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Abstract
The concept of herd behavior is based on the nature of decentralized acting investors’ pseudo-collaborative 
behaviors in the market. This study investigates the herd behavior phenomenon for Borsa Istanbul (BIST) 
amidst the new coronavirus outbreak. The whole period is split into symmetrical two discrete one-year 
sub-periods considering the median date of March 11th, 2020, the official announcement date of the first 
domestic COVID-19 case. The paper proceeds with the models based on the Cross-sectional mean absolute 
deviation (CSAD) and the Cross-sectional standard deviation (CSSD) test methodology to test for probable 
herd behavior, using daily stock closing prices of the BIST 100 index shares during the period from March 
11th, 2019 to March 9th, 2021.
Keywords: Behavioral Finance, Market Efficiency, Time-Series Models.
JEL Classification: G02, G14, C22.

Öz
Sürü davranışı kavramı, herhangi bir merkeze bağlı olmadan hareket etmeye meyilli yatırımcıların piyasada 
gerçekleştirdikleri sözde koordineli veya işbirlikçi davranışlarının doğasına dayanmaktadır. Bu çalışma, 
yeni koronavirüs salgını sırasında Borsa İstanbul (BIST) için sürü davranış fenomenini araştırmaktadır. 
Tüm dönem, yerel anlamda ilk kez karşılaşılan COVID-19 vakasının resmi duyuru tarihi olan 11 Mart 
2020 tarihini medyan noktası olarak dikkate alarak iki tane ayrık simetrik bir yıllık alt döneme ayrılmıştır. 
Makale, 11 Mart 2019 – 9 Mart 2021 dönemi boyunca BIST 100 endeksini oluşturan hisselerin günlük hisse 
senedi kapanış fiyatları kullanılarak, muhtemel sürü davranışını test etmek için Kesitsel ortalama mutlak 
sapma (CSAD) ve Kesitsel standart sapma (CSSD) test etme metodolojisine dayanan modelleri esas almak 
suretiyle ilerlemektedir.
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1. Introduction

Traditional finance theories have been built on the rational expectations of investors who are 
hypothetically capable of accessing all available information about the markets. The arguments of 
the rationality of each trader’s behavior in Lucas (1972) and that of all the available information fully 
reflected by prices for these rational agents in Fama (1970) have been considered as the backbone of 
contemporary financial theory of asset pricing for more than 30 years (Konstantinidis et al., 2012). 
However, a number of studies have been theoretically and empirically examining and criticizing the 
efficient market hypothesis and the rationality of investors, arguing a well-founded opposite view of 
irrationality instead, significantly increasing since the 1990s.

Contrary to the efficient market hypothesis, behavioral finance argues that individuals might be 
irrational in making decisions on investing due to psychological biases. Kahneman and Tversky’s 
(1979) paper is considered a prominent study of behavioral finance, arguing that psychological 
attributes such as heuristics and biases may affect investment decisions under uncertainty as 
explained in Prospect Theory. The most common heuristics are representativeness, anchoring, 
herding, and overconfidence (Konstantinidis et al., 2012).

One of the most important phenomena that investor behavior reveals in financial markets is herd 
behavior. Herd behavior is the behavior of individuals acting collectively but decentralized in fact. 
It is defined as a kind of investment strategy based on imitating others’ actions. For an investor 
to imitate others, the ability to observe and follow common tendencies is vital (Bikhchandani and 
Sharma, 2001). The thought of herd behavior reflecting the irrational response of investors rather 
than the outcome of rational decision-making is of particular concern in terms of asset pricing 
systematics (Christie and Huang, 1995). Because investors ignoring their own beliefs and mimicking 
the market’s consensus might be exposed to inefficient prices for the transactions on investments, 
even if herding is wrong for all of the herd. Bikhchandani and Sharma (2001) call it a ‘snowballing 
effect’ which describes an unprofitable state for a group of investors till they decide to exit the market.

On the other hand, individuals who make similar investment decisions do not always mean herd 
behavior (Altay, 2008). This phenomenon indicates ‘spurious herding,’ primarily due to the same 
information sets available for ‘unintentionally’ taking similar investment decisions for groups when 
the market mostly gets efficient. Empirically distinguishing spurious herding from ‘intentional’ 
interactive herding is often tricky because of many factors influencing investment decisions 
(Bikhchandani and Sharma, 2001).

The major motivations for herding behavior could be categorized into three groups; imitating other 
investors’ actions as being the best approach in uncertain circumstances, rewarding investors by their 
relative performance depending on being in the majority, and being in danger of having gone out of 
play if they are in the minority (Persaud, 2000). Whatever the reason is, since herd behavior increases 
the systemic fragility or risk in the market, it is crucial to evaluate whether there exists a herding 
formation or not and how to measure it if there exists.
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Throughout this paper, we examine herd behavior in the Turkish stock exchange, namely Borsa 
Istanbul, along the lines of Christie and Huang (1995) (hereafter referred to as CH), Chang, Cheng, 
and Khorana (2000) (2000) (hereafter referred to as CCK), and Lee, Chen, and Hsieh (2013) models. 
These methodologies are technically based on the idea of measuring the deviations from the majority. 
While applying this technique, it is expected that lower individual return differences around the 
mean value of market return indicate a tendency for convergence. Therefore, the magnitude of 
these individual scatterings from the aggregated market is the essential measure to test the herding 
formation for the selected sample during a period under stress.

2. Literature

In the behavioral finance literature, there are a number of methodologies modeling herd behavior 
tendencies in stock exchange markets. Herd behavior is simply about influences on investors who 
mimic the investment decisions of other investors. The prominent types to examine herd behavior 
could be categorized into market-wide herd behavior, institutional herd behavior, and mutual fund 
herd behavior (Dewan and Dharni, 2019). This paper mainly studies the standard type of behavior for 
investors towards the common market views and trading a specific stock more or less simultaneously, 
which defines the market-wide herd behavior.

One of the pioneer studies on herd behavior, Scharfstein and Stein (1990), examine the forces that 
influence the investors to follow the majority. According to their ‘learning’ model, managers imitate 
other managers under certain circumstances. They assume that there are two types of managers, smart 
ones and dumb ones, which are initially not identified by themselves or the labor market. Depending 
on every investment decision, the managerial labor market updates its perception of these managers 
based on their profitability and similarity to others. Among these criteria, the latter is important 
since it includes the sharing-the-blame effect. If one manager imitates others, this suggests to the 
labor market that he is more likely to be smart; otherwise, in a contrarian position to the majority, he 
is more likely to be dumb. Consequently, in this model, managers ignore their knowledge, thoughts, 
and beliefs; they herd on others’ investment decisions for the sake of sharing the blame.

