^{2}}{4} \\ R_{112}^{1} &= 0, \ R_{223}^{1} = 0, \ R_{212}^{1} = 4\mu + \frac{3}{4}\lambda^{2}, \ R_{332}^{1} = 0, \ R_{113}^{2} = 0, \\ R_{121}^{2} &= 4\mu + \frac{3}{4}\lambda^{2}, \ R_{313}^{2} = 0, \ R_{323}^{2} = \frac{\lambda^{2}}{4}, \ R_{221}^{2} = 0, \ R_{331}^{2} = 0, \\ R_{112}^{2} &= -4\mu - \frac{3}{4}\lambda^{2}, \ R_{223}^{2} = 0, \ R_{212}^{2} = 0, \ R_{332}^{2} = -\frac{\lambda^{2}}{4}, \ R_{113}^{2} = 0, \\ R_{121}^{3} &= 0, \ R_{313}^{3} = 0, \ R_{323}^{3} = 0, \ R_{322}^{3} = 0, \ R_{331}^{3} = 0, \\ R_{121}^{3} &= 0, \ R_{313}^{3} = 0, \ R_{323}^{3} = 0, \ R_{321}^{3} = 0, \ R_{331}^{3} = 0, \\ R_{112}^{3} &= 0, \ R_{3223}^{3} = -\frac{\lambda^{2}}{4}, \ R_{212}^{3} = 0, \ R_{332}^{3} = 0, \ R_{331}^{3} = 0, \end{aligned}$$

Therefore, for the Ricci tensor  $\rho(X, Y) = tr\{Z \to R(X, Z)Y\}$  with respect to orthonormal basis (2.2), we obtain

$$\rho_{11} = \rho_{22} = 4\mu + \lambda^2, \ \rho_{33} = \frac{\lambda^2}{2}, \tag{2.3}$$

where we set  $\rho_{ij} = \rho(E_i, E_j)$ .

# 3. RICCI SOLITONS ON LORENTZIAN BIANCHI-CARTAN-VRANCEANU SPACES

In this section, we deal with the Ricci solitons on LBCV-space  $M_{\lambda,\mu} = (D, g_{\lambda,\mu})$ . Let  $X = X_1E_1 + X_2E_2 + X_3E_3$  be an arbitrary vector field on  $M_{\lambda,\mu}$ , where  $X_1, X_2, X_3$  are smooth functions of the variables x, y, z. Then, the Lie derivative of the metric (2.1) satisfies the following relations:

$$L_{X}g_{\lambda,\mu}(E_{1},E_{1}) = 2(E_{1}(X_{1}) - 2\mu yX_{2}), \qquad (3.1)$$

$$L_{X}g_{\lambda,\mu}(E_{1},E_{2}) = 2\mu xX_{2} + 2\mu yX_{1} + E_{1}(X_{2}) + E_{2}(X_{1}), \qquad (3.1)$$

$$L_{X}g_{\lambda,\mu}(E_{1},E_{3}) = E_{3}(X_{1}) - E_{1}(X_{3}) - \lambda X_{2}, \qquad (X_{2},X_{2},\mu(E_{2},E_{2})) = 2(E_{2}(X_{2}) - 2\mu xX_{1}), \qquad (X_{2},X_{2},\mu(E_{2},E_{3})) = \lambda X_{1} - E_{2}(X_{3}) + E_{3}(X_{2}), \qquad (X_{2},X_{2},\mu(E_{3},E_{3})) = -2E_{3}(X_{3}).$$

Therefore, if we use (2.1), (2.3) and (3.1) in (1.1) and have in mind (2.2), with a standard calculation, we see that a LBCV space is a Ricci soliton if and only if the following system is satisfied:

$$2\mu y X_{2} - \delta \partial_{x} X_{1} + \frac{\lambda}{2} y \partial_{z} X_{1} = \frac{\rho_{11} - \gamma}{2},$$

$$2\mu x X_{2} + 2\mu y X_{1} + \delta \partial_{x} X_{2} - \frac{\lambda}{2} y \partial_{z} X_{2} + \delta \partial_{y} X_{1} + \frac{\lambda}{2} x \partial_{z} X_{1} = 0,$$

$$-\lambda X_{2} - \delta \partial_{x} X_{3} + \frac{\lambda}{2} y \partial_{z} X_{3} + \partial_{z} X_{1} = 0,$$

$$2\mu x X_{1} - \delta \partial_{y} X_{2} - \frac{\lambda}{2} x \partial_{z} X_{2} = \frac{\rho_{11} - \gamma}{2},$$

$$\lambda X_{1} - \delta \partial_{y} X_{3} - \frac{\lambda}{2} x \partial_{z} X_{3} + \partial_{z} X_{2} = 0,$$

$$\partial_{z} X_{3} = \frac{\gamma + \rho_{3}}{2},$$
(3.2)

where we set  $\partial_x = \frac{\partial}{\partial x}, \partial_y = \frac{\partial}{\partial y}, \partial_z = \frac{\partial}{\partial z}$ . Е

