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Longitudinal studies involve repeated measurements from the same subjects or blocks over short or an 

extended periods of time. In longitudinal studies, usually the most important step is to decide how many 

experimental units to use. There are no closed form equations for determining sample size in many 

complex designs. Monte Carlo simulation method is an effective tool in complex designs to estimate 

power or sample size. This paper introduces estimating sample size for the number of blocks or 

experimental units based on a fixed number of treatment/time in randomized complete block designs 

with correlated longitudinal responses analyzed by nonparametric tests against ordered alternatives. The 

sample size of subjects is estimated for each test statistics by taking into account the autocorrelation 

structure of the error terms which form either a stationary first-order moving average or autoregressive 

with non-normally distributed white noise terms. An extensive sample size/power comparison among 

the recently proposed Modification of S test and the other two well-known nonparametric tests such as 

the Page test and the generalized Jonckheere test against ordered alternatives in randomized complete 

block designs is carried out under stationary first-order autoregressive and moving average error 

structures with white noise terms distributed with either Laplace or Weibull distributions. Simulation 

study indicates that the distribution of white noise and the error structure have an important role on 

sample size estimation for each nonparametric test. The Modification of S test requires large sample size 

in contrast to other tests for longitudinal data in the specified simulation setting. 
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1. INTRODUCTION 

Longitudinal data taken from same subjects over time can occur within the randomized complete block designs 

(RCBDs). In RCBDs with longitudinal data, homogeneous subjects are blocks and a complete set of 

treatments/time points are randomly assigned to each block. Testing the trend/direction change of responses 

over time can be assessed by nonparametric tests for assessing the efficiency of treatment in a RCBD which is 

often expected to increase or decrease with the ordering of treatments. Many studies have examined the 

behavior of nonparametric tests in independent situations. Although longitudinal studies are quite popular 

today, the use of nonparametric tests in these studies is quite rare and nonparametric trend tests’ behavior has 

almost never been investigated. In some clinical trials, it is reasonable to observe that the efficiency of 

treatment may increase or decrease based on the dose value of a drug throughout the study (Dmitrienko et al., 

2007). The case that responses would incline or decline over time leads to the statistical testing problem with 

ordered alternatives and many nonparametric tests have been developed for this problem in RCBDs (Hollander, 

1967; Shan et al., 2014; Best & Rayner, 2015). The Page (P) test is a well-known distribution-free tests for 

ordered alternatives on treatments in RCBDs (Page, 1963). The generalized Jonckheere (GJ) test was proposed 

for repeated measures in RCBDs (Zhang & Cabilio, 2012). The Modification of S (MS) test is a new 

mailto:mlk@hacettepe.edu.tr
https://doi.org/10.54287/gujsa.1130039
http://dergipark.org.tr/gujsa
https://orcid.org/0000-0002-5443-6278
https://orcid.org/0000-0003-2144-0518


368 
Melike BAHCECITAPAR, Hatice Tul Kubra AKDUR 

GU J Sci, Part A, 9(4): 367-377 (2022) 
 

 

nonparametric test based on the rank differences within each block to detect monotonic trend of treatments in 

RCBDs (Akdur et al., 2019). All of these nonparametric tests assume that the within-block responses are 

independent and error terms follow an identical continuous distribution with known parameters. However, in 

some situations, such as when the blocks/subjects have repeated measures, the existence of autocorrelated 

errors and distribution of responses should be taken into account commonly. Recently, Akdur (2020) has 

investigated power performances of some nonparametric trend tests in RCBDs when randomized blocks 

contain dependent observations by using the circular block bootstrap method. The defining feature of 

longitudinal data is that repeated measures are likely to be autocorrelated over time. It is unreasonable to 

assume that the within-block responses or repeated measurements are independent over time in the analysis of 

this kind of popular statistical experimental designs. In RCBDs with longitudinal data, let 𝑌𝑖𝑗 be the 

measurement of the 𝑖th subject at 𝑗th time point, where 𝑖 = 1,2, … , 𝑏 and 𝑗 = 1,2, … , 𝑛. A model for RCBDs 

with balanced and equally spaced longitudinal data can be written as 

𝑌𝑖𝑗 = 𝜇 + 𝛽𝑖 + 𝜏𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1, … , 𝑏; 𝑗 = 1, … , 𝑛; (1) 

where 𝜇 is a common mean, 𝛽𝑖 are block (subject) effects, 𝜏𝑗 are time (treatment) effects, 𝑏 is the number of 

blocks (subjects) and 𝑛 is the number of time points (treatments) at which subjects (blocks) are measured. The 

error terms 𝜀𝑖𝑗 are here assumed to follow popular stationary time series processes, a stationary first-order 

moving average (MA1) or a stationary first-order autoregressive (AR1) model. The null hypothesis on the 

treatment effect is as 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛 = 0 (2) 

against the increasing ordered alternative 

𝐻0: 𝜏1 ≤ 𝜏2 ≤ ⋯ ≤ 𝜏𝑛 (3) 

or the decreasing ordered alternative 

𝐻0: 𝜏𝑛 ≤ 𝜏𝑛−1 ≤ ⋯ ≤ 𝜏1 (4) 