In the model set up by Banerjee (1992), the underlying rationale is that the investors’ decisions may 
reflect information. According to his model, decisions made by others make each investor’s decision 
less responsive to her own information and hence less informative to others. The decision rules 
chosen by optimizing individuals are characterized by herd behavior, indicating that the resulting 
equilibrium is inefficient.

Bikhchandani, Hirshleifer and Welch (1992) developed a model of informational cascades examining 
the dynamics of imitative decision processes. Their research is about how likely it is that a cascade 
and a wrong cascade occur. They argue that localized conformity of behavior can be explained by 
short-lived phenomena such as fashions and fads.

To test for the presence of herd behavior, the paper of Christie and Huang (1995) using the cross-
sectional standard deviation of returns, is a milestone in measuring investors’ common acts. 
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They examine the investment behavior of individuals in the stock market under various market 
circumstances. They argue that if individuals suppress their own thoughts in investing during 
extreme fluctuating periods of the market, they tend to converge due to decreasing cross-sectional 
standard deviations.

Chang, Cheng, and Khorana (2000) enhance the CH model using a non-linear regression specification 
based on the cross-sectional absolute deviation of returns instead of standard deviations. They also 
extend this practice to both developed and developing countries to examine herd formation. They 
show that macroeconomic information rather than firm-specific information impacts individuals’ 
behavior in investing.

Following the approach of Chang et al. (2000), another paper by Lee et al. (2013) measures industry 
herding formation by dividing market states into bullish and bearish kinds since herd behavior is 
particularly worthy of exploration in emerging markets. Their findings prove the presence of industry 
herding formation in China’s A-share markets, in which qualified foreign institutional investors can 
purchase shares and trade.

Several researchers have applied the CH model and CCK models to study various stock exchange 
markets as a popular method of examining herd behavior since the early 2000s. Demirer and Kutan 
(2006) examine the presence of herd behavior in Shangai and Shenzen Stock Exchanges along the 
lines of Christie and Huang (1995), Chang et al. (2000), and Gleason, Lee, and Mathur (2003). They 
use a data set consisting of daily stock returns over the 1999 to 2002 period and find no evidence 
of herd behavior for Chinese stock markets. Demirer, Kutan, and Chen (2010) employ two testing 
methodologies: the return dispersion-based models of Christie and Huang (1995) and state-space 
models of Hwang and Salmon (2004). They examine the Taiwanese Stock Exchange using daily 
returns for the period 1995–2006. According to their results of return dispersion models, the herd 
formation is mostly prominent for periods of market losses. The results of state-space models, on 
the other hand, vary in findings regarding the industries, which the researchers interpret as possibly 
caused by foreign investments.

Similar researches are carried out for Indian markets. Satish and Padmasree (2018) study herd 
behavior in the Indian stock exchange from 2003 to 2017 using the CCK model, and they do not 
observe any herd behavior formation. Shrotryia and Kalra (2019) empirically examine herd formation 
in the Indian stock exchange, using the CH model and the CCK model. Their results reveal that there 
is prudence and efficiency in the stock market instead of herd formation from 2006 to 2018.

Various studies incorporate both CH and CK models to empirically examine the possible impact of 
the Covid-19 pandemic on market-wide herd behavior. Chang et al. (2020) comparatively examine 
the influence of the global financial crisis (2007-2009), the coronavirus crises of SARS (2003), and 
the ongoing Covid-19 (2020) pandemic, show that the herd behavior is more likely during extremely 
high oil returns after the global financial crisis and the investors are more sensitive to asset losses, 
so investors’ panic led them to sell their assets unwisely. Espinosa – Méndez and Arias (2021) find 
robust evidence that the Covid-19 has increased herd behavior in European capital markets by 
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using a broad range sample of CAC 40 (Paris), DAX 30 (Frankfurt), FTSE MIB (Milan), FTSE 100 
(London), and Ibex 35 (Madrid) stock exchanges over a long period from the beginning of 2000 to 
the middle of 2020.

Examining the effect of the Covid-19 pandemic on investors’ herd behavior in a set of 49 global 
stock markets including emerging stock markets and thee European PIIGS stock markets, Bouri et 
al. (2021) show a strong relationship between herding formation and uncertainty in stock markets 
induced by the recent novel coronavirus pandemic. They conclude a direct link between the most 
recent pandemic and investors’ behavior in financial markets, highlighting the role of disaster risks 
such as Covid-19 as a potential driver of behavioral patterns in financial markets.

Ozkan (2021) investigates the impact of the Covid-19 outbreak on stock market efficiency for six 
hard-hit developed countries from July 2019 to January 2021 and shows that the stock markets of 
these countries deviated from market efficiency in some periods during the recent novel pandemic.

There are a number of papers examining the presence of herd behavior in the Turkish stock exchange. 
Doğukanlı and Ergün (2015) examine the existence of herd behavior in Borsa İstanbul using the 
Hwang and Salmon (2004) methodology, which is based on detecting and measuring herd formation 
by cross-sectional dispersion of the factor sensitivity of assets. In conclusion, they observe that BIST 
investors might act like her formation in some periods, in the data span of 2000 to 2011.

Cakan and Balagyozyan (2014) look for evidence of investor herding in the Turkish banking sector 
by applying the CCK model to daily stock returns and finding evidence of herd behavior from 2007 
to 2012. They also find that herding is only present when the market rises.

Solakoglu and Demir (2014) examine the sentimental herding in Borsa İstanbul using a state-space 
model for two distinct groups of investors. They find no evidence of herding by the BIST 30 investors 
from 2000 to 2013, whereas they find sentimental herding for the Second National Market (SNM), 
invested mainly by domestic investors. They also find that the SNM investors act herding persistently 
and independently from market fundamentals in three stages: evidence of herding in 2000–2004, the 
no-herding calm period in 2005–2008, and a volatile adverse herding pattern in 2009–2013.

Altunoz (2018) investigates the presence of herding effect in the Turkish stock exchange through 
the CH model and the CCK model dividing the period from 1998 to 2016 into two sub-periods; the 
middle point is the beginning of 2006. According to the findings, herd behavior intensity is mainly 
in the first sub-period when the market rises.

Erdogan (2021) examines beta herding in the Covid-19 era in Borsa Istanbul based on the state-
space utilizing cross-sectional volatility of beta coefficients between 2010-2020 and finds intentional 
herding among investors in Borsa Istanbul. It means that the investors herd after observing others 
rather than following the public information.