Equation 
$$(3.2)_6$$
 implies that

$$X_3 = (\frac{\gamma + \rho_{33}}{2})z + A(x, y), \ A \in C^{\infty}(M),$$
(3.3)

for an arbitrary smooth function A = A(x, y).

**Case 1:**  $\lambda \neq 0$ 

From  $(3.2)_5$  and using (3.3), we get

$$X_1 = \frac{1}{\lambda} \left( \delta \partial_y A - \partial_z X_2 + \lambda (\frac{\gamma + \rho_{33}}{4}) x \right).$$
(3.4)

Substituting (3.3) and (3.4) in  $(3.2)_3$ , we occur

$$\lambda^2 X_2 + \partial_z^2 X_2 = \lambda \left( \lambda \left( \frac{\gamma + \rho_{33}}{4} \right) y - \delta \partial_x A \right).$$

Solution of the above equation gives us

$$X_2 = -\frac{\delta}{\lambda}\partial_x A + (\frac{\gamma + \rho_{33}}{4})y + C_1(x, y)\cos(\lambda z) + C_2(x, y)\sin(\lambda z),$$
(3.5)

where  $C_1$  and  $C_2$  are arbitrary smooth functions of the variables x and y.

It follows that

$$X_{1} = \frac{\delta}{\lambda} \partial_{y} A + (\frac{\gamma + \rho_{33}}{4})x + C_{1}(x, y)\sin(\lambda z) - C_{2}(x, y)\cos(\lambda z).$$
(3.6)

By substituting (3.5) and (3.6) in  $(3.2)_1$ , we see that

$$\partial_{x}C_{1} = \left(2\mu + \frac{\lambda^{2}}{2}\right)\frac{yC_{2}}{\delta},$$
  

$$\partial_{x}C_{2} = -\left(2\mu + \frac{\lambda^{2}}{2}\right)\frac{yC_{1}}{\delta},$$
  

$$(1 + \mu(x^{2} - y^{2}))(\frac{\gamma + \rho_{33}}{4}) + \frac{\delta}{\lambda}\left(2\mu(x\partial_{y}A + y\partial_{x}A) + \delta\partial_{x}\partial_{y}A\right) = \frac{\gamma - \rho_{11}}{2}.$$
(3.7)

Again, by substituting (3.5) and (3.6) in  $(3.2)_4$ , we obtain

$$\partial_{y}C_{1} = -\left(2\mu + \frac{\lambda^{2}}{2}\right)\frac{xC_{2}}{\delta},$$
  

$$\partial_{y}C_{2} = \left(2\mu + \frac{\lambda^{2}}{2}\right)\frac{xC_{1}}{\delta},$$
  

$$(1 - \mu(x^{2} - y^{2}))(\frac{\gamma + \rho_{33}}{4}) - \frac{\delta}{\lambda}\left(2\mu(x\partial_{y}A + y\partial_{x}A) + \delta\partial_{x}\partial_{y}A\right) = \frac{\gamma - \rho_{11}}{2}.$$
(3.8)

The last equations in (3.7) and (3.8) show that

$$\gamma = 2\rho_{11} + \rho_{33}$$
  
$$\gamma = 8\mu + \frac{3\lambda^2}{2}.$$

Therefore, (3.7) and (3.8) turn to be

$$\lambda \mu \left(2\mu + \frac{\lambda^2}{2}\right)(x^2 - y^2) + \delta \left(2\mu(x\partial_y A + y\partial_x A) + \delta \partial_x \partial_y A\right) = 0.$$
(3.9)

Taking derivative with respect to y in the first equation of (3.7) and with respect to x in the first equation of (3.8), and having in mind  $\partial_x C_2$  and  $\partial_y C_2$ , we see that  $C_2 = 0$  (when  $\lambda^2 \neq -4\mu$ ) or  $C_2 \in \mathbb{R}$  (when  $\lambda^2 = -4\mu$ ). Similarly,  $C_1$  is zero or constant.

