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Analysis of the spread of Hookworm infection with Caputo-Fabrizio
fractional derivative
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a Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, Kirsehir, Türkiye

Abstract. This research study provides a mathematical analysis for the spread of Hookworm infection
model. Firstly, the proposed disease model is extended by means of the Caputo-Fabrizio fractional deriva-
tive. Then, existence and uniqueness of the solution is presented for the fractional-type Hookworm infection
model with the help of the fixed-point theorem. Theoretical results of the model under consideration show
the advantages of the fractional differential operators.

1. Introduction

In comparison to traditional mathematical models, fractional-order models are more advantageous since
they generally produce better outcomes than classical order models [1]. Many researchers have concentrated
on studying non-linear dynamical systems based on different types of fractional differential operators,
inspired by the growth of fractional calculus, by creating a number of analytical or numerical techniques in
order to obtain solutions [2, 3]. In order to analyze and investigate these systems, Riemann-Liouville (RL),
Caputo, Caputo-Fabrizio (CF), Atangana-Baleanu (AB), as well as other non-local fractional derivatives,
are employed to reach more detailed results. Recently, a new-type fractional derivative including a non-
singular kernel has been presented as can be seen in [4]. The kernel of this non-local non-singular fractional
operator has the form of the exponential function. Some type of fractional operators, on the other hand,
have a power-law kernel and are limited in their ability to describe physical situations. Therefore, Caputo
and Fabrizio proposed an additional fractional differential operator with an exponential decay kernel to
overcome this challenge in [1]. The CF fractional derivative operator, which has a non-singular kernel, is a
new approach to the fractional calculus that has captivated the interest of many researchers. Additionally,
the CF operator is one of the best suited for simulating real-world problems that follow the exponential
decay law. Developing a mathematical model employing the CF fractional-order derivative became a
well-known subject of study over time [10–12].

Inspired by the above information, the Hookworm infection model [5] is investigated in this study
utilizing CF fractional-type derivative and integral operator. First, the model is updated to use CF fractional
operator. The existence and uniqueness of solutions are then determined under initial conditions utilizing
the fixed point theorem.
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2. Preliminaries

In the current portion, some fundamental definitions of fractional derivative and integral are presented.
For more information on fractional calculus, we refer the readers to [6–9].

Definition 2.1. Let n ∈N and n − 1 < ν < n, then Caputo fractional derivative is defined by [7]:

C
a Dν

t f (t)) =
1

Γ(n − ν)

∫ t

a

f (n)(r)
(t − r)ν+1−n dr. (1)

Definition 2.2. For f ∈ H1(a, b), b > a, ν ∈ (0, 1), the CF fractional derivative is presented as [4]:

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

d f (x)
dx

exp
[
− ν

t − x
1 − ν

]
dx. (2)

Here M(ν) is a normalization constants given by M(0) = M(1) = 1. Also, the definition of CF operator can be
given as below:

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

(
f (t) − f (x)

)
exp
[
− ν

t − x
1 − ν

]
dx.

Remark 2.3. If η = 1−ν
ν ∈ (0,∞), ν = 1

1+η =∈ [0, 1], then the above equation supposes the following expression

D
η
t ( f (t)) =

N(η)
η

∫ t

a

d f (x)
dx

exp
[
−

t − x
η

]
dx, N(0) = N(∞) = 1. (3)

Furthermore,

lim
ν→0

1
ν

exp
[
−

t − x
ν

]
= δ(x − t).

It should be noted that according to the definition, the fractional integral of Caputo type function with
order ν is an average between function f and its integral of order one. Hence, this means that

M(ν) =
2

2 − ν
, 0 ≤ ν ≤ 1. (4)

Owing to the above expression, Nieto and Losada presented the new Caputo type derivative of order ν
can be rewritten as follows:

Definition 2.4. The fractional derivative of order ν is [6],

CFDν⋆( f (t)) =
1

1 − ν

∫ t

0
f ′(x)exp

[
− ν

t − x
1 − ν

]
dx. (5)

At this instant subsequent to the preface of the novel derivative, the connected anti-derivative turns out
to be imperative; the connected integral of the derivative was proposed by Nieto and Losada [6],

Definition 2.5. Let 0 < ν < 1., then the fractional integral with order ν of a function f is given by

CFIν f (t) =
2(1 − ν)

(2 − ν)M(ν)
u(t) +

2ν
(2 − ν)M(ν)

∫ t

0
u(s)ds, t ≥ 0. (6)
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3. Fractional Model