Erdogan (2022) examines the participation banks’ herd behavior in their lending decisions in Turkey 
by employing the Lakonishock, Shleifer, and Vishny (LSV) and Frey, Herbst, and Walter (FHW) 
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herding measures during the period from 2010 to 2020 and shows the evidence of significant herding 
formation for the entire sample.

3. Research

3.1. Rationale

Depending on the perceptional standing of the investors at the crisis moment, it might be said 
that the COVID-19 pandemic has wreaked havoc on the global financial markets, especially on 
the stock markets. This is due to the common herd effect in terms of behavioral anomalies, which 
may conditionally or unconditionally cause bubbles and anti-bubbles. Therefore, it is first aimed 
to investigate whether there exists any herd behavior in the main index (the BIST 100) and sub-
indexes of Borsa Istanbul, and if so, to then make clear the breakpoint conditions. Furthermore, on 
the condition that the degree of herd behavior among stock markets is measured, it might be possible 
to indirectly test and interpret the effectiveness of the efficient market hypothesis.

3.2. Methodology

As the starting point of the study, we obtain the simple (rate of) return of stocks for each day of the 
whole period of the sample as in the following definitive expression (Steland, 2012, p. 7):

3.1. Rationale 

Depending on the perceptional standing of the investors at the crisis moment, it might be said 
that the COVID-19 pandemic has wreaked havoc on the global financial markets, especially on 
the stock markets. This is due to the common herd effect in terms of behavioral anomalies, which 
may conditionally or unconditionally cause bubbles and anti-bubbles. Therefore, it is first aimed 
to investigate whether there exists any herd behavior in the main index (the BIST 100) and sub-
indexes of Borsa Istanbul, and if so, to then make clear the breakpoint conditions. Furthermore, 
on the condition that the degree of herd behavior among stock markets is measured, it might be 
possible to indirectly test and interpret the effectiveness of the efficient market hypothesis. 

3.2. Methodology 

As the starting point of the study, we obtain the simple (rate of) return of stocks for each day of 
the whole period of the sample as in the following definitive expression (Steland, 2012, p. 7): 

𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖(𝑡𝑡−1)
𝑃𝑃𝑖𝑖(𝑡𝑡−1)

     (1) 

where 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑖𝑖𝑖𝑖  are the simple return, and the closing price for the stock 𝑖𝑖 on the day 𝑡𝑡, 
respectively. Comparing the simple return formula with the logarithmic return formula, there is 
a rationale for preferring the former over the latter.  Despite the fact that distributions of the 
simple returns and the logarithmic returns are really close to each other (especially when the 
simple return’s value is near zero) (Miskolczi, 2017), the continuously compounded returns are 
not additive across a portfolio (Brooks, 2019), because the logarithm of a sum is not exactly 
equal to the sum of a logarithm which is a non-linear transformation. This mathematical fact is 
well-known as Jensen’s inequality (Needham, 1993). 

Using simple return as the cross-sectional arithmetic average for the stocks of the sample, the 
aggregated market return can be calculated as follows: 

𝑅̅𝑅𝑡𝑡  =  ∑ 𝑅𝑅𝑖𝑖𝑖𝑖
𝑁𝑁      (2) 

where 𝑅̅𝑅𝑡𝑡, the cross-sectional average of the 𝑁𝑁 returns of the portfolio, denotes the market return 
for the aggregated components of the BIST 100 index on the day 𝑡𝑡.  

To measure the dispersion of stock returns, we follow Christie and Huang (1995) model 
(hereafter referred to as CH) and its extended version Chang, Cheng and Khorana (2000) model 
(hereafter referred to as CCK). 

According to the CH model, the cross-sectional standard deviation of stock returns, referred to 
as CSSD, is measured by the following definition (Christie and Huang, 1995): 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, the degree to which stock returns tend to act (fall or rise) in concert with the 
portfolio return is the main proxy for herd behavior. The CH model argues that “the aggregated 
dispersion is expected to be low under the circumstance of herding behavior” because the 
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To measure the dispersion of stock returns, we follow Christie and Huang (1995) model (hereafter 
referred to as CH) and its extended version Chang, Cheng and Khorana (2000) model (hereafter 
referred to as CCK).

According to the CH model, the cross-sectional standard deviation of stock returns, referred to as 
CSSD, is measured by the following definition (Christie and Huang, 1995):

3.1. Rationale 

Depending on the perceptional standing of the investors at the crisis moment, it might be said 
that the COVID-19 pandemic has wreaked havoc on the global financial markets, especially on 
the stock markets. This is due to the common herd effect in terms of behavioral anomalies, which 
may conditionally or unconditionally cause bubbles and anti-bubbles. Therefore, it is first aimed 
to investigate whether there exists any herd behavior in the main index (the BIST 100) and sub-
indexes of Borsa Istanbul, and if so, to then make clear the breakpoint conditions. Furthermore, 
on the condition that the degree of herd behavior among stock markets is measured, it might be 
possible to indirectly test and interpret the effectiveness of the efficient market hypothesis. 

3.2. Methodology 

As the starting point of the study, we obtain the simple (rate of) return of stocks for each day of 
the whole period of the sample as in the following definitive expression (Steland, 2012, p. 7): 

𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖(𝑡𝑡−1)
𝑃𝑃𝑖𝑖(𝑡𝑡−1)
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where 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑖𝑖𝑖𝑖  are the simple return, and the closing price for the stock 𝑖𝑖 on the day 𝑡𝑡, 
respectively. Comparing the simple return formula with the logarithmic return formula, there is 
a rationale for preferring the former over the latter.  Despite the fact that distributions of the 
simple returns and the logarithmic returns are really close to each other (especially when the 
simple return’s value is near zero) (Miskolczi, 2017), the continuously compounded returns are 
not additive across a portfolio (Brooks, 2019), because the logarithm of a sum is not exactly 
equal to the sum of a logarithm which is a non-linear transformation. This mathematical fact is 
well-known as Jensen’s inequality (Needham, 1993). 

Using simple return as the cross-sectional arithmetic average for the stocks of the sample, the 
aggregated market return can be calculated as follows: 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, the degree to which stock returns tend to act (fall or rise) in concert with the 
portfolio return is the main proxy for herd behavior. The CH model argues that “the aggregated 
dispersion is expected to be low under the circumstance of herding behavior” because the 
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return is the main proxy for herd behavior. The CH model argues that “the aggregated dispersion is 
expected to be low under the circumstance of herding behavior” because the investors would avoid 
individuals acting on their own potential outlier decisions. However, since the common consequences 
of both the differential predictions of rational asset pricing models and the presence of herd behavior 
tend to induce the extreme tails of the aggregated dispersion, to distinguish the significance of it, the 
CH model performs the following empirical specification:

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
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𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
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𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 are dummy variables equal to 1 if the market return on day t lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. The 
underlying rationale of the dummy variables above is to capture the differences between relatively 
extreme down and up situations within investing behaviors.

