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ABSTRACT 

In this study, spatial modulation (SM), which is an interesting and new 
approach for 5G and beyond communication systems, and deep neural 
network (DNN), which have also received great attention recently, are 
discussed, and a DNN-based receiver architecture for SM systems is 
proposed. Since the DNN will not be retrained until the channel change 
after training, it requires less processing, so it will be a potential receiver 
architecture for next-generation wireless communication and therefore SM 
systems. In this paper, a new DNN-based SM receiver is proposed to detect 
the transmitted symbols and the activated antenna index at the same time, 
and its performance is examined. As can be seen from the computer 
simulations, the DNN-based receiver offers low error performance with a 
small number of hidden layers and a low number of neurons in these layers. 
At the same time, even when the data rate is increased, the same DNN 
structure (without increasing the processing load) shows better/same 
performance than the receivers in the literature. 
Keywords: MIMO, Spatial Modulation, Deep Learning, Deep Neural 
Network.
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UZAYSAL MODÜLASYON SİSTEMLERİ İÇİN YENİ BİR ALICI 
TASARIMI 

ÖZ 

Bu makalede, 5G ve ötesi iletişim sistemleri için ilgi çekici ve yeni bir 
yaklaşım olan uzaysal modülasyon (Spatial Modulation (SM)) ile yine son 
zamanlarda büyük ilgi gören derin sinir ağları (Deep Neural Network 
(DNN)) konuları ele alınmış ve SM sistemleri için DNN tabanlı alıcı 
mimarisi önerilmiştir. DNN, eğitim sonrası kanal değişene kadar yeniden 
eğitilmeyeceğinden daha az işlem gerektirir, bu nedenle yeni nesil kablosuz 
iletişim ve dolayısıyla SM sistemleri için potansiyel bir alıcı mimarisi 
olacaktır. Bu çalışmada, aktif edilmiş anten indisi ile iletilen sembolleri 
ortaklaşa algılamak için tam bağlantılı (fully connected) DNN tabanlı yeni 
bir SM sezici önerilmiş ve performansı analiz edilmiştir. Bilgisayar 
benzetimlerinden de görüldüğü gibi DNN tabanlı alıcı az sayıda gizli 
katman ve bu katmanlardaki yine az sayıdaki nöron sayısı ile düşük hata 
performansı sunmaktadır. Aynı zamanda veri hızı artırıldığında bile aynı 
DNN yapısı (işlem yükü artmadan) literatürdeki alıcılardan daha iyi/aynı 
performansı göstermektedir. 
Anahtar Kelimeler: MIMO, Uzaysal Modülasyon, Derin Öğrenme, Derin 
Sinir Ağları 
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1. INTRODUCTION 
Today, access to information quickly and accurately has become an 
indispensable need. Therefore, multiple-input multiple-output (MIMO) 
systems are currently one of the most effective methods in increasing the 
reliability of information. MIMO systems aim to increase the capacity of the 
radio link with the multipath obtained by using multiple transmit and 
receive antennas (Telatar, 1999). MIMO has been a fundamental element 
used in new generation communication standards such as IEEE 802.11n 
(Wi-fi 4), IEEE 802.11ac (Wi-fi 5) (IEEE, 2020), WiMAX, Long Term 
Evolution (LTE) (IEEE, 2017). The two main MIMO transmission 
techniques in the literature are space-time block code (STBC) (Tarokh et al., 
1999) and spatial multiplexing (SMX) (Tse & Viswanath, 2005). The first 
of these techniques extends the traditional two-dimensional signal 
constellation set to space and time dimensions, providing transmission 
diversity, and increasing signal reliability. However, an orthogonal STBC 
per channel use provides the full symbol rate for two transmit antennas, 
while for more than two transmit antennas, it is a maximum of 3/4 symbols. 
The latter can achieve higher data rates. The best-known applications of 
SMX are Bell Labs layered space time (BLAST) techniques. In one of the 
BLAST techniques, Vertical-BLAST (V-BLAST) (Wolniansky et al., 
1998), the capacity is increased by sending multiple symbols from multiple 
transmit antennas. However, since these systems have simultaneous 
transmission over all antennas, a pricy radio frequency (RF) stage is needed 
for whole antennas and a high rate of inter-channel interference (ICI) 
occurs, which adds additional complexity to the receiver. 