Let the inequality  $\lambda^2 \neq -4\mu$  holds. Equation (3.2)<sub>2</sub> leads to

$$2\lambda\mu \left(4\mu + \lambda^2\right)xy + \delta\left[\left(4\mu(y\partial_y A - x\partial_x A) + \delta(\partial_y^2 A - \partial_x^2 A)\right)\right] = 0.$$
(3.10)

So, the vector field  $X = X_1E_1 + X_2E_2 + X_3E_3$  fulfils (3.2) if and only if

$$X_1 = \frac{\delta}{\lambda} \partial_y A + \left(\frac{4\mu + \lambda^2}{2}\right) x,$$
  

$$X_2 = -\frac{\delta}{\lambda} \partial_x A + \left(\frac{4\mu + \lambda^2}{2}\right) y,$$
  

$$X_3 = (4\mu + \lambda^2) z + A.$$

Here, the function A satisfies (3.9) and (3.10).

Now, suppose that  $\lambda^2 = -4\mu$ . In this case, Equations (3.9) and (3.10) remain valid, but the vector field X reduces to

$$X_{1} = \frac{\delta}{\lambda} \partial_{y} A + C_{1} \sin(\lambda z) - C_{2} \cos(\lambda z),$$
  

$$X_{2} = -\frac{\delta}{\lambda} \partial_{x} A + C_{1} \cos(\lambda z) + C_{2} \sin(\lambda z),$$
  

$$X_{3} = A,$$
(3.11)

 $C_1, C_2 \in \mathbb{R}$  and  $\gamma = 2\mu$ .

(a) If  $\mu = 0$ , Equations (3.9) and (3.10) turn in to be

$$\partial_x \partial_y A = 0$$
 and  $\partial_y^2 A = \partial_x^2 A$ .

So, we have

$$A = a_1(x^2 + y^2) + a_2x + a_3y + a_4, \ a_1, ..., a_4 \in \mathbb{R}.$$

As a result, when  $\mu = 0$ , the vector field  $X = X_1E_1 + X_2E_2 + X_3E_3$  satisfy the soliton equation (1.1) if and only if

$$X_1 = \frac{1}{\lambda}(2a_1y + a_3) - \frac{\lambda^2}{4}x,$$
  

$$X_2 = -\frac{1}{\lambda}(2a_1x + a_2) - \frac{\lambda^2}{4}y,$$
  

$$X_3 = -\frac{\lambda^2}{2}z + a_1(x^2 + y^2) + a_2x + a_3y + a_4,$$

where  $a_1, ..., a_4 \in \mathbb{R}$  and  $\gamma = \frac{3\lambda^2}{2} > 0$ . Thus, we proved Theorem 1.1 (ii).

(b) Now, suppose that  $\mu \neq 0$ . Set  $f = \delta A$  and  $\Delta = \lambda \mu \left(2\mu + \frac{\lambda^2}{2}\right)$ . Then, Equations (3.9) and (3.10) imply

$$\partial_x \partial_y f = \frac{\Delta(y^2 - x^2)}{1 + \mu(x^2 + y^2)},$$
(3.12)

$$\partial_x^2 f - \partial_y^2 f = \frac{4\Delta xy}{1 + \mu(x^2 + y^2)}.$$
(3.13)

If we integrate (3.12) with respect to y, we get

$$\partial_x f = \Delta \left[ \frac{y}{\mu} - \frac{(1 + 2\mu x^2)}{|\mu|^{3/2} \sqrt{1 + \mu x^2}} \arctan\left(\frac{\sqrt{|\mu|} y}{\sqrt{1 + \mu x^2}}\right) \right] + \alpha(x), \tag{3.14}$$

and if we integrate (3.12) with respect to *x*, we obtain

$$\partial_{y}f = \Delta \left[ -\frac{x}{\mu} + \frac{(1+2\mu y^{2})}{|\mu|^{3/2} \sqrt{1+\mu y^{2}}} \arctan\left(\frac{\sqrt{|\mu| x}}{\sqrt{1+\mu y^{2}}}\right) \right] + \beta(y),$$
(3.15)

where  $\alpha$  and  $\beta$  are smooth functions. Remark that if  $\mu < 0$ , we have *arctanh* instead of *arctan*. Differentiating (3.14) by x and (3.15) by y, replacing into (3.13), we deduce that there is a solution if and only if  $\Delta = 0$ , that is, if  $\mu = -\frac{\lambda^2}{4} < 0$ . This shows that when  $\mu > 0$  the solution does not exist which proves the statement Theorem 1.1 (i). Moreover, we occur that