with at least one inequality. When the ordering of treatments is already known, the ordered alternative is a 

natural choice as in Equation (3) or Equation (4). Nonparametric tests are useful for statistical testing problem 

with the ordered alternative, when longitudinal data are not distributed normally or quite small to satisfy 

assumptions of traditional ANOVA models in RCBDs. Zhang and Cabilio (2012) proposed the GJ test against 

ordered alternatives for longitudinal data in RCBDs which are assumed to be autocorrelated in AR1 and 

second-order autoregressive (AR2) model to test the direction of change over treatments/time, when the errors 

follow 𝑁(0,1) or Student-t distribution. Akdur et al. (2019) modified the S test for ordered alternative 

hypothesis in RCBDs for two-way ANOVA layout under the assumption of independent errors. However, they 

do not investigate the most general case in which the responses are assumed to be autocorrelated and non-

normally distributed in RCBDs. Before starting clinical studies, it is an indispensable prerequisite to determine 

a suitable sample size according to the structure of the data. For the intended power value of the statistical test 

of interest, in recent years, many statistical studies have been carried out especially for the parametric tests 

with various effect sizes under independence assumption (Aslan et al., 2021; Serdar et al., 2021; Unalan, 2021). 

This paper proposes a new idea for calculating sample sizes (i.e. number of blocks) of P, GJ and MS test 

statistics for a target power against ordered alternatives for longitudinal data in RCBDs, when the error terms 

form either a stationary MA1 or AR1 model under Laplace and Weibull distributions. A broad set of Monte 

Carlo simulations is performed to model autocorrelated non-normally distributed responses and to compare 

these three nonparametric tests in terms of sample sizes and power values under a wide range of conditions. 

The remainder of this paper is organized as follows. The P, GJ and MS test statistics are briefly introduced in 

Section 2. In Section 3, the performance of MS test is compared with other commonly used nonparametric 

tests with regard to sample size under various conditions. In Section 4, a real example from a clinical trial is 

given to illustrate sample size calculations for the MS, P and GJ tests to obtain required 80% power. Section 

5 is given to discussion and further works. 
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2. MATERIAL AND METHOD 

This paper focuses on the P and GJ tests, well-known rank-based nonparametric tests for ordered alternatives 

in RCBDs. The MS test is a recently proposed nonparametric test which is an alternative to the GJ test for the 

ordered alternative problem in RCBDs. 

2.1. Page’s Test Statistics 

For an ordered alternative hypothesis, Page’s test statistics has been proposed as a nonparametric test based on 

within-block ranks, in which responses are ranked within each block (subject) (Page, 1963). The Page (P) test 

statistics is given as 𝑃 = ∑ 𝑗𝑟𝑗
𝑛
𝑗=1 , where 𝑟𝑗 = ∑ 𝑅𝑖𝑗

𝑏
𝑗=1  is the sum of ranks of the j th treatment (time point) 

for block (subject) 𝑖 and 𝑅𝑖𝑗 is the rank of response within block 𝑖 at treatment 𝑗. Under the null hypothesis in 

Equation (2), the P test asymptotically follows a normal distribution with the mean 𝐸(𝑃) =
𝑏𝑛(𝑛+1)2

4
 and the 

variance 𝑉(𝑃) =
𝑏(𝑛−1)𝑛2(𝑛+1)2

144
 (Page, 1963). The null hypothesis would be rejected for a large value of the 

P test. Thas et al. (2012) provided a new version of Page test 𝑃𝐿 =  √𝑐 ∑
𝑙𝑗𝑅𝑗̅̅ ̅

𝑑
𝑛
𝑗=1  statistic using orthogonal 

trend contrast for tied and untied data where 𝑅�̅� is the mean of the ranks for treatment 𝑗, 𝑙𝑗 are the linear trend 

coefficients, 𝑑2 = ∑ 𝑙𝑗
2𝑛

𝑗=1 . Here, 𝑐 = 𝑏(𝑛 − 1)/(𝑛𝑉) for tied 𝑉 = {∑ 𝑅𝑖𝑗
2

𝑖,𝑗 /(𝑏𝑛)} − (𝑛 + 1)2/4 whereas for 

untied data, 𝑉 = (𝑛2 − 1)/12. Additionally, Best and Rayner (2015) suggested a new test statistic which 

developed upon the idea of orthogonal trend analysis used in ANOVA and provided as 𝑃𝑇 = √𝑏 ∑ 𝑙𝑗𝑅�̅�/𝑑𝑆𝑛
𝑗=1  

where 𝑆2 is the mean square error of a randomized block ANOVA of the 𝑅𝑖𝑗. 