In this section, we expand the spread of Hookworm infection model [5] to the fractional CF derivative.
Classic integer order model is reformulated in the nonlinear system of differential in equations (7):

S(t)
dt = Λ − µS(t)L2(t) − ρS(t) + βR(t)

E(t)
dt = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)

I1(t)
dt = (1 − α)γE(t) − (η + µ + ψ1)I1(t)

I2(t)
dt = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)

R(t)
dt = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)

F(t)
dt = ϕI1(t) + ϕI2(t) − (w + χ)F(t)

L1(t)
dt = χF(t) − (δ + ζ)L1(t)

L2(t)
dt = ζL1(t) − kL2(t).

(7)

In the above system (3.1), S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t) and L2(t) represent the the dynamics of
hookworm and human populations, susceptible humans,exposed humans, infective humans with mod-
erate infection, infective humans with heavy infection, recovered humans and, worm eggs, non infective
rhabditiform larvae, infective filariaform larvae respectively. All the parameters are positive constants and
Λ is the recruited at the rate of the population, µ is the individuals from the recovery class at the rate, η
is the moderate infectious individual progresses at the rate of the population, ψ1 is the rate of recovery
from moderate infection , ψ2 is the rate of heavy infection, the natural death rate of human and the dis-
ease induced related mortality rate are denoted byρ andµwhile w, δ and k are respective death rates for eggs.

The spread of Hookworm infection model is integrated via Caputo–Fabrizio fractional derivative with
the model and can be written as follows:



CF
0 D

ν
t S(t) = Λ − µS(t)L2(t) − ρS(t) + βR(t),

CF
0 D

ν
t E(t) = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t),

CF
0 D

ν
t I1(t) = (1 − α)γE(t) − (η + µ + ψ1)I1(t),

CF
0 D

ν
t I2(t) = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t),

CF
0 D

ν
t R(t) = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t),

CF
0 D

ν
t F(t) = ϕI1(t) + ϕI2(t) − (w + χ)F(t),

CF
0 D

ν
t L1(t) = χF(t) − (δ + ζ)L1(t),

CF
0 D

ν
t L2(t) = ζL1(t) − kL2(t).

(8)

where ν ∈ (0, 1) is the order of the fractional derivative operator. Then the initial values are as follows:
S(0)(t) = S(0), E(0)(t) = E(0), I1(0) (t) = I1(0),
I2(0) (t) = I2(0), R(0)(t) = R(0),F(0)(t) = F(0),
L1(0) (t) = L1(0), L2(0) (t) = L2(0).

4. Existence and Uniqueness of Hookworm infection Model

Utilizing fixed point theorem, we show the existence of the model under investigation in this section.
We utilize the CF integral operator on (9) in order to get
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S(t) − S(0) =CF
0 Iνt {Λ − µS(t)L2(t) − ρS(t) + βR(t)},

E(t) − E(0) =CF
0 Iνt {µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)},

I1(t) − I1(0) =CF
0 Iνt {(1 − α)γE(t) − (η + µ + ψ1)I1(t)},

I2(t) − I2(0) =CF
0 Iνt {αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)},

R(t) − R(0) =CF
0 Iνt {ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)}

F(t) − F(0) =CF
0 Iνt {ϕI1(t) + ϕI2(t) − (w + χ)F(t)},

L1(t) − L1(0) =CF
0 Iνt {χF(t) − (δ + ζ)L1(t)},

L2(t) − L2(0) =CF
0 Iνt {ζL1(t) − kL2(t)}.

(9)

By using the approach in [6], we have

S(t) − S(0) = 2(1−ν)
(2−ν)M(ν) {Λ − µS(t)L2(t) − ρS(t) + βR(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {Λ − µS(r)L2(r) − ρS(r) + βR(r)}dr,
E(t) − E(0) = 2(1−ν)

(2−ν)M(ν) {µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {µS(r)L2(r) − ρE(r) − αγE(r) − (1 − α)γE(r)}dr,
I1(t) − I1(0) = 2(1−ν)

(2−ν)M(ν) {(1 − α)γE(t) − (η + µ + ψ1)I1(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {(1 − α)γE(r) − (η + µ + ψ1)I1(r)}dr,
I2(t) − I2(0) = 2(1−ν)

(2−ν)M(ν) {αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {αγE(r) + ηI1(r) − (µ + ρ + ψ2)I2(r)}dr,
R(t) − R(0) = 2(1+ν)

