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In this paper, a time fractional reaction-diffusion Brusselator system with the Ca-
puto type fractional derivatives, is solved by Laplace Adomian decomposition method
(LADM). Two numerical examples supported by graphics, tables, and discussion are
provided, by comparing the numerical results obtained with the exact solution when
α = β = 1, it is observed that they are in perfect agreement, this confirms the accuracy
and smoothness of the current method.

1. Introduction

Fractional differential equations have gained much attention recently due to be an important and useful tool to
show the hidden aspects in many phenomena occurring from real world, including mathematics [1–3], continuum
mechanics [4], magnetohydrodynamic [5], and other areas. One of the most important reaction and diffusion
equations is called the Brusselator system, which is used to describe the mechanism of chemical reaction-diffusion
with nonlinear oscillations [6, 7]. In recent years, many researchers have resorted to using modern and different
methods to solve this system or find approximate solutions, such a second-order scheme by Twizell, Gumel
and Cao in [8], authors of [9–11] employed the Adomian decomposition method, Why-Teong Ang in [12] used
the dual-reciprocity boundary element method, in [13] by insert combination of collocation method using the
radial basis functions (RBFs) with first order accurate forward difference approximation, by Laplace transform
method and the new homotopy perturbation method in [14], authors of [15] resorted to a computational study
with applications in chemical processes etc, the solutions to the system were also studied fractional order, such
as q-homotopy analysis transform method in [16], by fractional reduced differential transform method in [17].
Our main concern in this work, is to apply Laplace Adomian decomposition method (LADM) [18–22], to find
approximate solutions to the reaction-diffusion Brusselator system (RDBS), witch has the following form [16]

ψ
α

ζ
(x,η ,ζ ) = b− (a+1)ψ +ψ

2
φ + γ (ψxx +ψηη) , 0 < α ≤ 1,

φ
β

ζ
(x,η ,ζ ) = aψ −ψ

2
φ + γ (φxx +φηη) , 0 < β ≤ 1,

(1)

with the following initial conditions

ψ(x,η ,0) = h(x,η), φ(x,η ,0) = j(x,η), (2)
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both (ψ,φ) refer to the dimensionless concentrations of two reactants; a and b are positive real constants (constants
concentrations), γ is a constant values for the diffusion coefficient and, 0 < α,β ≤ 1, are parameters representing
the order of the time fractional derivatives in Caputo sence.

2. Preliminaries and notations

These are some basic definitions and properties of fractional calculus, for more details, see [1–3].

Definition 1 ( [2, 23] Riemann-Liouville integral) Let ψ ∈ L1(a,b),a,b ∈ R. The left sided Riemann–Liouville
fractional integral operator of order α ≥ 0, of a function ψ is defined by{

Iαψ(ζ ) = 1
Γ(α)

∫ ζ

0 (ζ − τ)α−1ψ(τ)dτ, α > 0,
I0ψ(ζ ) = ψ(ζ ), α = 0,

(3)

where ,
Γ(ω) =

∫
∞

0
ζ

ω−1e−ζ dζ , Re(ω)> 0. (4)

The operator Iα
t satisfy the following properties

1)Iα

ζ
Iβ

ζ
ψ(ζ ) = Iα+β

ζ
ψ(ζ ) = Iβ

ζ
Iα

ζ
ψ(ζ ),

2)Iα

ζ
ζ

ρ =
Γ(ρ +1)

Γ(α +ρ +1)
ζ

α+ρ ,ρ >−1.

Definition 2 ( [2, 23] Caputo derivative) Let α ≥ 0, and n = [α]+1. If ψ ∈ ACn[a,b],a,b ∈ R, then the Caputo
fractional derivative operator Dα

ζ
ψ(ζ ) exist almost everywhere on [a,b], is defined as

Dα

ζ
ψ(ζ ) =


1

Γ(n−α)

∫ ζ

0 (ζ − τ)n−α−1ψ(n)(τ)dτ, n−1 < α < n,

ψ(n)(ζ ), α = n,n ∈ N.
(5)

The operator Dα

ζ
satisfy the following properties

1)Dα+β

ζ
ψ(ζ ) = Dβ+α

ζ
ψ(ζ ),

2)Dα

ζ
ζ

ρ =
Γ(1+ρ)

Γ(1+ρ −α)
ζ

ρ−α ,ρ >−1,

3)Dα

ζ
Iα

ψ(ζ ) = ψ(ζ ),

4)IαDα

ζ
ψ(ζ ) = ψ(ζ )−

n−1

∑
k=0

ψ
(k)(0+)

ζ k

k!
.