2.2. Generalized Jonckheere Test Statistics 

The GJ test statistics is an alternative nonparametric test to the P test for the problem of testing the ordered 

alternative hypothesis in RCBDs (Zhang & Cabilio, 2012). It is based on the Kendall’s Tau correlation that 

measures the association between responses within each block and the alternative ordering where each block 

is ranked within itself over treatment or time (Kendall, 1938). The J test statistics was generalized for RCBDs 

as given 𝐺𝐽 =
1

𝑏
∑ 𝑇𝐾(𝑖),

𝑏

𝑖=1
 where 𝑇𝐾(𝑖) = (

𝑛
2

)
−1

𝐴𝐾(𝑖) is a Mann-Kendall statistics for testing the direction 

of change in responses (repeated measures over time for subject 𝑖 and 𝐴𝐾(𝑖) = ∑ (𝑅𝑖𝑚 − 𝑅𝑖𝑙
𝑛
𝑙<𝑚 ) is the non-

standardized Kendall’s tau correlation where 𝑠𝑔𝑛(𝑅𝑖𝑚 − 𝑅𝑖𝑙) is either 1 or -1, depending on whether 𝑅𝑖𝑚 >
𝑅𝑖𝑙 or 𝑅𝑖𝑚 < 𝑅𝑖𝑙 (Skillings & Wolfe, 1978; Zhang & Cabilio, 2012).  

2.3. Modification of S Test Statistics 

The Modification of S (MS) test statistics is the recently proposed nonparametric test based on the S test for 

RCBDs. Rank differences within each block are calculated in the MS test to compose an overall test statistic 

(Shan et al., 2014; Akdur et al., 2019). The MS test statistic is defined as 𝑀𝑆 =
1

𝑏
∑ 𝑇𝐾(𝑖)

𝑏

𝑖=1
, where 𝑇𝐾(𝑖) =

(
𝑛
2

)
−1

𝑆𝐾(𝑖) and 𝑆𝐾(𝑖) = ∑ (𝑅𝑖𝑚 − 𝑅𝑖𝑙)𝑛
𝑙<𝑚  𝐼(𝑅𝑖𝑚 > 𝑅𝑖𝑙) for subject 𝑖. 𝐼((𝑅𝑖𝑚 > 𝑅𝑖𝑙) is the indicator function 

which is either 1 or 0, depending on whether 𝑅𝑖𝑚 > 𝑅𝑖𝑙 or 𝑅𝑖𝑚 < 𝑅𝑖𝑙. 

3. SIMULATION-BASED SAMPLE SIZE ESTIMATION  

In this section, Monte Carlo simulations are conducted to compare the performances of the three nonparametric 

tests against ordered alternatives in RCBDs when observations are autocorrelated longitudinal data: 1) the P 

test; 2) the GJ test; and 3) the MS test. These tests are compared with each other in terms of sample sizes 

required to obtain 80% empirical power. Laplace and Weibull distributions are taken into account for 

longitudinal data. The nominal value of 𝛼 is set to be as 0.05 for all simulation scenarios. Total 10000 iterations 

are utilized to obtain the 95% cutpoint for all tests. Giving the number of repeated measures over time, sample 

sizes are computed from simulated data based on the 95% cutpoint and 80% power. These are estimated for 

both AR1 and MA1 error models with parameter values 𝜌 or 𝜃 = 0.20, 0.40, 0.60 and 0.80 under various 

approximations to the distribution of longitudinal data and the whole is carried out for n = 4, 5, 7, 10. 

Additionally, sample sizes are also estimated for independent errors (𝜌 or 𝜃 = 0) over time/treatment. For 
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random block and error distributions, Laplace distribution with location parameter 0 and dispersion parameter 

1 (L(0,1)) and Weibull distribution with shape parameter 1 and scale parameter 1 (W(1,1)) are considered. In 

order to compare sample size calculations for the MS, P and J tests, the model with a linear trend alternative 

with individual block (subject) effects is considered here is written as 

𝑌𝑖𝑗 = 𝛽𝑖 + 𝜙𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1, . . . , 𝑏;  𝑗 = 1, . . . , 𝑛 (5) 

assuming that for each subject, 
ij  are time series and they represent AR1 or MA1 errors. In Equation (5),   

is the slope term to generate an increasing order of treatments. For the linear trend model in Equation (5),   

is set to be as 0.2, 0.3 and 0.4 to assess the effect of different trends of longitudinal data on nonparametric 

tests. In such a model as in Equation (5), the repeated measures are considered to be from a linear model with 

errors following a AR1 or MA1 process over time and non-normal white noise terms. It is assumed that the 

error terms form either a stationary AR1 model 

𝜀𝑖𝑗 = 𝜌 𝜀𝑖𝑗−1 + 𝑒𝑖𝑗, (6) 

or a stationary MA1 model 

𝜀𝑖𝑗 =  𝑒𝑖𝑗 − 𝜃𝑒𝑖𝑗−1, (7) 

where 𝜌 and 𝜃 are autocorrelation coefficients for AR1 and MA1 process, respectively and 
ije  are independent 

and non-normally distributed white noise terms. In AR1 error model (Equation 6), it is assumed that  >0 and 

the magnitude of correlation among responses declines as they become farther apart. In MA1 error model 

(Equation 7), the correlation is the same for any two consecutive responses. The results of 10000 Monte Carlo 

iterations generated by the model in Equation (5) for each combination of 𝑛, 𝜌, 𝜃 and error distributions are 

summarized in Table 1-3. All simulations are performed for the P, J and MS tests against increasing ordered 

alternatives for repeated measures over time in RCBDs. Simulation studies are conducted in Cran R 3.4.3. The 

steps of this algorithm are inspired by the bi-section method and a sample size can be estimated based on a 

Monte Carlo simulation for the model in Equation (5) through the following steps: 

(1) Obtain the pre-specified parameters through either historical data or previous clinical trials. 