(2−ν)M(ν) {ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ψ1I1(r) + ψ2I2(r) − (ρ + β)R(r)}dr,
F(t) − F(0) = 2(1−ν)

(2−ν)M(ν) {ϕI1(t) + ϕI2(t) − (w + χ)F(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ϕI1(r) + ϕI2(r) − (w + χ)F(r)}dr,
L1(t) − L1(0) = 2(1−ν)

(2−ν)M(ν) {χF(t) − (δ + ζ)L1(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {χF(r) − (δ + ζ)L1(r)}dr,
L2(t) − L2(0) = 2(1−ν)

(2−ν)M(ν) {ζL1(t) − kL2(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ζL1(r) − kL2(r)}dr.

(10)

For simplicity, we replace as follows:

G1(t,S) = Λ − µS(t)L2(t) − ρS(t) + βR(t),
G2(t,E) = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t),
G3(t, I1) = (1 − α)γE(t) − (η + µ + ψ1)I1(t),
G4(t, I2) = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t),
G5(t,R)T = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t),
G6(t,F) = ϕI1(t) + ϕI2(t) − (w + χ)F(t),
G7(t,L1)T = χF(t) − (δ + ζ)L1(t),
G8(t,L2) = ζL1(t) − kL2(t).

For proving our results, we assume the following assumption (H). For the following continuous func-
tions S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t),L2(t) ∈ L[0, 1], such that ∥S(t)∥ ≤ c1, ∥E(t)∥ ≤ c2, ∥I1(t)∥ ≤ c3, ∥I2(t)∥ ≤
c4, ∥R(t)∥ ≤ c5, ∥F(t)∥ ≤ c6, ∥L1(t)∥ ≤ c7, ∥L2(t)∥ ≤ c8.

Theorem 4.1. The kernels G1,G2,G3,G4,G5,G6,G7 and G8 satisfy the Lipschitz condition if the assumption H is
true and they are contractions provied that Φi < 1 for ∀ ∈ i = 1, . . . , 8.
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Proof. We start with G1. Suppose that S and S1 are two functions, then we obtain,

∥G1(t,S) − G1(t,S1)∥ = (Λ − µS(t)L2(t) − ρS(t) + βR(t)) − (Λ − µS1(t)L2(t) − ρS1(t) + βR(t))∥.
≤ {µL2(t) + ρ}∥(S(t) − S1(t))∥
≤ {µc8 + ρ}∥(S(t) − S1(t))∥
≤ Φ1∥(S(t) − S1(t))∥.

Next, we prove for G2. Suppose that E and E1 are two functions, then we calculate in below,

∥G2(t,E) − G2(t,E1)∥ = (µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t))
− (µS(t)L2(t) − ρE1(t) − αγE1(t) − (1 − α)γE1(t))∥.
≤ {ρ + αγ + (1 − α)γ}∥(E(t) − E1(t))∥
≤ {ρ + 1}∥(E(t) − E1(t))∥
≤ Φ2∥(E(t) − E1(t))∥.

Then we show for G3. Suppose that I1 and I11 are two functions, then one can reach

∥G3(t, I1) − G3(t, I11 )∥ = ((1 − α)γE(t) − (η + µ + ψ1)I1(t))
− ((1 − α)γE(t) − (η + µ + ψ1)I11 (t)))∥.
≤ {(η + µ + ψ1)}∥I1(t) − I11 (t))∥
≤ Φ3∥I1(t) − I11 (t))∥.

Similarly, we prove for G4. Suppose that I2 and I21 are two functions, then

∥G4(t, I2) − G4(t, I21 )∥ = (αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t))
− (αγE(t) + ηI1(t) − (µ + ρ + ψ2)I21 (t))∥.
≤ {(µ + ρ + ψ2)}∥I2(t) − I21 (t))∥
≤ Φ4∥I2(t) − I21 (t))∥.

For G5, we suppose that R and R1 are two functions, then we have

∥G5(t,R) − G5(t,R1)∥ = (ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t))
− (ψ1I1(t) + ψ2I2(t) − (ρ + β)R1(t))∥.
≤ {(ρ + β)}∥(R(t) − R1(t))∥
≤ Φ5∥(R(t) − R1(t))∥.

Now suppose that F and F1 are two functions, then for G6 one can readily get

∥G6(t,F) − G6(t,F1)∥ = (ϕI1(t) + ϕI2(t) − (w + χ)F(t))
− (ϕI1(t) + ϕI2(t) − (w + χ)F1(t))∥.
≤ {(w + χ)}∥(F(t) − F1(t))∥
≤ Φ6∥(F(t) − F1(t))∥.