Spatial modulation (SM) (Mesleh et al., 2008), which carries information in 
both antenna domain and classical symbol set, has started to attract 
increasing attention in recent years and has become a new alternative to 
STBC and SMX. In an SM system where 𝑁𝑁𝑡𝑡 is the number of transmit 
antennas and M is the size of the constellation set for conventional phase 
shift keying (PSK)/quadrature amplitude modulation (QAM) modulations, 
log2(𝑁𝑁𝑡𝑡𝑀𝑀) information bits are assigned to an SM symbol. The first 
log2(𝑁𝑁𝑡𝑡) bit of the total log2(𝑁𝑁𝑡𝑡𝑀𝑀) bit defines the transmit antenna, while 
the remaining bits are reserved for M-PSK/QAM modulation. Since a single 
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transmit antenna is activated during each symbol transmission, a single RF 
stage is adequate in SM systems and ICI is eliminated. 
As a result of the popularity of SM, special cases of SM such as space shift 
keying (SSK) (Jeganathan et al., 2009), generalized spatial modulation 
(GSM) (Younis et al., 2010), quadrature SM (QSM) (Mesleh, Ikki & 
Aggoune, 2015), receive SM (RSM) (Yang, 2011), etc. has been proposed. 
In SSK, information is carried only in antenna domain where symbol 
domain is not used. In the GSM system, multiple transmit antennas are 
enabled rather than a single antenna for increasing the data rate. In QSM, on 
the other hand, PSK/QAM symbols are divided into real and imaginary 
parts and sent over activated antennas. In RSM, the receive antenna indices 
convey messages with the help of precoding in the transmitter. An extensive 
study of SM systems can be found at (Wen et al., 2019).  
Artificial neural networks (ANNs) are parallel and distributed computing 
structures that are designed with inspiration from the human brain, and are 
formed with interconnecting nodes, each of which operates with weighting 
and biasing (Hassoun, 2003). In other words, they are computer programs 
that emulate biological neural networks. Deep neural networks (DNN) are 
defined as versions of ANNs that are structurally "deep" by increasing the 
number of hidden layers and neurons in these layers. In recent years, DNN 
has been used in many fields from health to medicine, engineering 
applications to architecture, finance to weather forecasts, biology to 
chemistry, etc. Three main techniques are generally used in DNN 
applications, namely: Fully connected neural network (FCNN), 
convolutional neural network (CNN) and recurrent neural network (RNN). 
Detailed information on these techniques can be found in (Hassoun, 2003), 
(Bishop, 2006). 
The use of ANNs in wireless communication has attracted great interest and 
there has been a great increase in studies on the subject in recent years. 
Studies on the use of DNN in wireless communication can be found in (Dai 
et al., 2020) and its references. This interest in DNN has started to be seen 
in SM and other variants (SSK, GSM, etc.) and various studies have 
emerged. Transmit antenna selection and power allocation for SM systems 
using machine learning methods are investigated in (Yang et al., 2019). A 
GSM system in which the transmitted symbols and antenna indices are 
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determined by separate DNN structures is given in (Shamasundar & 
Chockhalingam, 2020). Unlike (Shamasundar & Chockhalingam, 2020), the 
GSM system, which uses a Block-DNN structure that decodes both active 
antenna indices and modulated symbols together, is studied in (Albinsaid et 
al. 2020). In (Luong et al., 2019), the OFDM frames are decoded by FCNN 
technique in index modulated OFDM (OFDM-IM) structure. In (Kim, Ro & 
Park, 2021), an architecture that decodes active antenna indices with CNN 
and transmitted PSK/QAM symbols with FCNN is proposed for dual-mode 
OFDM-IM. (Altın, 2022) develops a new detection technique for MIMO-
OFDM-IM using deep learning (DL) methods. 
To the best of the authors' knowledge, a receiver design using the DNN 
method for the SM system (only for SM, not for other variants of SM) has 
never been considered. In this study, a new SM receiver using FCNN is 
constituted to decode SM symbols. The main contributions of this article are 
listed below: 