In equation (4), if 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 and 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
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𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 
coefficient denotes the non-extreme region in the dispersion of the sample. And 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
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where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
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𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
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two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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since market participants would tend to mimic aggregate market behavior while suppressing or 
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In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
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might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

, the cross-
sectional average market return on the day t. Chang et al. (2000) show that the linear and increasing 
relation between dispersion and market return as provided by rational asset pricing models will no 
longer hold under the circumstance of the presence of herd behavior in the market since market 
participants would tend to mimic aggregate market behavior while suppressing or even ignoring 
their own individual investing decisions. Hence, if there exists herd behavior in the market, the 
relation transforms into a non-linear form as in the following specifications:
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

                                               (7)

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

                                (8)

where 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 and 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 are the values of cross-sectional absolute deviation, 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

, when 
the market is up 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 and down 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1
𝑁𝑁

∑ |𝑅𝑅𝑖𝑖𝑖𝑖−𝑅̅𝑅𝑡𝑡|𝑁𝑁
𝑖𝑖=1      (5) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡

𝑈𝑈 + 𝜀𝜀𝑡𝑡   (4) 

where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 
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only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
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𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 
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sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 
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when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
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𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
the market, the relation transforms into a non-linear form as in the following specifications: 
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are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
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𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
increasing relation between dispersion and market return as provided by rational asset pricing 
models will no longer hold under the circumstance of the presence of herd behavior in the market 
since market participants would tend to mimic aggregate market behavior while suppressing or 
even ignoring their own individual investing decisions. Hence, if there exists herd behavior in 
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investors would avoid individuals acting on their own potential outlier decisions. However, since 
the common consequences of both the differential predictions of rational asset pricing models 
and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
to distinguish the significance of it, the CH model performs the following empirical 
specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡
𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡
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where 𝐷𝐷𝑡𝑡
𝐿𝐿 and 𝐷𝐷𝑡𝑡

𝑈𝑈 are dummy variables equal to 1 if the market return on day 𝑡𝑡 lies in the extreme 
lower tail and upper tail of the return distribution, respectively, and they are equal to 0 otherwise. 
The underlying rationale of the dummy variables above is to capture the differences between 
relatively extreme down and up situations within investing behaviors.  

In equation (4), if 𝛽𝛽𝐿𝐿 and 𝛽𝛽𝑈𝑈 are statistically significant and negative, these coefficients would 
indicate herd behavior. Otherwise, if these parameters are statistically significant and positive, it 
might be concluded that these coefficients are the result of rational asset pricing models. The 𝛼𝛼 
coefficient denotes the non-extreme region in the dispersion of the sample. And 𝜀𝜀𝑡𝑡  is the general 
error term, so-called disturbance. 

According to the CCK model, the cross-sectional absolute deviation of stock returns, referred as 
CSAD, is measured by the following expression (Chang et al., 2000): 
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is the proxy for the dispersion measure of stock returns around 𝑅̅𝑅𝑡𝑡, the cross-
sectional average market return on the day 𝑡𝑡. Chang et al. (2000) show that the linear and 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1

𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈| + 𝛾𝛾2

𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡
𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡    (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 + 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| + 𝛾𝛾2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 + 𝜀𝜀𝑡𝑡   (8) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡
𝑈𝑈𝑈𝑈 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  are the values of cross-sectional absolute deviation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, 
when the market is up (𝑅̅𝑅𝑡𝑡 > 0) and down (𝑅̅𝑅𝑡𝑡 < 0), respectively, on the day 𝑡𝑡. In both equations 
(7) and (8), |𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈| and |𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷| are the absolute values of market return to account for the 

magnitude of market movement on average considering their coefficients 𝛾𝛾1
𝑈𝑈𝑈𝑈  and 𝛾𝛾1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . 
(𝑅̅𝑅𝑡𝑡

𝑈𝑈𝑈𝑈)2 and (𝑅̅𝑅𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)2 as the essential terms reflecting non-linear feature of herd behavior in the 

two similar equations above are the squared values of the average market return. The non-linear 
terms’ coefficients 𝛾𝛾2

𝑈𝑈𝑃𝑃  and 𝛾𝛾2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  indicate the presence of a non-linear market model, which 

are expected to be negative if there exists herd behavior. To be precise, the non-linearity exists 
only if  𝛾𝛾2  has statistically significant and negative value due to regressions of (7) and (8). Chang 
et al. (2000) developed a two-way-model system because of the potential asymmetric herding 
behavior phenomenon. Challenging the CAPM assumption of linearity, Chang et al. (2000) 

 and 

investors would avoid individuals acting on their own potential outlier decisions. However, since 
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and the presence of herd behavior tend to induce the extreme tails of the aggregated dispersion, 
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Lee et al. (2013) modified the CCK model with a measure of dispersion as in the following.
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is, again,  the measure of return dispersion of the stocks in the selected portfolio,  
|𝑅̅𝑅𝑡𝑡| is the absolute value of market return to account for the magnitude of market movement on 
average, 𝑅̅𝑅𝑡𝑡2 is the variable to capture the non-linear relationship considering its coefficient 
negative (i.e. 𝛾𝛾3 < 0), which is the same rationale based on the CCK model. Lee et al. (2013) 
suggested adding the term 𝛾𝛾1𝑅̅𝑅𝑡𝑡 into the original CCK regressions described in Equations (7) and 
(8), to consider asymmetric behavior under different market circumstances. 

3.3. Data 

The dataset used in the study consists of  the BIST 100 shares. Here we focus on the BIST 100 
index’s components since it is the most commonly considered national financial market index in 
Turkey. The BIST 100 index consists of 100 shares quoted in BIST, based on its own weighting 
method. All the data are obtained in daily frequency from the web portal www.investing.com. 
The descriptive statistics of data used during the study are summarized in Table 1 below. 