(2) Specify a desired statistical power (i.e. 80%) and a type-1 error rate (i.e. 5%). 

(3) Simulate correlated responses within blocks for a fixed sample size n of treatment/time within each block 

under null hypothesis to obtain critical values of each trend test and record them. 

(4) Simulate correlated responses within blocks for a fixed sample size n of treatment/time within each block 

under alternative hypothesis. From the obtained data set, estimate each nonparametric test statistics value 

based on the simulated data set. 

(5) Repeat steps 3 to 4, M (i.e. M=10 000) times under various conditions explained through of this section. 

(6) Then, using critical values record if a p-value is smaller than 0.05. Estimate the empirical power of the 

model based on the fraction of p-values that are smaller than 0.05. 

(7) If the power calculated is less than the targeted power, divide the sample size into half and add it to itself 

and estimate the new power with this new sample size. If the power obtained is greater than the targeted 

power, divide the sample size in half and subtract it from itself and estimate the new power with this new 

sample size. Go to first step and repeat them through Step 7. 

(8) Stop the simulation if the desired statistical power is obtained with a small tolerance value, i.e. 0.009. 

Table 1 displays sample size calculations to obtain 80% empirical power of tests for longitudinal data generated 

by the model in Equation (5) with uncorrelated error terms within blocks for n = 4, 5, 7, 10. It can be seen that 

sample sizes estimated for Laplace distribution are greater than those for Weibull distribution. For each test, 

under all combinations for n and 𝜙, the smallest sample size is obtained for Weibull distribution. Under 

uncorrelated error terms over time, sample sizes for 80% power are same for the MS and P tests for Weibull 

distribution. On the other hand, under both distributions, for each n, sample sizes of the GJ test are smaller 

than the others. As n increases, sample size decreases for all values of 𝜙. Additionally, as shown in Figure 1, 

for fixed n, as 𝜙 increases, sample size estimated to obtain 80% empirical power of tests decreases. 
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Table 1. Simulated sample size and power study based on uncorrelated errors following Laplace or Weibull 

distribution ( =0.05) 

𝜙 n Laplace distribution  Weibull distribution 

  MS P GJ  MS P GJ 

0.2 4 59 (0.799) 53 (0.808) 54 (0.809)  59 (0.807) 53 (0.793) 41 (0.794) 

 5 41 (0.808) 41 (0.794) 36 (0.807)  41 (0.797) 41 (0.793) 32 (0.799) 

 7 32 (0.804) 32 (0.800) 27 (0.793)  27 (0.802) 27 (0.797) 21 (0.807) 

 10 24 (0.799) 24 (0.796) 20 (0.799)  20 (0.800) 21 (0.804) 17 (0.806) 

0.3 4 24 (0.795) 24 (0.797) 20 (0.792)  21 (0.799) 21 (0.806) 17 (0.802) 

 5 18 (0.795) 18 (0.799) 17 (0.808)  17 (0.806) 17 (0.794) 14 (0.797) 

 7 14 (0.795) 14 (0.801) 11 (0.797)  11 (0.794) 11 (0.796) 9 (0.801) 

 10 11 (0.802) 11 (0.796) 9 (0.799)  9 (0.805) 9 (0.793) 8 (0.806) 

0.4 4 14 (0.799) 14 (0.792) 11 (0.791)  11 (0.798) 11 (0.792) 9 (0.808) 

 5 11 (0.802) 11 (0.804) 9 (0.794)  9 (0.795) 10 (0.800) 8 (0.799) 

 7 8 (0.794) 8 (0.796) 6 (0.799)  6 (0.793) 6 (0.795) 5 (0.796) 

 10 6 (0.800) 6 (0.880) 5 (0.795)  4 (0.793) 4 (0.799) 3 (0.801) 

 

 

Figure 1. Sample size (number of blocks) required to obtain 80% power curves of the MS, P and GJ tests for 

longitudinal data with uncorrelated errors following L(0,1) and W(1,1) distribution (α = 0.05) 
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Table 2. Simulated sample size and power study based on MA1 and AR1 error models following L(0,1) for 

𝛼=0.05 

   L(0,1) 

   MA1  AR1 

𝜙 ρ or 𝜃 n MS P GJ  MS P GJ 

0.2 0.20 4 47 (0.809) 47 (0.796) 41 (0.793)  47 (0.806) 47 (0.808) 41 (0.806) 

  5 35 (0.796) 36 (0.796) 32 (0.807)  36 (0.801) 35 (0.798) 32 (0.808) 

  7 27 (0.791) 27 (0.804) 24 (0.807)  27 (0.802) 27 (0.808) 24 (0.799) 

  10 21 (0.791) 21 (0.805) 17 (0.806)  21 (0.795) 21 (0.798) 18 (0.797) 