• Since the complexness of the optimum receiver for SM systems 
increases exponentially due to the number of transmit and receive 
antennas, and constellation size, using a DNN-based receiver will be a 
more convenient solution due to its near-optimal performance and lower 
complexity. 
• As far as is known, DNN-based receiver structures have been studied 
for other types of SM in the literature, but no study has been done in this 
direction for SM. In these studies, antenna indices and modulated 
symbols is determined separately. However, since the correct decoding of 
both dimensions at the same time in SM is very important for 
performance, a DNN receiver is designed in this paper that jointly detects 
both the antenna index and the transmitted symbol. 
• In order to increase the performance, some studies in the literature 
process the received signal in another layer and give it to the DNN input. 
However, this complicates the receiver even more and brings extra costs. 
In our study, there is no preprocessing before DNN. 

The remainder of the paper is composed as follows. The classical SM 
scheme and optimal decoding for the SM are re-examined in Section 2. In 
Section 3, the architecture, training and testing phases of the DNN for the 
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SM receiver are proposed in Section 3. The computer simulations for the 
proposed scheme are given in Section 4 and Section 5 concludes the work. 
Notation: A scalar is represented by lowercase and uppercase italics. A 
vector is in bold, lowercase and a matrix is in bold, uppercase letters. (. )𝑇𝑇 
and (. )𝐻𝐻 denote transpose and Hermitian transpose, respectively. ‖. ‖ 
corresponds to the Euclidean/Frobenius. 𝐈𝐈𝑁𝑁, is the 𝑁𝑁 × 𝑁𝑁 unitary matrix. 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(. ) shows the diagonal of a matrix and 𝑣𝑣𝑣𝑣𝑣𝑣(𝐀𝐀) is the vectorization 
operator by writing consecutive columns of matrix 𝐀𝐀. ℂ𝑛𝑛×𝑚𝑚 shows the 
dimensions of a complex matrix. Expectation operation is denoted by 𝐸𝐸{. }. 
𝒞𝒞𝒞𝒞(0,𝜎𝜎2) describes a circularly symmetric, zero-mean complex Gaussian 
distribution with 𝜎𝜎2 variance. Binomial coefficient and floor operator can be 
given as �

.

.� and ⌊. ⌋, respectively. ℜ{. } is the real part and ℑ{. } is the 
imaginary part of a complex number. 

Figure 1. SM constellation for 𝑁𝑁𝑡𝑡 = 4 and 4-PSK/QAM modulation. 
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2. CLASSICAL SM SCHEME 
As mentioned before, it can be thought that the antenna index is added as a 
third dimension to the two-dimensional signal set to transmit information in 
the SM method. Thus, the SM symbol is selected from the set of symbols, 
an example of which is shown in Figure 1. So, an SM symbol with unit 

energy, 𝐸𝐸{𝐬𝐬𝐻𝐻𝐬𝐬} = 1, can be given as 𝐬𝐬 = �0 … 0�������
𝑖𝑖−1

𝑠𝑠𝑞𝑞 0 … 0�������
𝑁𝑁𝑡𝑡−𝑖𝑖

�
𝑇𝑇
 

where i is the activated antenna index and 𝑠𝑠𝑞𝑞 is the M-PSK/QAM symbol. 
For the channel matrix H, which consists of independent and identically 
distributed (i.i.d.) random variables with 𝒞𝒞𝒞𝒞(0,1) distribution, and the 
noise vector n, which consists of i.i.d. random variables with double-sided 
noise spectral density 𝑁𝑁0 and 𝒞𝒞𝒞𝒞(0,𝑁𝑁0) distribution, the received signal 
vector will be 

𝐫𝐫 = 𝐇𝐇𝐇𝐇 + 𝐧𝐧 
= 𝐡𝐡𝑖𝑖𝑠𝑠𝑞𝑞 + 𝐧𝐧. (1) 