$$f = a_1(x^2 + y^2) + a_2x + a_3y + a_4,$$
  
and  $A(x, y) = \frac{a_1(x^2 + y^2) + a_2x + a_3y + a_4}{1 + \mu(x^2 + y^2)}$ 

Thus, if  $\mu > 0$ , Equation (1.1) has no solution and if  $\mu < 0$  it is satisfied only for  $\mu = -\frac{\lambda^2}{4}$ . Then, from (3.11), we obtain the corresponding solutions as follows:

$$\begin{split} X_1 &= \frac{-2a_2\mu xy + a_3(\mu(x^2 - y^2) + 1) - 2a_4\mu y + 2a_1y}{\lambda(1 + \mu(x^2 + y^2))} \\ &+ a_5 \sin(\lambda z) - a_6 \cos(\lambda z), \\ X_2 &= \frac{2\mu x(a_3 y + a_4) + a_2(\mu(x^2 - y^2) - 1) - 2a_1x}{\lambda(1 + \mu(x^2 + y^2))} \\ &+ a_5 \cos(\lambda z) + a_6 \sin(\lambda z), \\ X_3 &= \frac{a_1(x^2 + y^2) + a_2 x + a_3 y + a_4}{1 + \mu(x^2 + y^2)}, \end{split}$$

with  $a_1, ..., a_6 \in \mathbb{R}$  and  $\gamma = -\frac{\lambda^2}{2} < 0$ . This completes the proof of Theorem 1.1 (iii). Remark that in this case associated the solitons are Killing vector fields also.

Case 2:  $\lambda = 0, \ \mu \neq 0$ 

In this case the system (3.2) reduces to

$$2\mu y X_2 - \delta \partial_x X_1 = \frac{4\mu - \gamma}{2},$$
  

$$2\mu x X_2 + 2\mu y X_1 + \delta \partial_x X_2 + \delta \partial_y X_1 = 0,$$
  

$$-\delta \partial_x X_3 + \partial_z X_1 = 0,$$
  

$$2\mu x X_1 - \delta \partial_y X_2 = \frac{4\mu - \gamma}{2},$$
  

$$-\delta \partial_y X_3 + \partial_z X_2 = 0,$$
  

$$\partial_z X_3 = \frac{\gamma}{2}.$$
  
(3.16)

From the equations  $(3.16)_3$ ,  $(3.16)_5$  and  $(3.16)_6$ , we obtain

$$X_1 = \delta(\partial_x A)z + F(x, y),$$
  

$$X_2 = \delta(\partial_y A)z + E(x, y),$$
  

$$X_3 = \frac{\gamma}{2}z + A(x, y),$$
  
(3.17)

where A, E and F are smooth functions of x and y. Putting these expressions of  $X_1$  and  $X_2$  in (3.16)<sub>1</sub> gives us

$$-\delta[2\mu(x\partial_x A - y\partial_y A) + \delta\partial_x^2 A]z + 2\mu y E - \delta\partial x F = \frac{4\mu - \gamma}{2}$$

Since this equation holds for all *z*, we have

$$2\mu(x\partial_x A - y\partial_y A) + \delta\partial_x^2 A = 0, \ 2\mu y E - \delta\partial_x F = \frac{4\mu - \gamma}{2}.$$
(3.18)

Again, substituting the expressions of  $X_1$  and  $X_2$  in (3.17) into (3.16)<sub>4</sub> and (3.16)<sub>2</sub> we obtain, respectively

$$2\mu(y\partial_y A - x\partial_x A) + \delta\partial_y^2 A = 0, \ 2\mu xF - \delta\partial_y E = \frac{4\mu - \gamma}{2}$$
(3.19)

and

$$2\mu(x\partial_y A + y\partial_x A) + \delta\partial_x\partial_y A = 0, \ 2\mu(xE + yF) + \delta(\partial_x E + \partial_y F) = 0.$$
(3.20)

Combining the first equations in (3.18) and (3.19), we get

$$\partial_x^2 A + \partial_y^2 A = 0. \tag{3.21}$$

If we derive the first equation in (3.18) with respect to x and the first equation with respect to y in (3.19), and have in mind (3.21), we occur

$$2\partial_x A + x\partial_x^2 A + y\partial_x \partial_y A = 0. \tag{3.22}$$

Now, if we derive the first equation in (3.18) with respect to y and the first equation with respect to x in (3.19), and by virtue of (3.21), we deduce

$$2\partial_{\nu}A - y\partial_{r}^{2}A + x\partial_{x}\partial_{\nu}A = 0.$$
(3.23)

Therefore, from (3.22) and (3.23), after using the first equation in (3.18), we obtain that  $\partial_x^2 A = \partial_y^2 A = 0$ . So, the first equations in (3.18) and (3.19) become  $x\partial_x A - y\partial_y A = 0$ , which together with the first equation of (3.20) shows that A is a constant function.