 0.40 4 47 (0.792) 47 (0.798) 41 (0.807)  41 (0.801) 41 (0.803) 36 (0.806) 

  5 32 (0.796) 35 (0.802) 32 (0.807)  32 (0.808) 35 (0.808) 27 (0.802) 

  7 27 (0.804) 27 (0.799) 21 (0.806)  24 (0.793) 24 (0.797) 20 (0.802) 

  10 23 (0.808) 21 (0.794) 18 (0.799)  21 (0.797) 21 (0.808) 17 (0.804) 

 0.60 4 47 (0.802) 47 (0.795) 41 (0.799)  35 (0.793) 36 (0.804) 35 (0.807) 

  5 35 (0.808) 32 (0.803) 32 (0.803)  32 (0.803) 27 (0.792) 24 (0.797) 

  7 27 (0.795) 27 (0.795) 21 (0.792)  21 (0.795) 21 (0.793) 20 (0.798) 

  10 21 (0.795) 24 (0.807) 18 (0.806)  18 (0.806) 18 (0.801) 14 (0.799) 

 0.80 4 51 (0.797) 51 (0.793) 47 (0.803)  36 (0.793) 41 (0.806) 35 (0.803) 

  5 41 (0.808) 41 (0.801) 32 (0.794)  27 (0.800) 27 (0.796) 24 (0.803) 

  7 27 (0.794) 32 (0.808) 24 (0.807)  21 (0.799) 21 (0.808) 17 (0.796) 

  10 24 (0.802) 24 (0.796) 20 (0.804)  18 (0.808) 18 (0.805) 14 (0.795) 

0.3 0.20 4 21 (0.792) 21 (0.794) 18 (0.806)  21 (0.805) 21 (0.799) 17 (0.803) 

  5 17 (0.803) 17 (0.808) 14 (0.799)  17 (0.805) 18 (0.808) 14 (0.806) 

  7 11 (0.796) 14 (0.807) 11 (0.806)  11 (0.805) 14 (0.809) 9 (0.796) 

  10 11 (0.808) 11 (0.808) 8 (0.793)  11 (0.805) 11 (0.809) 8 (0.793) 

 0.40 4 20 (0.804) 21 (0.795) 18 (0.802)  18 (0.792) 20 (0.806) 18 (0.807) 

  5 14 (0.799) 17 (0.808) 14 (0.802)  14 (0.805) 17 (0.807) 14 (0.796) 

  7 11 (0.801) 11 (0.795) 9 (0.795)  11 (0.800) 11 (0.793) 9 (0.796) 

  10 9 (0.794) 9 (0.791) 8 (0.792)  9 (0.803) 9 (0.792) 8 (0.799) 

 0.60 4 23 (0.805) 24 (0.805) 20 (0.793)  18 (0.803) 18 (0.792) 17 (0.806) 

  5 17 (0.808) 17 (0.800) 14 (0.807)  14 (0.805) 14 (0.804) 11 (0.804) 

  7 11 (0.794) 11 (0.793) 11 (0.806)  11 (0.799) 11 (0.806) 9 (0.798) 

  10 9 (0.800) 11 (0.808) 8 (0.807)  9 (0.800) 9 (0.803) 8 (0.800) 

 0.80 4 24 (0.801) 27 (0.803) 21 (0.792)  18 (0.792) 18 (0.797) 17 (0.799) 

  5 17 (0.794) 18 (0.802) 14 (0.808)  14 (0.801) 14 (0.802) 11 (0.793) 

  7 14 (0.805) 14 (0.798) 11 (0.797)  11 (0.808) 11 (0.808) 9 (0.809) 

  10 11 (0.793) 11 (0.801) 9 (0.796)  9 (0.806) 9 (0.807) 6 (0.794) 

0.4 0.20 4 14 (0.805) 14 (0.807) 11 (0.800)  14 (0.806) 14 (0.803) 11 (0.808) 

  5 9 (0.791) 9 (0.798) 8 (0.794)  9 (0.794) 9 (0.795) 8 (0.792) 

  7 8 (0.799) 8 (0.808) 6 (0.805)  8 (0.805) 8 (0.805) 6 (0.894) 

  10 6 (0.797) 6 (0.808) 5 (0.796)  6 (0.806) 6 (0.806) 5 (0.793) 

 0.40 4 14 (0.806) 14 (0.808) 11 (0.806)  11 (0.793) 11 (0.798) 11 (0.801) 

  5 9 (0.808) 9 (0.803) 8 (0.799)  9 (0.795) 9 (0.802) 8 (0.794) 

  7 6 (0.791) 6 (0.793) 6 (0.802)  6 (0.801) 6 (0.793) 6 (0.801) 

  10 6 (0.803) 6 (0.800) 5 (0.800)  5 (0.798) 5 (0.795) 5 (0.800) 

 0.60 4 14 (0.805) 14 (0.803) 12 (0.798)  11 (0.808) 11 (0.801) 9 (0.793) 

  5 9 (0.793) 9 (0.799) 8 (0.800)  8 (0.799) 8 (0.805) 8 (0.804) 

  7 8 (0.809) 8 (0.797) 6 (0.796)  6 (0.796) 6 (0.794) 5 (0.795) 