Table 1: Descriptive Statistics 

Period Expected Return Variance 𝑹̅𝑹𝒎𝒎𝒎𝒎𝒎𝒎 𝑹̅𝑹𝒎𝒎𝒎𝒎𝒎𝒎 𝑹̅𝑹𝒎𝒎𝒎𝒎𝒎𝒎 

11.03.2019–09.03.2021 
(Whole span: 500 days) 

0.0005 2.6271 -9.0557 0.3450 7.2215  

11.03.2019–10.03.2020 
(Pre-term: 250 days) 

0.1068 1.9824 -7.0823 0.2488 4.6269 

11.03.2020–09.03.2021 
(Post-term:  250 days) 

0.3467 3.1405 -9.0557 0.4039 7.2215 

 

Table 1 reports the descriptive statistics of the aggregated components of the BIST 100 index, 
where 𝑅̅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, 𝑅̅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑅̅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  denote the minimum, median, and maximum values of the cross-
sectional average on each day in the period considered, respectively. The minimum and 
maximum values are observed in the post-term, which is between the official announcement date 
of the first case in the country and the last date of all observations. This fact of the sample 
indicates that the returns for the BIST 100 components have most fluctuated since the first 
COVID-19 case announcement. Hence, the variance of the second period of observations is 
greater than that of the first period. The expected return of the second period is the greatest value, 
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case, which is March 11th, 2020. Therefore, it is an obvious fact that the share prices of the BIST 
100 index components are affected by the outbreak news in the country. 
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the 312 of among 500 days, daily average market return occurred as greater than zero. These positive 

valued days in terms of the market’s average return consist of 152 pre-term and 160 post-term days.

3.4. Findings

The relationships between the daily cross-sectional standard deviation and the equally-weighted 

market return 
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Equation 4 is run using three criteria to define extreme price movements of the market under 
bullish (rising) and bearish (declining) conditions. The dummy variables modified by three 
percentiles are used to estimate the differences in the behavior of stock investors for the lower 
and the upper tails of the daily average market returns (𝑅̅𝑅𝑡𝑡) scaled in the same percent criterion 
to determine whether the typical behavior is of herding or based on the rational pricing model. 
Table 2 reports the findings of the CH model upon extreme tails of 𝑅̅𝑅. 
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Equation 4 is run using three criteria to define extreme price movements of the market under bullish 
(rising) and bearish (declining) conditions. The dummy variables modified by three percentiles are 
used to estimate the differences in the behavior of stock investors for the lower and the upper tails of 
the daily average market returns 

concordantly with the risk, as a matter of course. Graph 1 represents the course of the average 
daily return for the portfolio consisting of equally-weighted shares of the BIST 100 components. 

Graph 1: Equally-weighted market return (𝑅̅𝑅𝑡𝑡) for the BIST 100 index components 
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precise, there is a big crash -namely minus 9 percent in a day- in the average return of the BIST 
100 components’ equally weighted portfolio just after the official announcement date of the first 
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index components over the whole period considered (from March 11th, 2019 to March 9th, 2021) 
is charted as the histogram in Graph 2. Focusing on Graph 2, we see the frequency distribution 
curve for the selected sample’s daily average market returns (𝑅̅𝑅𝑡𝑡), compared with the dashed 
curve of normal distribution.  

Graph 2: Frequency distribution of the daily equally-weighted market returns (𝑅̅𝑅𝑡𝑡) for the BIST 
100 index components over the whole period. 
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Model structure: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐿𝐿𝐷𝐷𝑡𝑡𝐿𝐿 + 𝛽𝛽𝑈𝑈𝐷𝐷𝑡𝑡𝑈𝑈 + 𝜀𝜀𝑡𝑡  

11.03.2019 – 09.03.2021: The whole span of 500 days 

1% of tail 5% of tail 

𝛼𝛼1% 𝛽𝛽𝐿𝐿1% 𝛽𝛽𝑈𝑈1% 𝛼𝛼5% 𝛽𝛽𝐿𝐿5% 𝛽𝛽𝑈𝑈5% 

1.51*** 
(109.33) 

0.45*** 
(3.61) 

0.01 
(0.06) 

1.49*** 
(105.66) 

0.31*** 
(5.16) 

0.21*** 
(3.44) 

11.03.2019 – 10.03.2020: Pre-term of 250 days 

1% of tail 5% of tail 

𝛼𝛼1% 𝛽𝛽𝐿𝐿1% 𝛽𝛽𝑈𝑈1% 𝛼𝛼5% 𝛽𝛽𝐿𝐿5% 𝛽𝛽𝑈𝑈5% 

1.40*** 
(73.70) 

0.31* 
(1.81) 

0.20 
(1.18) 

1.37*** 
(72.00) 

0.34*** 
(4.21) 

0.21** 
(2.56) 

11.03.2020 – 09.03.2021: Post-term of  250 days 

1% of tail 5% of tail 

𝛼𝛼1% 𝛽𝛽𝐿𝐿1% 𝛽𝛽𝑈𝑈1% 𝛼𝛼5% 𝛽𝛽𝐿𝐿5% 𝛽𝛽𝑈𝑈5% 

1.63*** 
(93.62) 

0.47*** 
(2.95) 

-0.12 
(-0.74) 

1.61*** 
(88.71) 

0.27*** 
(3.57) 

0.10 
(1.36) 

* 10%, ** 5%, *** 1% significance levels, respectively.          (t-statistics in parentheses) 

The findings summarized in Table 2 are the estimates of the CH model coefficients expressed 
by the regression Equation 4 in bi-class (1% and 5%) extreme tails for the BIST 100 index 
components during the selected data span categorized into three intervals, which are whole 
period, pre-term, and post-term according to the potential herd behavior beginning due to the 
disease outbreak.  

The CH model has two distinguishing coefficients estimated by the regression, 𝛽𝛽𝐿𝐿, and 𝛽𝛽𝑈𝑈 as the 
slopes of 𝐷𝐷𝐿𝐿 and 𝐷𝐷𝑈𝑈 variables, respectively. The findings obtained show no estimates of the CH 
model coefficients providing herd behavior for the sample at the 5% level of statistical 
significance. As readily seen in Table 2, the statistically significant coefficients for both the 
extreme low and the extreme high tail group of share returns are positive.  

Equations 7 and 8 of the CCK model are designed by splitting the daily average market returns 
(𝑅̅𝑅𝑡𝑡) into two groups with regard to their values are positive or negative. Running these equations, 
we obtain the empirical findings in Table 3 below. 
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significance. As readily seen in Table 2, the statistically significant coefficients for both the 
extreme low and the extreme high tail group of share returns are positive.  