Here, 𝐡𝐡𝑖𝑖 represents the ith column of the matrix H.  
Under the assumption that the channel state information (CSI) is known at 
the receiver, when the maximum likelihood (ML) method, which is the 
optimum detection technique, is used, the antenna index and the transmitted 
signal is decided with 

�𝚤𝚤̂, 𝑠𝑠𝑞𝑞�� = arg min
𝑖𝑖,𝑞𝑞

�𝐫𝐫 − 𝐡𝐡𝑖𝑖𝑠𝑠𝑞𝑞�
𝟐𝟐
 (2) 

(Jeganathan et al., 2008). The receiver complexity of the ML method given 
in (2) increases with the size of the symbol set, M, and the number of 
transmit and receive antennas. For this reason, many studies have been 
carried out in the literature to reduce the complexity of ML. Some of these 
works are presented in (Al Nahhal et al., 2019; Liu et al., 2019; Jiang et al., 
2015; Men & Jin, 2014; Rajashekar et al., 2014; Tang et al., 2013; Wang, 
Jia & Song, 2012; Pillay & Xu, 2013; Zhang & Yin, 2014). However, these 
studies have generally been developed by arranging and applying known 
algorithms, and as far as we know, heuristic methods have never been 
applied for the SM technique. 
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3. A NEW RECEIVER DESIGN FOR SM SYSTEMS 

3.1. DNN-based Receiver Architecture 
SM receiver architecture with a single DNN-based decoder is presented in 
Figure 2. This architecture has no preprocessing, which further increases the 
receiver's processing load, so the received signal and channel parameters are 
given to the input of the proposed DNN, as they are, assuming that CSI is 
present at the receiver (as in ML).  At the same time, since the DNN method 
is inspired by the human brain, generally the input information is real 
numbers. Therefore, in our study, the inputs are expressed in real terms as 
well. As a result, the input (feature) vector for the receiver can be written as 

𝐯𝐯 = ��ℜ(𝐫𝐫)�
𝑇𝑇
�ℑ(𝐫𝐫)�

𝑇𝑇
�ℜ(𝑣𝑣𝑣𝑣𝑣𝑣(𝐇𝐇))�

𝑇𝑇
�ℑ(𝑣𝑣𝑣𝑣𝑣𝑣(𝐇𝐇))�

𝑇𝑇�
𝑇𝑇
.    (3) 

As seen in Figure 2, the proposed DNN receiver consists of multiple fully 
connected (FC) layers and a classification layer. FC layers transmit the 
output of the previous layer to the next layer by multiplying it with a 
weighting matrix and summing it with a bias vector. Furthermore, the 
rectified linear unit (ReLU) function, which makes the negative input 0 and 
determines the positive input as itself, is used to activate the neurons, i.e. 
𝑓𝑓(𝑧𝑧) = max (0, 𝑧𝑧). The softmax function, which shows the probabilities of 
the results, is selected for the output layer as 𝜎𝜎(𝐱𝐱)𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑍𝑍
𝑗𝑗=1

, 𝑖𝑖 = 1,2, … ,𝑍𝑍 

Figure 2. Proposed DNN-based SM receiver. 
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for an arbitrary vector 𝐱𝐱 = [𝑥𝑥1  𝑥𝑥2 … 𝑥𝑥𝑍𝑍]  ∈ ℝ𝒁𝒁. Therefore, the most 
probable outcome will correspond to the index of that symbol inside the SM 
symbol set. Since there are possible 𝑁𝑁𝑡𝑡𝑀𝑀 SM symbols to be classified, the 
number of neurons for the classification layer will also be 𝑁𝑁𝑡𝑡𝑀𝑀. 

3.2. Training and Testing Phases 
The received signal and the channel parameters are needed to train the 
DNN. At this phase, no channel estimation is needed since the DNN will be 
trained offline, and the received signal, r, and the corresponding channel 
parameters, H, which are artificially generated using (1), help to train the 
DNN. The noise vector in (1) can be randomly generated based on a given 
SNR value. 
At the training stage, labels are given to each of the SM symbols produced 
in the transmitter and known in the receiver, and the DNN is expected to 
make the right decision on these labels at the end of the training process. 
The labels that will correspond to the SM symbols to be formed for the 
proposed DNN is given in Table 1. 
 