  10 6 (0.802) 6 (0.807) 5 (0.805)  5 (0.801) 4 (0.794) 5 (0.806) 

 0.80 4 17 (0.805) 14 (0.793) 14 (0.794)  11 (0.804) 11 (0.797) 9 (0.792) 

  5 11 (0.806) 11 (0.797) 9 (0.803)  8 (0.805) 9 (0.802) 8 (0.809) 

  7 8 (0.797) 8 (0.808) 6 (0.792)  6 (0.793) 6 (0.800) 5 (0.794) 

  10 6 (0.796)  6 (0.801) 5 (0.802)  5 (0.792) 5 (0.793) 5 (0.806) 
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Table 3. Simulated sample size and power study based on MA1 and AR1 error models following W(1,1) 

distribution for 𝛼=0.05 

    W(1,1) 

   MA1  AR1 

𝜙 ρ or 𝜃 n MS P GJ  MS P GJ 

0.2 0.20 4 195 (0.803) 173 (0.793) 80 (0.796)  135 (0.799) 131 (0.801) 59 (0.798) 

  5 135 (0.806) 131 (0.799) 68 (0.794)  153 (0.805) 153 (0.798) 68 (0.798) 

  7 80 (0.791) 87 (0.803) 41 (0.793)  116 (0.806) 116 (0.802) 53 (0.793) 

  10 53 (0.792) 47 (0.799) 32 (0.804)  60 (0.797) 60 (0.792) 35 (0.801) 

 0.40 4 456 (0.793) 456 (0.802) 131 (0.806)  99 (0.794) 102 (0.808) 47 (0.802) 

  5 405 (0.795) 386 (0.802) 102 (0.791)  401 (0.801) 405 (0.805) 87 (0.803) 

  7 281 (0.799) 270 (0.795) 80 (0.795)  597 (0.794) 597 (0.793) 168 (0.802) 

  10 132 (0.805) 135 (0.799) 51 (0.808)  339 (0.803) 339 (0.801) 120 (0.802) 

 0.60 4 867 (0.803) 827 (0.807) 162 (0.796)  32 (0.797) 32 (0.807) 18 (0.803) 

   5 591 (0.794) 608 (0.798) 113 (0.794)  87 (0.798) 87 (0.806) 36 (0.802) 

  7 584 (0.802) 566 (0.796) 106 (0.792)  196 (0.799) 196 (0.796) 93 (0.799) 

  10 249 (0.806) 249 (0.791) 77 (0.808)  138 (0.798) 138 (0.801) 63 (0.800) 

 0.80 4 2228 (0.793) 2228 (0.792) 356 (0.806)  11 (0.807)  11 (0.797) 9 (0.798) 

  5 734 (0.802) 699 (0.801) 131 (0.799)  14 (0.801) 14 (0.806) 9 (0.798) 

  7 734 (0.793) 684 (0.796) 128 (0.804)  32 (0.804) 32 (0.793) 17 (0.800) 

  10 239 (0.805) 230 (0.793) 77 (0.803)  17 (0.802) 17 (0.807) 8 (0.793) 

0.3 0.20 4 41 (0.804) 36 (0.792) 24 (0.804)  27 (0.804) 27 (0.802) 17 (0.799) 

  5 27 (0.803) 32 (0.806) 20 (0.804)  14 (0.801) 14 (0.804) 11 (0.803) 

  7 20 (0.791) 21 (0.809) 14 (0.803)  21 (0.796) 24 (0.799) 14 (0.794) 

  10 14 (0.808) 14 (0.809) 9 (0.807)  17 (0.808) 14 (0.794) 11 (0.800) 

 0.40 4 53 (0.800) 51 (0.797) 32 (0.804)  27(0.802) 27 (0.807) 18 (0.800) 

  5 41 (0.807) 41 (0.799) 21 (0.796)  41 (0.806) 36 (0.796) 21 (0.798) 

  7 21 (0.802) 32 (0.793) 17 (0.795)  47 (0.803) 47 (0.797) 21 (0.804) 

  10 14 (0.803) 21 (0.796) 14 (0.806)  36 (0.793) 36 (0.799) 18 (0.806) 

 0.60 4 68 (0.800) 77 (0.804) 36 (0.804)  14 (0.805) 14 (0.801) 11 (0.806) 

  5 47 (0.807) 47 (0.806) 27 (0.800)  20 (0.804) 21 (0.808) 11 (0.805) 

  7 41 (0.804) 41 (0.792) 21 (0.796)  53 (0.8069 53 (0.796) 20 (0.798) 

  10 27 (0.796) 27 (0.803) 14 (0.797)  135 (0.801) 135 (0.803) 27 (0.798) 

 0.80 4 111 (0.802) 116 (0.806) 53 (0.791)  8 (0.793) 8 (0.804) 5 (0.799) 

  5 60 (0.793) 60 (0.796) 32 (0.804)  8 (0.804) 8 (0.804) 5 (0.801) 

  7 47 (0.809) 47 (0.792) 27 (0.808)  9 (0.800) 9 (0.804) 6 (0.792) 