For G7, supposing that L1 and L11 are two functions, we can obtain
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∥G7(t,L1) − G3(t,L11 )∥ = (χF(t) − (δ + ζ)L1(t))
− (χF(t) − (δ + ζ)L1(t))∥.
≤ {(δ + ζ)}∥L1(t) − L11 (t))∥
≤ Φ7∥L1(t) − L11 (t))∥,

and for G8, suppose that L2 and L21 are two functions, then we reach

∥G8(t,L2) − G3(t,L21 )∥ = (ζL1(t) − kL2(t))
− (ζL1(t) − kL2(t))∥.
≤ {(k)}∥L2(t) − L21 (t))∥
≤ Φ8∥L2(t) − L21 (t))∥.

All kernels which Gi, i = 1, . . . , 8 satisfy the conditions, so that they are contractions with Φi, i = 1, . . . , 8.
Therefore, this completes the proof.

Using notations for kernels, with all the initial values zero equation (9) becomes

S(t) = 2(1−ν)
(2−ν)M(ν) G1(t,S) + 2ν

(2−ν)M(ν)

∫ t

0 (G1(r,S))dr,

E(t) = 2(1−ν)
(2−ν)M(ν) G2(t,E) + 2ν

(2−ν)M(ν)

∫ t

0 (G2(r,E))dr,

I1(t) = 2(1−ν)
(2−ν)M(ν) G3(t, I1) + 2ν

(2−ν)M(ν)

∫ t

0 (G3(r, I1))dr,

I2(t) = 2(1−ν)
(2−ν)M(ν) G4(t, I2) + 2ν

(2−ν)M(ν)

∫ t

0 (G4(r, I2))dr,

R(t) = 2(1+ν)
(2−ν)M(ν) G5(t,R) + 2ν

(2−ν)M(ν)

∫ t

0 (G5(r,R))dr,

F(t) = 2(1−ν)
(2−ν)M(ν) G6(t,F) + 2ν

(2−ν)M(ν)

∫ t

0 (G6(r,F))dr,

L1(t) = 2(1−ν)
(2−ν)M(ν) G7(t,L1) + 2ν

(2−ν)M(ν)

∫ t

0 (G7(r,L1))dr,

L2(t) = 2(1−ν)
(2−ν)M(ν) G8(t,L2) + 2ν

(2−ν)M(ν)

∫ t

0 (G8(r,L2))dr,

The following recursive formula is presented:

Sn(t) = 2(1−ν)
(2−ν)M(ν) G1(t,Sn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1))dr,

En(t) = 2(1−ν)
(2−ν)M(ν) G2(t,En−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G2(r,En−1))dr,

I1(n)(t) =
2(1+ν)

(2−ν)M(ν) G3(t, I1(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G3(r, I1(n−1)))dr,

I2(n)(t) =
2(1+ν)

(2−ν)M(ν) G4(t, I2(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G4(r, I2(n−1)))dr,

Rn(t) = 2(1−ν)
(2−ν)M(ν) G5(t,Rn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G5(r,Rn−1))dr,

Fn(t) = 2(1−ν)
(2−ν)M(ν) G6(t,Fn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G6(r,Fn−1))dr,

L1(n)(t) =
2(1+ν)

(2−ν)M(ν) G7(t,L1(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G7(r,L1(n−1)))dr,

L2(n)(t) =
2(1−ν)

(2−ν)M(ν) G8(t,L2(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G8(r,L2(n−1)))dr.

(11)

and 

S(0)(t) = S(0),
E(0)(t) = E(0),
I1(0)(t) = I1(0),
I2(0)(t) = I2(0),
R(0)(t) = R(0),
F(0)(t) = F(0),
L1(0)(t) = L1(0),
L2(0)(t) = L2(0).
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where S(0)(t),E(0)(t),M(0)(t), I1(0)(t), I2(0)(t),R(0)(t),F(0)(t),L1(0)(t) and L2(0)(t) are the initial conditions. The dif-
ference of the succeeding terms is obtained as

Ψ1n(t) = Sn(t) − Sn−1(t)
=

2(1−ν)
(2−ν)M(ν) (G1(t,Sn−1) − G1(t,Sn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr,
Ψ2n(t) = En(t) − En−1(t)

=
2(1−ν)