Equations 7 and 8 of the CCK model are designed by splitting the daily average market returns 
(𝑅̅𝑅𝑡𝑡) into two groups with regard to their values are positive or negative. Running these equations, 
we obtain the empirical findings in Table 3 below. 

 variables, respectively. The findings obtained show no estimates of the CH 
model coefficients providing herd behavior for the sample at the 5% level of statistical significance. 
As readily seen in Table 2, the statistically significant coefficients for both the extreme low and the 
extreme high tail group of share returns are positive.
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Equations 7 and 8 of the CCK model are designed by splitting the daily average market returns 

concordantly with the risk, as a matter of course. Graph 1 represents the course of the average 
daily return for the portfolio consisting of equally-weighted shares of the BIST 100 components. 

Graph 1: Equally-weighted market return (𝑅̅𝑅𝑡𝑡) for the BIST 100 index components 

 
 

According to Graph 1, the equally-weighted market return (i.e., the cross-sectional average of 
the BIST 100 component shares’ return) on the day 𝑡𝑡, referred to as 𝑅̅𝑅𝑡𝑡, has the most fluctuating 
period, which has the biggest wavelength, at around the middle of the data span observed. To be 
precise, there is a big crash -namely minus 9 percent in a day- in the average return of the BIST 
100 components’ equally weighted portfolio just after the official announcement date of the first 
case, which is March 11th, 2020. Therefore, it is an obvious fact that the share prices of the BIST 
100 index components are affected by the outbreak news in the country. 

The frequency distribution of the daily equally-weighted market returns (𝑅̅𝑅𝑡𝑡) for the BIST 100 
index components over the whole period considered (from March 11th, 2019 to March 9th, 2021) 
is charted as the histogram in Graph 2. Focusing on Graph 2, we see the frequency distribution 
curve for the selected sample’s daily average market returns (𝑅̅𝑅𝑡𝑡), compared with the dashed 
curve of normal distribution.  

Graph 2: Frequency distribution of the daily equally-weighted market returns (𝑅̅𝑅𝑡𝑡) for the BIST 
100 index components over the whole period. 

 
into two groups with regard to their values are positive or negative. Running these equations, we 
obtain the empirical findings in Table 3 below.

Table 3. The CCK model concerning Table 3: The CCK model concerning 𝑅̅𝑅𝑡𝑡 > 0 or 𝑅̅𝑅𝑡𝑡 < 0 

Model structure:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑈𝑈𝑈𝑈 = 𝛼𝛼 + 𝛾𝛾1𝑈𝑈𝑈𝑈|𝑅̅𝑅𝑡𝑡𝑈𝑈𝑈𝑈| + 𝛾𝛾2𝑈𝑈𝑈𝑈(𝑅̅𝑅𝑡𝑡𝑈𝑈𝑈𝑈)2 + 𝜀𝜀𝑡𝑡  
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11.03.2019 – 09.03.2021: The whole span of 500 days 

Up (𝑅̅𝑅𝑡𝑡 > 0) Down (𝑅̅𝑅𝑡𝑡 < 0) 

𝛼𝛼 𝛾𝛾1𝑈𝑈𝑈𝑈  𝛾𝛾2𝑈𝑈𝑈𝑈  𝛼𝛼 𝛾𝛾1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝛾𝛾2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  

1.42*** 
(35.57) 

0.27*** 
(5.58) 

-0.03** 
(-2.46) 

1.59*** 
(27.81) 

0.11* 
(1.79) 

0.00 
(0.47) 

11.03.2019 – 10.03.2020: Pre-term of 250 days 
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(38.83) 
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(0.76) 
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(0.77) 
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6.62 
(0.01) 
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1.55*** 
(25.66) 

0.33*** 
(5.10) 

-0.04*** 
(-3.16) 

1.86*** 
(20.73) 

0.15 
(1.61) 

0.00 
(-0.36) 

* 10%, ** 5%, *** 1% significance levels, respectively.          (t-statistics in parentheses) 

 

Table 3 estimates that the parameter 𝛾𝛾2𝑈𝑈𝑈𝑈  is statistically significant and negative for the whole 
span (of 500 days) and the post-term (of 250 days) only when the daily average market returns 
are positive. Since the non-linear variable, the square of daily average market return distinguishes 
whether or not there exists herd behavior for the selected sample and period, we conclude that 
there exists herd behavior when daily average market returns are greater than zero for the whole 
and second periods. On the other hand, focusing on the right-hand side of Table 3, the quadratic 
relation parameters are not statistically significant for all periods considered. Therefore, we reject 
the herd behavior hypothesis when the daily average market return goes down. This finding 
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whether or not there exists herd behavior for the selected sample and period, we conclude that 
there exists herd behavior when daily average market returns are greater than zero for the whole 
and second periods. On the other hand, focusing on the right-hand side of Table 3, the quadratic 
relation parameters are not statistically significant for all periods considered. Therefore, we reject 
the herd behavior hypothesis when the daily average market return goes down. This finding 
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Table 3 estimates that the parameter 𝛾𝛾2𝑈𝑈𝑈𝑈  is statistically significant and negative for the whole 
span (of 500 days) and the post-term (of 250 days) only when the daily average market returns 
are positive. Since the non-linear variable, the square of daily average market return distinguishes 
whether or not there exists herd behavior for the selected sample and period, we conclude that 
there exists herd behavior when daily average market returns are greater than zero for the whole 
and second periods. On the other hand, focusing on the right-hand side of Table 3, the quadratic 
relation parameters are not statistically significant for all periods considered. Therefore, we reject 
the herd behavior hypothesis when the daily average market return goes down. This finding 

 is statistically significant and negative for the whole span 
(of 500 days) and the post-term (of 250 days) only when the daily average market returns are positive. 
Since the non-linear variable, the square of daily average market return distinguishes whether or 
not there exists herd behavior for the selected sample and period, we conclude that there exists herd 
behavior when daily average market returns are greater than zero for the whole and second periods. 
On the other hand, focusing on the right-hand side of Table 3, the quadratic relation parameters 
are not statistically significant for all periods considered. Therefore, we reject the herd behavior 
hypothesis when the daily average market return goes down. This finding supports the alternative 
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hypothesis that the investors would rather go by the rational asset pricing model during the market’s 
depressing (or stressing) periods.

Lee et al. (2013) modified the CCK model by adding the term 

concordantly with the risk, as a matter of course. Graph 1 represents the course of the average 
daily return for the portfolio consisting of equally-weighted shares of the BIST 100 components. 