  10 32 (0.802) 32 (0.808) 17 (0.799)  27 (0.800) 27 (0.797) 11 (0.797) 

0.4 0.20 4 18 (0.791) 18 (0.799) 14 (0.809)  17 (0.806) 17 (0.806) 11 (0.809) 

  5 14 (0.807) 14 (0.804) 9 (0.793)  14 (0.808) 14 (0.808) 9 (0.794) 

  7 9 (0.791) 9 (0.800) 6 (0.800)  11 (0.799) 11 (0.808) 6 (0.793) 

  10 6 (0.800) 6 (0.791) 5 (0.804)  8 (0.806) 8 (0.809) 5 (0.796) 

 0.40 4 21 (0.804) 21 (0.800) 14 (0.794)  14 (0.808) 14 (0.798) 9 (0.791) 

  5 17 (0.807) 17 (0.800) 11 (0.798)  14 (0.801) 14 (0.798) 9 (0.795) 

  7 11 (0.792) 11 (0.794) 8 (0.808)  14 (0.797) 14 (0.794) 8 (0.808) 

  10 9 (0.804) 8 (0.792) 6 (0.806)  11 (0.798) 11 (0.792) 6 (0.798) 

 0.60 4 27 (0.798) 27 (0.805) 15 (0.805)  8 (0.801) 8 (0.794) 5 (0.793) 

  5 18 (0.791) 18 (0.799) 11 (0.798)  9 (0.805) 9 (0.808) 6 (0.806) 

  7 14 (0.808) 14 (0.797) 9 (0.803)  14 (0.796) 14 (0.802) 8 (0.804) 

  10 11 (0.809) 11 (0.806) 6 (0.792)  17 (0.797) 18 (0.796) 8 (0.807) 

 0.80 4 36 (0.792) 36 (0.800) 24 (0.808)  6 (0.802) 6 (0.803) 5 (0.794) 

  5 24 (0.805) 24 (0.800) 14 (0.807)  6 (0.800) 6 (0.798) 5 (0.799) 

  7 17 (0.799) 17 (0.799) 11 (0.808)  5 (0.803) 5 (0.802) 3 (0.792) 

  10 11 (0.808) 11 (0.792) 8 (0.804)  9 (0.799) 9 (0.803) 5 (0.808) 
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As can be seen in Table 2, the GJ test provides the smallest sample size even with small n. Additionally, for 

each 𝜙 and fixed correlation coefficient of either AR1 or MA1 structure, when n increases, sample sizes 

required to obtain 80% decreases for each test. It can be also seen that for each 𝜙, sample size of each test 

under AR1 structure is smaller than sample size estimated under MA1 structure, when ρ or 𝜃 is greater than 

0.40 for fixed values of n. In some simulation combinations, sample sizes are found to be same for the MS and 

P tests. When error terms have AR1 or MA1 structure, as n increases, sample size required to obtain at least 

80% power of each test decreases for fixed ρ or 𝜃. Additionally, for fixed n and ρ or θ, sample sizes estimated 

by AR1 error model are much smaller. For all combinations, the sample size of the GJ test is smaller than that 

of other tests. Figure 2 displays the plots of sample sizes required to obtain 80% power of the tests, when error 

terms have AR1 or MA1 structure and follows L(0,1) distribution. 

 

Figure 2. Sample size (number of blocks) required to obtain 80% power curves of the MS, P and GJ tests for 

longitudinal data, when errors are autocorrelated in MA1 or AR1 structures  and distributed in L(0,1) (𝛼 

=0.05) 

Table 3 presents sample sizes for the P, GJ and MS tests required to obtain 80% power under the MA1 and 

AR1 models with white noise terms following Weibull distribution. The results of simulations under Weibull 

distribution are not completely similar with those under the Laplace distribution. For ρ from 0.4 to 0.8, as n 

increases from 4 to 7, sample sizes of all tests increase. Under AR1 structure, for all ρ, sample sizes for n = 10 

are smaller than those for n = 7. On the other hand, when errors terms have MA1 structure, for all θ, as n 

increases from 4 to 10, sample size decreases. Also, sample sizes of the all tests under MA1 error model are 

larger than those provided under AR1 error model for Weibull distribution. The greatest sample size in this 

simulation study is obtained for θ = 0.80, n = 4 and 𝜙 = 0.2, when errors terms have MA1 model with white 

noise terms following W(1,1) distribution. The sample size of the GJ test has been observed to be the smallest 

in comparison to the other two tests. The smallest sample sizes for each combination of n, 𝜙 and ρ or θ are 

obtained by the GJ test. Usually, sample sizes of the MS and P tests are same. Figure 3 represents estimated 

sample sizes to obtain 80% power for the tests in RCBDs with longitudinal data, when error terms have either 

MA1 or AR1 model with W(1,1) distributed white noise terms. 
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Figure 3. Sample size (number of blocks) required to obtain 80% power curves of the MS, P and GJ tests for 

longitudinal data, when errors are autocorrelated in MA1 or AR1 structures and distributed in W(1,1) 

(𝛼=0.05) 

4. DATA EXAMPLE 

Data set in (Zhang & Cabilio, 2012) is taken into consideration to estimate sample sizes required to obtain 