(2−ν)M(ν) (G2(t,En−1) − G2(t,En−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G2(r,En−1) − G2(r,En−2)dr,
Ψ3n(t) = I1(n)(t) − I1(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G3(t, I1(n−1)) − G3(t, I1(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G3(r, I1(n−1)) − G3(r, I1(n−2))dr,
Ψ4n(t) = I2(n)(t) − I2(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G4(t, I2(n−1)) − G4(t, I2(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G4(r, I2(n−1)) − G4(r, I2(n−2))dr,
Ψ5n(t) = Rn(t) − Rn−1(t)

=
2(1−ν)

(2−ν)M(ν) (G5(t,Rn−1) − G5(t,Rn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G5(r,Rn−1) − G5(r,Rn−2)dr,
Ψ6n(t) = Fn(t) − Fn−1(t)

=
2(1−ν)

(2−ν)M(ν) (G6(t,Fn−1) − G6(t,Fn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G6(r,Fn−1) − G6(r,Fn−2)dr,
Ψ7n(t) = L1(n)(t) − L1(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G7(t,L1(n−1)) − G7(t,L1(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G7(r,L1(n−1)) − G7(r,L1(n−2))dr,
Ψ8n(t) = L2(n)(t) − L2(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G8(t,L2(n−1)) − G8(t,L2(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G8(r,L2(n−1)) − G8(r,L2(n−2))dr.

Notive that 

Sn(t) =
∑n

i=1Ψ1i(t),
En(t) =

∑n
i=1Ψ2i(t),

I1(n)(t) =
∑n

i=1Ψ3i(t),
I2(n)(t) =

∑n
i=1Ψ4i(t),

Rn(t) =
∑n

i=1Ψ5i(t),
Fn(t) =

∑n
i=1Ψ6i(t),

L1(n)(t) =
∑n

i=1Ψ7i(t),
L2(n)(t) =

∑n
i=1Ψ8i(t).

Now we continue the same process and we have the following form,
∥Ψ1n(t)∥ = ∥Sn(t) − Sn−1(t)∥

= ∥
2(1−ν)

(2−ν)M(ν) (G1(t,Sn−1) − G1(t,Sn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr∥.
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Using the triangular inequality, equation (11) is simplified to∥Sn(t) − Sn−1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn−1) − G1(t,Sn−2)∥

+ 2ν
(2−ν)M(ν)∥

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr∥.

Because of the fact that the kernel satisfyies the Lipschitz condition, then we can get∥Sn(t) − Sn−1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ1∥Sn−1 − Sn−2∥

+ 2ν
(2−ν)M(ν)Φ1∥

∫ t

0 ∥Sn−1 − Sn−2∥dr.
(12)

Then we have

∥Ψ1n(t)∥ ≤
2(1 − ν)

(2 − ν)M(ν)
Φ1∥Ψ1(n−1)(t)∥ +

2ν
(2 − ν)M(ν)

Φ1

∫ t

0
∥Ψ1(n−1)(r)∥dr.

Accordingly, we attain the results as below:

∥Ψ2n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ2∥Ψ2(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ2

∫ t

0 ∥Ψ2(n−1)(r)∥dr,

∥Ψ3n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ3∥Ψ3(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ3

∫ t

0 ∥Ψ3(n−1)(r)∥dr,

∥Ψ4n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ4∥Ψ4(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ4

∫ t

0 ∥Ψ4(n−1)(r)∥dr,

∥Ψ5n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ5∥Ψ5(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ5

∫ t

0 ∥Ψ5(n−1)(r)∥dr,

∥Ψ6n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ6∥Ψ6(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ6

∫ t

0 ∥Ψ6(n−1)(r)∥dr,

∥Ψ7n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ7∥Ψ7(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ7

∫ t

0 ∥Ψ7(n−1)(r)∥dr,

∥Ψ8n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ8∥Ψ8(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ8

∫ t

0 ∥Ψ8(n−1)(r)∥dr.

We shall then state the following theorem.

Theorem 4.2. The Hookworm infection model (9) has unique solution if the conditions below hold.

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t < 1.