Graph 1: Equally-weighted market return (𝑅̅𝑅𝑡𝑡) for the BIST 100 index components 

 
 

According to Graph 1, the equally-weighted market return (i.e., the cross-sectional average of 
the BIST 100 component shares’ return) on the day 𝑡𝑡, referred to as 𝑅̅𝑅𝑡𝑡, has the most fluctuating 
period, which has the biggest wavelength, at around the middle of the data span observed. To be 
precise, there is a big crash -namely minus 9 percent in a day- in the average return of the BIST 
100 components’ equally weighted portfolio just after the official announcement date of the first 
case, which is March 11th, 2020. Therefore, it is an obvious fact that the share prices of the BIST 
100 index components are affected by the outbreak news in the country. 

The frequency distribution of the daily equally-weighted market returns (𝑅̅𝑅𝑡𝑡) for the BIST 100 
index components over the whole period considered (from March 11th, 2019 to March 9th, 2021) 
is charted as the histogram in Graph 2. Focusing on Graph 2, we see the frequency distribution 
curve for the selected sample’s daily average market returns (𝑅̅𝑅𝑡𝑡), compared with the dashed 
curve of normal distribution.  

Graph 2: Frequency distribution of the daily equally-weighted market returns (𝑅̅𝑅𝑡𝑡) for the BIST 
100 index components over the whole period. 

 as in Equation 9 to consider the 
asymmetric behavior. Table 4 reports the findings for the modified CCK model.

Table 4. The modified CCK model by Lee et al. (2013)

supports the alternative hypothesis that the investors would rather go by the rational asset pricing 
model during the market's depressing (or stressing) periods. 

Lee et al. (2013) modified the CCK model by adding the term 𝑅̅𝑅𝑡𝑡 as in Equation 9 to consider 
the asymmetric behavior. Table 4 reports the findings for the modified CCK model. 

Table 4: The modified CCK model by Lee et al. (2013) 

Model structure:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛼𝛼 + 𝛾𝛾1𝑅̅𝑅𝑡𝑡 + 𝛾𝛾2|𝑅̅𝑅𝑡𝑡| + 𝛾𝛾3𝑅̅𝑅𝑡𝑡2 + 𝜀𝜀𝑡𝑡 

11.03.2019 – 09.03.2021: The whole span of 500 days 

𝛼𝛼 𝛾𝛾1 𝛾𝛾2  𝛾𝛾3  

1.51*** 
(46.48) 

-0.01 
(-.082) 

0.17*** 
(4.61) 

0.00 
(-0.75) 

11.03.2019 – 10.03.2020: Pre-term of 250 days 

𝛼𝛼 𝛾𝛾1 𝛾𝛾2  𝛾𝛾3  

1.34*** 
(53.73) 

-0.01 
(-1.13) 

0.10*** 
(2.88) 

0.01 
(0.82) 

11.03.2020 – 09.03.2021: Post-term of  250 days 

𝛼𝛼 𝛾𝛾1 𝛾𝛾2  𝛾𝛾3  

1.72*** 
(34.35) 

-0.04** 
(-2.06) 

0.21*** 
(3.95) 

-0.01* 
(-1.81) 

* 10%, ** 5%, *** 1% significance levels, respectively.          (t-statistics in parentheses) 

 

Table 4 shows that all the values of 𝛾𝛾3 are statistically insignificant at the 5% level, specifying 
that the investors of the BIST 100 shares do not indicate herd behavior during the whole and 
sub-periods. Only 𝛾𝛾3 value in the post-term is statistically significant at the 10% level, which is 
a controversial area to reject the rational behavior tendency for the second period of the sample. 

All the results obtained from the models applied mightly indicate that the investors of the BIST 
100 shares have not panicked during the selected period beginning one year before and 
continuing after the outbreak case. 

4. Conclusion 

One of the common assumptions of the traditional approach in finance is that individuals make 
decisions based on rational investing criteria. However, the investors do not always act rationally 
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terms of the essential analysis of parameters in the market. It is an obvious fact that the human being 
is not a flawless machine in investing. There are some tendencies in social groups to be significant in 
individuals’ investment decisions. Therefore, individual investors and managers tend to be a part of 
the widely accepted decisions, especially under the circumstances potentially casting doubt on their 
reputation for success. This is called herd formation in the recent emerging study field of behavioral 
finance, which focuses on emotions, illusions, and consequently biases.

In this paper, we empirically test the presence of herd behavior formation in Borsa Istanbul’s national 
BIST 100 index, which consists of a hundred quoted stocks, over the period considered from March 
11th, 2019, to March 9th, 2021.

According to the findings of the CH model for the sample selected in the study, the investors act 
mostly based on their own rational thoughts and insight about the investment decisions during the 
market’s extreme downward and upward movements while deciding to invest in the BIST 100 index 
components amidst the COVID-19 pandemic.

Focusing on the post-term of the sample, which is after first COVID-19 case official announcement, 
the findings of the model reject the herd behavior hypothesis. Therefore it might be said that the 
investors would rather rationally decide under extreme fluctuations in the last period for the BIST 
100 shares.

The modified CCK model, which Lee et al. (2013) developed, supports the findings of the two previous 
models for the most expected fluctuating last period. We empirically reject the herd formation again.

In a nutshell, the herd behavior phenomenon for Borsa Istanbul amidst the new coronavirus outbreak 
has not been empirically observed along the line of Christie and Huang (1995), Chang et al. (2000), 
and Lee et al. (2013) for the specified period mentioned above. In further studies, it is possible that 
the sample selected would be extended into various industries concerning the main indexes of BIST.

References
Altay, E. (2008). Herding in Capital Markets: Analysis of Herding Towards the Market in ISE. Journal of BRSA 

Banking and Financial Markets, 2(1), 27–58. https://www.bddk.org.tr/ContentBddk/BddkDergi/
dergi_0003_04.pdf

Altunoz, U. (2018). Does herd behavior exist in Turkish stock markets? The case of Borsa Istanbul. Proceedings 
of International Academic Conferences, 8109857. DOI: 10.20472/IAC.2018.044.002

Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 107(3), 797–817. 
https://doi.org/10.2307/2118364

Bikchandani, S., Hirshleifer, D. & Welch, I. (1992). A theory of fads, fashion, custom, and cultural 
change as informational cascades. The Journal of Political Economy, 100(5), 992– 026. https://doi.
org/10.1086/261849

Bikchandani, S. & Sharma, S. (2001). Herd behavior in financial markets. IMF Staff Papers, 47(3), 279–310. 
https://doi.org/10.2307/3867650



Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi • Cilt: 44 • Sayı: 1 • Haziran 2022, ISSN: 2587-2672, ss/pp. 36-52