80% power of the MS, P and GJ tests for analyzing longitudinal data in RCBDs. This data set from a self-

report survey was containing the total scores (0 (worst)-100 (best)) of pain, stiffness, and disability scores for 

each knee using the Western Ontario and McMasters Osteoarthritis Index (WOMAC). The longitudinal data 

set analyzed in (Zhang & Cabilio, 2012) includes 88 participants (b = 88) who have no missing pain records 

at the baseline and three 12-month interval visits (n = 4). They were concerned with changes of the total score 

over time in order to illustrate the implementation of the GJ test. The total WOMAC scores are appeared to be 

L-shaped with a long tail to the right and a declining trend in terms of medians for the left knee. Zhang and 

Cabilio (2012) analyzed these scores assuming AR(1) error terms with ρ = 0.5 and standard normal white 

noise. Here, the data are investigated for the MS, P and GJ tests for the AR(1) error model with white noise 

terms following W(1,1) and ρ = 0.5. At α = 0.05, sample sizes required for 80% power of the MS, P and GJ 

test statistics based on 10 000 MC simulations are estimated as 60 (0.806), 59 (0.7983) and 36 (0.8053), 

respectively. 

5. DISCUSSION AND CONCLUSION 

In the case of independent error terms, the distribution of the GJ statistics developed for RCBDs only depends 

on n and b and has an asymptotic normal distribution (Zhang & Cabilio, 2012). The expected values and 

variances of nonparametric tests depend on the error model parameters and distribution. Even if the parameters 

and distributions of the error terms are known, it is quite difficult to determine the asymptotic distributions of 

nonparametric tests, especially in the case of a dependent response variable. Therefore, it is almost impossible 

to obtain the exact formulas for the power and sample size of these tests. In this case, it will be inevitable for 

practitioners to estimate the power and sample size with simulation-based methods. This study is the first study 

in the literature that estimates the number of experimental units, that is, the number of blocks, which should 

be included in a research in an increasing or decreasing order for nonparametric tests to reach 0.80 power for 

testing the ordered alternatives hypothesis in the case of longitudinal data in two-way ANOVA form of 
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RCBDs. This study shows that, in the autocorrelated error models for RCBDs with longitudinal data, the 

number of blocks, i.e. sample size of subjects depends on the number of time points, the magnitude of 

autocorrelation coefficient, the slope term of the linear model and the distribution of errors. The fewer 

experimental units involved in clinical trials, the less costly it is, so choosing the trend test that requires a small 

sample size is very important. Monte Carlo simulations are conducted in this paper, because asymptotic 

distributions of tests are not known due to non-normal distributions and auto correlated error, even when the 

error term model is known. The sample size performance of nonparametric tests under various non-normal 

distributions is examined through an extensive simulation study in this paper. It is assumed that the error terms 

form either a stationary AR1 or MA1 model with independent white noise terms from Laplace or Weibull 

distribution. However, all simulations based on the fact that blocks are independent. The main purpose of this 

study is to investigate how sample size is affected by the distributions of errors and blocks, autocorrelation 

structure and the magnitude of trend in RCBDs with longitudinal data. The sample sizes for the P, GJ and MS 

tests under each non-normal distribution assuming that each subject has the same autocorrelation structure 

over time/ treatment were estimated by Monte Carlo simulations. When the error distribution follows laplace 

or weibull distributions under AR1 or MA1 correlation structures, the required sample size of GJ test is smaller 

than the required sample size of MS and Page tests in this study. For fixed 𝜙 and the coefficient parameter θ 

in the MA1 error model, as the number of time points n increases, sample size appears to be decreasing for 

each test under both non-normal error distributions. However, under Weibull distribution, when errors are 

autocorrelated in AR1 model, as n increases, sample sizes of all tests are increasing. For fixed n and 𝜙, when 

the coefficient parameter ρ in the AR1 model approaches to 1, even for large n, sample size required for 80% 

power values of the P, GJ and MS tests appears to be decreasing under both distributions. However, for fixed 

n and 𝜙, when the coefficient parameter θ in the MA1 model approaches to 1, sample sizes of the P, GJ and 

MS tests appears to be increasing under both distributions. In the light of simulation results, it can be seen that 

for RCBDs with longitudinal data, sample size of subjects is closely associated with the underlying error 

model, the values of its parameters, the distribution of data and the direction of time, all of which are unknown 

in practice. In comparison of sample sizes in terms of error distributions, for all combinations of correlation 

coefficient, number of time points and direction of time, the sample sizes estimated under Weibull distribution 

are much greater than those under Laplace distribution. Under Laplace distribution of errors, the more time 

points involved in the study and the larger correlation coefficient, the smaller sample size tends to be. The MS, 

P and GJ tests depend on the error distribution, the error correlation model and the direction of time/treatments. 

As a future study, the performance of alternative Page tests can be investigated in terms of sample size 

requirements for a target power in a Monte Carlo simulation study. In conclusion, we provide a simulation-

based tool for situations in which the response variable is correlated within/ blocks and for which the accuracy 

of normal approximations is not sufficient in RCBDs. 
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