Proof. Since all the functions S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t) and L2(t) are bounded, we can say that the
kernels satisfy the Lipschitz condition, so by using the recursive method, we get the succeeding relation as

∥Ψ1n(t)∥ ≤ ∥Sn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ1

)
+
(

2ν
(2−ν)M(ν)Φ1t

)]n
,

∥Ψ2n(t)∥ ≤ ∥En(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ2

)
+
(

2ν
(2−ν)M(ν)Φ2t

)]n
,

∥Ψ3n(t)∥ ≤ ∥I1(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ3

)
+
(

2ν
(2−ν)M(ν)Φ3t

)]n
,

∥Ψ4n(t)∥ ≤ ∥I2(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ4

)
+
(

2ν
(2−ν)M(ν)Φ4t

)]n
,

∥Ψ5n(t)∥ ≤ ∥Rn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ5

)
+
(

2ν
(2−ν)M(ν)Φ5t

)]n
,

∥Ψ6n(t)∥ ≤ ∥Fn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ6

)
+
(

2ν
(2−ν)M(ν)Φ6t

)]n
,

∥Ψ7n(t)∥ ≤ ∥L1(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ7

)
+
(

2ν
(2−ν)M(ν)Φ7t

)]n
,

∥Ψ8n(t)∥ ≤ ∥L2(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ8

)
+
(

2ν
(2−ν)M(ν)Φ8t

)]n
.

(13)

Thus, the existence and continuity of the solutions is proved. Moreover, in order to ensure that the
above function is a solution of equation (9), we continue as below:
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S(t) − S(0) = Sn(t) − An(t),
E(t) − E(0) = En(t) − Bn(t),
I1(t) − I1(0) = I1n(t) − Cn(t),
I2(t) − I2(0) = T2n(t) −Dn(t).
R(t) − R(0) = Rn(t) − Gn(t),
F(t) − F(0) = Fn(t) −Hn(t),
L1(t) − L1(0) = L1n(t) −Mn(t),
L2(t) − L2(0) = L2n(t) −Nn(t).

(14)

Therefore, we have 

∥An(t)∥ = ∥ 2(1−ν)
(2−ν)M(ν) (G1(t,Sn) − G1(t,Sn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn) − G1(r,Sn−1))dr∥
≤

2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn) − G1(t,Sn−1))∥

+ 2ν
(2−ν)M(ν)

∫ t

0 ∥(G1(r,Sn) − G1(r,Sn−1))∥dr
≤

2(1−ν)
(2−ν)M(ν)Φ1∥K − Kn−1∥ +

2ν
(2−ν)M(ν)Φ1∥S − Sn−1∥t.

Using the process in a recursive manner gives

∥An(t)∥ ≤
( 2(1 − ν)

(2 − ν)M(ν)
+

2ν
(2 − ν)M(ν)

t
)n−1

Φn+1
1 a. (15)

By applying the limit on equation (4.8) as n tends to infinity, we get

∥An(t)∥ → 0.

Similarly,
∥Bn(t)∥ → 0, ∥Cn(t)∥ → 0, ∥Dn(t)∥ → 0,

∥Gn(t)∥ → 0, ∥Hn(t)∥ → 0, ∥Mn(t)∥ → 0, ∥Nn(t)∥ → 0

For the uniqueness system (9) solution, we take on contrary that there exists another solution of (9)
given by S1(t),E1(t), I11(t), I12(t),R1(t),F1(t),L11(t) and L12(t). ThenS(t) − S1(t) =

2(1−ν)
(2−ν)M(ν) (G1(t,Sn) − G1(t,Sn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn) − G1(r,Sn−1))dr.
(16)

Taking norm on equation (16), we get∥S(t) − S1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn) − G1(t,Sn−1)∥

+ 2ν
(2−ν)M(ν)

∫ t

0 ∥(G1(r,Sn) − G1(r,Sn−1))∥dr.

If we apply the Lipschitz condition of kernel, we have∥S(t) − S1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ1∥S(t) − S1(t)∥

+ 2ν
(2−ν)M(ν)

∫ t

0 Φ1t∥S(t) − S1(t)∥dr.

It gives

∥S(t) − S1(t)∥
(
1 −

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t
)
≤ 0. (17)
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Theorem 4.3. The model (9) solution will be unique if(
1 −

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t
)
> 0. (18)

Proof. If condition (18) holds, then (17) implies that

∥S(t) − S1(t)∥ = 0.

Hence, we can attain

S(t) = S1(t).

On employing the same procedure, we get 

E(t) = E1(t),
I1(t) = I11(t),
I2(t) = I21(t).
R(t) = R1(t),
F(t) = F1(t),
L1(t) = L11(t),
L2(t) = L21(t).

5. Conclusion

The Hookworm infection model is analyzed employing the fractional derivative and integral operator
presented by Caputo and Fabrizio. First, the model revised to the fractional derivative of Caputo–Fabrizio.
Then, using the fixed point theorem, existence and uniqueness solutions were performed under initial
conditions.
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