Table 1. Labelling for training sequence. 

SM Symbol Label 

[𝑠𝑠1 0 … 0 0]𝑇𝑇 1 

[𝑠𝑠2 0 … 0 0]𝑇𝑇 2 

⋮ ⋮ 

�0 … 0 𝑠𝑠𝑞𝑞⏟
𝑖𝑖

0 … 0�
𝑇𝑇
 

𝑖𝑖𝑞𝑞 

⋮ ⋮ 

[0 0 … 0 𝑠𝑠𝑀𝑀]𝑇𝑇 𝑁𝑁𝑡𝑡𝑀𝑀 

 
For a good performance in the training phase, the number of dataset is 
selected at least 107. In addition, 20% of the produced data is reserved for 
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testing/validating of the proposed network. Dataset generation at the 
training stage is given in Algorithm 1. If the dataset is very large, it can be 
divided into smaller sets, which is called mini batches, to increase 
processing speed. 
 

Algorithm 1. Data generation for DNN. 
 

 Input: 𝑁𝑁𝑡𝑡, 𝑁𝑁𝑟𝑟 , 𝑀𝑀,  

 Initialization: Number of Dataset, SNR 

1 for i ⟵Number of Dataset do 

2  Generate randomly 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑡𝑡 channel matrix, H, and 𝑁𝑁𝑟𝑟 × 1  
AWGN noise vector, n, based on fixed SNR value. 

3  Generate known GSM symbols corresponding to the log2(𝑁𝑁𝑡𝑡𝑀𝑀) 
bit and give each a label according to Table 1.  
𝐥𝐥 = �𝑙𝑙(1), 𝑙𝑙(2), … , 𝑙𝑙(𝑖𝑖)�

𝑇𝑇
, 𝑙𝑙 ∈ {1,2, … ,𝑁𝑁𝑡𝑡𝑀𝑀} 

4  𝐫𝐫 = 𝐡𝐡𝑖𝑖𝑠𝑠𝑞𝑞 + 𝐧𝐧  

5  𝐯𝐯(𝒊𝒊) = ��ℜ(𝐫𝐫)�
𝑇𝑇
�ℑ(𝐫𝐫)�

𝑇𝑇
�ℜ(𝑣𝑣𝑣𝑣𝑣𝑣(𝐇𝐇))�

𝑇𝑇
�ℑ(𝑣𝑣𝑣𝑣𝑣𝑣(𝐇𝐇))�

𝑇𝑇�
𝑇𝑇

 

6 end 

7 Allocate 20% of the generated dataset for validation of the network 
(test). 

 Output: 𝐯𝐯(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), 𝐯𝐯(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), 𝐥𝐥(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), 𝐥𝐥(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

4. SIMULATION RESULTS 
In this section, computer simulations are depicted for the proposed DNN-
based SM receiver on a standalone PC with an AMD Ryzen 5 3600 @3.60 
GHz CPU, NVIDIA GeForce GTX 1650 GPU, and 16 GB RAM. These 
computer simulations include finding the best SNR value and BER results 
made accordingly. At the same time, the comparisons of the proposed 
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structure according to the BER results with other studies (Wang, Jia & 
Song, 2012), (Pillay & Xu, 2013) and (Mesleh et al., 2006) are also 
presented. For DNN simulations, the mini batch size is set as 4096, and 
step-based learning schedule is selected to scan the first steps quickly and to 
investigate the next steps in more detail. In here, the initial learning rate is 
chosen as 0.01 and is reduced by 10% in every 2 epochs.  

 
Figure 4. Bit error probabilities for 𝑁𝑁𝑡𝑡 = 2, 𝑁𝑁𝑟𝑟 = 4 and 32-QAM according to 

SNR values to be used to determine noise levels in training dataset. 