Similarly, by considering the second equations of (3.18), (3.19) and (3.20), we have

$$\partial_{\nu}(\delta E) - \partial_{x}(\delta F) = 0, \ \partial_{x}(\delta E) + \partial_{\nu}(\delta F) = 0.$$

The solution of this system is  $\delta E = c_1$ ,  $\delta F = c_2$ , where  $c_1, c_2 \in \mathbb{R}$ . Putting this in (3.18), we obtain E = F = 0 with  $\gamma = 4\mu$ . So, by setting  $A = a \in \mathbb{R}$ , the system (3.17) turns in to be

$$X_1 = X_2 = 0, X_3 = 2\mu z + a.$$

This completes the proof of Theorem 1.1.

**Case 3:**  $\lambda = \mu = 0$ 

In this final case we deal with a Minkowski three-space. If  $\lambda = \mu = 0$ , the system (3.17) becomes

$$\begin{split} &\delta\partial_x X_1 = \frac{\gamma}{2},\\ &\partial_x X_2 + \partial_y X_1 = 0,\\ &-\partial_x X_3 + \partial_z X_1 = 0,\\ &\partial_y X_2 = \frac{\gamma}{2},\\ &-\partial_y X_3 + \partial_z X_2 = 0,\\ &\partial_z X_3 = \frac{\gamma}{2}. \end{split}$$

By direct computation, we see that, for  $X = X_1E_1 + X_2E_2 + X_3E_3$ , the corresponding soliton has the following form:

$$X_1 = \frac{\gamma}{2}x - a_1y + a_2z + a_3, X_2 = a_1x + \frac{\gamma}{2}y + a_4z + a_5, X_3 = a_2x + a_4y + \frac{\gamma}{2}z + a_6,$$

for every  $\gamma \in \mathbb{R}$  with  $a_1, ..., a_6 \in \mathbb{R}$ .

## 4. CONCLUSION

In this work, we gave a classification for Ricci solitons on Lorentzian Bianchi-Cartan-Vranceanu spaces. We showed that there exist significant differences from the Riemannian case, which is studied in the reference [2], when  $\lambda \neq 0$ .

#### ACKNOWLEDGEMENTS

The author would like to express his sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

### CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

#### AUTHORS CONTRIBUTION STATEMENT

The author has read and agreed to the published version of the manuscript.

#### References

- [1] Baird, P., Danielo, L., Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math., 608(2007), 65-91.
- [2] Batat, W., Sukilovic, T., Vukmirovic, S., Ricci solitons of three-dimensional Bianchi-Cartan-Vranceanu spaces, J. Geom., 111(1)(2020), 1–10.
- [3] Batat, W., Onda, K., Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geo. Phys., 114(2017), 138–152.
- [4] Cao, H.D., Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, 27B(2006), 121-142.
- [5] Chow, B., Knopf, D., The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, 2004.
- [6] Haseeb, A., Bilal, M., Chaubey, S.K., Khan, M.N.I., Geometry of indefinite Kenmotsu manifolds as \*eta-Ricci-Yamabe solitons, Axioms, 11(9)(2022), 461.
- [7] Jablonski, M., Homogenous Ricci solitons, J. Reine Angew. Math., 699(2015), 159-182.
- [8] Lee, J.E., Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8(1)(2020), 46.
- [9] Lee, J.E., Biharmonic curves in 3-dimensional Lorentzian-Sasakian space forms, Comm. Korean Math. Soc., 35(3)(2020), 967–977.
- [10] Onda, K., Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147(2010), 313–322.
- [11] Sardar, A., Khan, M.N.I., De, U.C., h-\*-Ricci solitons and almost co-Kähler manifolds, Mathematics, 9(24)(2021), 3200.
- [12] Vazquez, M.B., Calvaruso, G., García-Rí E., Gavino-Fernández, S., Three-dimensional Lorentzian homogeneous Ricci solitons, Isr. J. Math., 188(2012), 385–403.
- [13] Yildirim, A., Slant curve in Lorentzian BCV spaces, J. Geo. Symm. Phys., 56(2020), 67-85.
- [14] Yildirim, A., On Lorentzian BCV spaces, Int. J. Math. Archive, 3(4)(2012), 1365–1371.