51

Bouri, E., Demirer, R., Gupta, R. & Nel, J. (2021). COVID-19 Pandemic and Investor Herding in International 
Stock Markets. Risks, 9(9), 168. https://doi.org/10.3390/risks9090168

Brooks, C. (2019). Introductory Econometrics for Finance (4th ed.). Cambridge University Press.
Cakan, E. & Balagyozyan, A. (2014). Herd behaviour in the Turkish banking sector. Applied Economics Letters, 

21(2), 75–79. https://doi.org/10.1080/13504.851.2013.842629
Chang, C. L., McAleer, M., & Wang, Y.-A. (2020). Herding behaviour in energy stock markets during the Global 

Financial Crisis, SARS, and ongoing COVID-19. Renewable and Sustainable Energy Reviews, 134, 
110349. https://doi.org/10.1016/j.rser.2020.110349

Chang, E. C., Cheng, J. W. & Khorana, A. (2000). An examination of herd behavior in equity markets: An 
international perspective. Journal of Banking & Finance, 24(10), 1651–1679. https://doi.org/10.1016/
S0378-4266(99)00096-5

Christie, W. G. & Huang, R. D. (1995). Following the Pied Piper: Do Individual Returns Herd around the 
Market?. Financial Analysts Journal, 51(4), 31–37. https://doi.org/10.2469/faj.v51.n4.1918

Demirer, R. & Kutan, A. M. (2006). Does herding behavior exist in Chinese stock markets?. Journal of International 
Financial Markets, Institutions and Money, 16(2), 123–142. https://doi.org/10.1016/j.intfin.2005.01.002

Demirer, R., Kutan, A. M. & Chen, C. D. (2010). Do investors herd in emerging stock markets?: Evidence 
from the Taiwanese market. Journal of Economic Behavior & Organization, 76(2), 283–295. https://doi.
org/10.1016/j.jebo.2010.06.013

Dewan, P. & Dharni, K. (2019). Herding behavior in investment decision making: A review. Journal of Economics, 
Management and Trade, 24(2), 1–12. DOI: 10.9734/jemt/2019/v24i230160

Dogukanli, H. & Ergun, B. (2015). Herding in BIST: An investigation using the methodology of Hwang and 
Salmon. Finans Politik ve Ekonomik Yorumlar, 52(603), 7–24. http://www.ekonomikyorumlar.com.tr/
files/articles/152.820.006165_1.pdf

Erdogan, H.H. (2021). Beta Herding in thee Covid-19 Era: Evidence from Borsa Istanbul. Business and Economics 
Research Journal, 12(2), 359-368. doi: 10.20409/berj.2021.326

Erdogan, H.H. (2022). Herd behavior in bank lending: Evidence from participation banks Turkey. International 
Journal of Economic and Administrative Studies, 34, 117-128. https://doi.org/10.18092/ulikidince.940660

Espinosa-Méndez, C., & Arias, J. (2021). COVID-19 effect on herding behaviour in European capital markets. 
Finance Research Letters, 38, 101787. https://doi.org/10.1016/j.frl.2020.101787

Fama, E.F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 
25(2), 383–417. https://doi.org/10.2307/2325487

Gleason, K. C., Lee, C. & Mathur, I. (2003). Herding behavior in European futures markets. Finance Letters, 1, 
5–8.

Hwang, S. & Salmon, M. (2004). Market stress and herding. Journal of Empirical Finance, 11(4), 585–616. https://
doi.org/10.1016/j.jempfin.2004.04.003

Investing.com (n.d.). BIST 100 Index Stock Prices. Retrieved April 7, 2021, from https://www.investing.com/
indices/ise-100-components

Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 
263–292. https://doi.org/10.2307/1914185

Konstantinidis, A., Katarachia, A., Borovas, G. & Voutsa, M.E. (2012). From Efficient Market Hypothesis To 
Behavioural Finance: Can Behavioural Finance Be The New Dominant Model For Investing?, Scientific 
Bulletin – Economic Sciences, 11(2), 16-26. https://ideas.repec.org/a/pts/journl/y2012i2p16-26.html

Lee, C. C., Chen, M. P. & Hsieh, K. M. (2013). Industry herding and market states: evidence from Chinese stock 
markets. Quantitative Finance, 13(7), 1091–1113. https://doi.org/10.1080/14697.688.2012.740571



Devrim YALÇIN • Aslı AYBARS

52

Lucas, R. E. Jr. (1972). Expectations and the neutrality of money. Journal of Economic Theory, 4, 103–124. https://
doi.org/10.1016/0022-0531(72)90142-1

Miskolczi, P. (2017). Note on simple and logarithmic return. Applied Studies in Agribusiness and Commerce, 
11(1-2), 127–136. doi: 10.19041/apstract/2017/1-2/16

Needham, T. (1993). A Visual Explanation of Jensen’s Inequality, The American Mathematical Monthly, 100(8), 
768–771. https://doi.org/10.1080/00029.890.1993.11990484

Ozkan, O. (2021) Impact of COVID-19 on stock market efficiency: Evidence from developed countries. Research 
in International Business and Finance, 58, 101445. https://doi.org/10.1016/j.ribaf.2021.101445

Persaud, A. (2000). Sending the herd off the cliff edge: The disturbing interaction between herding and market-
sensitive risk management practices. Journal of Risk Finance, 2(1), 59–65. https://doi.org/10.1108/
eb022947

Satish, B. & Padmasree, K. (2018). An empirical analysis of herding behavior in Indian stock market. 
International Journal of Management Studies, 5(3), 124–132. http://researchersworld.com/ijms/vol5/
issue3_3/Paper_15.pdf

Scharfstein, D. S. & Stein, J. C. (1990). Herd behavior and investment. The American Economic Review, 80(3), 
465–479. https://www.jstor.org/stable/2006678

Shrotryia, V.K. & Kalra, H. (2019). An empirical investigation of herding in the Indian stock market. e-Journal of 
Social & Behavioral Research in Business, 10(1), 40–53. http://ejsbrb.org/upload/e-JSBRB_4_Shrotryia_
Kalra_10(1)_2019_.pdf

Solakoglu, M.N. & Demir, N. (2014). Sentimental herding in Borsa Istanbul: informed versus uninformed. 
Applied Economic Letters, 21(14), 965–968. https://doi.org/10.1080/13504.851.2014.902015

Steland, A. (2012). Financial Statistics and Mathematical Finance: Methods, Models and Applications. John Wiley 
& Sons, Ltd.

Treynor, J. L. & Mazuy, K. (1966). Can Mutual Funds Outguess the Market? Harvard Business Review, 4, 131-
136.