Figure 3. Bit error probabilities for 𝑁𝑁𝑡𝑡 = 2, 𝑁𝑁𝑟𝑟 = 4 and 16-QAM according to 
SNR values to be used to determine noise levels in training dataset. 
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On the other hand, the signal-to-noise ratio (SNR) is applied as the received 
SNR seen at the receiver front end. The performance of a DNN receiver is 
closely related to how well it is trained. For this reason, the noise level to be 
used in the dataset gains importance. Thus, a trained DNN according to an 
appropriate SNR will give optimal error performance at all SNR levels. In 
Figures 3 and 4, bit error probabilities (BER) are given according to the 
SNR values to be used in determining the noise level in the training dataset 
for the data rate R=5 bits/second/Hz and R=6 bits/second/Hz, respectively. 
In Figure 3, the BER performances of the SM system at 12 dB, 14 dB, and 
16 dB show that they jointly perform at the lowest when the training is 
realized at an SNR of 13 dB. Again, with the same method, if the DNN 
structure suggested for R=6 bits/second/Hz is trained with a 15 dB SNR 
level, the BER performance of the whole system will be at the optimum 
level as in Figure 4. 
 
Figure 5 shows the accuracy level during training of the proposed DNN 
structure with 128 and 96 neurons in the first and second hidden layers, 
respectively ([128 96]) and the reduction of the loss function according to 
each iteration. As can be seen from the figure, the proposed DNN 
architecture reaches a very high level of accuracy in the first iterations and 
reaches its highest level in the 3rd epoch. This shows that there is no need 
for long epochs to train the DNN. Likewise, the loss function reaches its 
minimum value in low iteration numbers. 
Figure 6 shows the error performance curves of DNN structures in various 
configurations and MRC and SVD detectors in the literature for a data rate 
of R=5 bits/second/Hz.  

Figure 5. Accuracy level and loss function during training of [128 96] DNN. 
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For the training dataset in DNN, SNR = 13 dB and the number of epochs is 
chosen as 5. As can be seen from the BER curves presented for the MIMO 
system structure with 𝑁𝑁𝑡𝑡 = 2, 𝑁𝑁𝑟𝑟 = 4 and 16-QAM, the [256, 128] DNN 
receiver gives much better results than the MRC detector, and it provides 
0.5 dB SNR gain at 10−3 error probability with respect to SVD detector. 
Moreover, if it is desired to train the DNN faster and reduce the processing 
load, the number of neurons in the FC layers can be reduced. As can be seen 
from Figure 6, although the [128, 96] DNN receiver has lower neuron 
numbers, it gives better results than the MRC algorithm and offers similar 
performance to the SVD algorithm. 

Figure 6. BER performance comparison for R=5 bits/second/Hz. 
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Figure 7 shows the BER performance curves of SM receivers for a data rate 
of R=6 bits/second/Hz. MIMO system structure is determined as 𝑁𝑁𝑡𝑡 = 2, 
𝑁𝑁𝑟𝑟 = 4  and 32-QAM. Here, it shows almost the same BER performance as 
the SVD algorithm, even though the same DNN structure is used and the 
data rate and signal set size are increased compared to the MIMO 
configuration in Figure 6. It should be noted that although the computational 
load of the MRC and SVD algorithms grows with the constellation size, M, 
there isn’t any increase for the DNN. 

5. CONCLUSION 
SM is a new and interesting transmission technique for MIMO systems that 
will be a candidate for 5G and beyond communications with its features 
such as high data rate, using a single RF chain in the transmitter, and 
completely eliminating ICI. Simultaneously, DNN-based solution methods 
have begun to be used in today's technologies due to the many advantages it 
offers. In this paper, the use of DNN-based detector in the receiver structure 

Figure 7. BER performance comparison for R=6 bits/second/Hz. 
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of SM is examined. As can be seen from the computer simulations, DNN-
based SM receiver offers high performance without the need for many 
hidden (FC) layers and number of neurons. At the same time, even when the 
data rate is increased, the same DNN structure (without increasing the 
processing load) shows better/same performance than the detectors in the 
literature. 
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