Definition 3 [2, 23] The Mittag-Leffler type of two-parameters function Eλ ,ρ(.) is presented as

Eλ ,ρ(ω) =
+∞

∑
k=0

ωk

Γ(λk+ρ)
, λ ,ρ > 0, ω ∈ C. (6)

3. Laplace transform and important properties

Definition 4 [24] Let ψ(ζ ) be defined for ζ ∈ (0,+∞). Then, when the improper integral exists, the Laplace
transform Ψ(s) of ψ(ζ ) is defined by

L [ψ(ζ )] = Ψ(s) =
∫ +∞

0
e−sζ

ψ(ζ )dζ . (7)

Note that Ψ is a function of the new variables s, while the original function ψ is a function of the variable ζ .
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3.1. Properties:

These are the basic properties of the Laplace transform, which are used in this work.

1. L [ζ ρ ] = Γ(ρ+1)
sρ+1 , L −1

( 1
sρ+1

)
= ζ ρ

Γ(ρ+1) , ρ >−1.
(L −1 denotes the inverse of L ).

2. L [Iαψ(ζ )] = s−αΨ(s).

3. For m−1 < α ≤ m,m ∈ N∗

L [Dα

ζ
ψ(ζ )] = sα

Ψ(s)−
m−1

∑
k=0

sα−k−1
ψ

(k)(0). (8)

4. When 0 < α ≤ 1
L [Dα

ζ
ψ(ζ )] = sα

Ψ(s)− sα−1
ψ(0). (9)

4. Analysis of (LADM)

This section describes the implementation of (LADM) as shown below [18–22], we consider a general fractional
partial differential equation with initial conditions of the form

Dα

ζ
ψ(x,ζ )+Rψ(x,ζ )+Nψ(x,ζ ) = w(x,ζ ), m−1 < α ≤ m, m ∈ N∗. (10)[

∂ m−1ψ(x,ζ )
∂ζ m−1

]
ζ=0

= ϕm−1(x),m = 1,2, ... .

Dα

ζ
ψ(x,ζ ) = ψα

ζ
(x,ζ ) denotes the Caputo fractional derivative of order α, R is the linear differential operator

of order less than order of D, N represents the general nonlinear differential operator and w is the source term.
Operating the Laplace transform on both sides of Eq.(10),

L [Dα

ζ
ψ(x,ζ )]+L [Rψ(x,ζ )]+L [Nψ(x,ζ )] = L [w(x,ζ )]. (11)

By using the formula (8) in the above Eq.(11), we have

sαL [ψ(x,ζ )]−
m−1

∑
k=0

sα−k−1
ψ

(k)(x,0)+L [Rψ(x,ζ )]+L [Nψ(x,ζ )] = L [w(x,ζ )], (12)

on simplifying

L [ψ(x,ζ )] =
m−1

∑
k=0

ψ(k)(x,0)
sk+1 +

1
sα

L [w(x,ζ )]− 1
sα

L [Rψ(x,ζ )]− 1
sα

L [Nψ(x,ζ )]. (13)

Application of L −1, on the above equation Eq. (13), we then obtain

ψ(x,ζ ) =W (x,ζ )−L −1
{

1
sα

L [Rψ(x,ζ )+Nψ(x,ζ )]
}
, (14)

where W (x,ζ ) is caused by w(x,ζ ) and the given initial conditions. Now, by (ADM) technique [25–28]

ψ(x,ζ ) =
+∞

∑
n=0

ψn(x,ζ ). (15)

The nonlinear term in the problem can be decomposed as

Nψ(x,ζ ) =
+∞

∑
n=0

An(ψ0,ψ1, · · · ,ψn), (16)
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and An is the Adomian polynomials shown below see [25, 26]

An(ψ0,ψ1, · · · ,ψn) =
1
n!

∂ n

∂λ n

[
N

(
+∞

∑
i=0

(λ i
ψi)

)]
λ=0

n = 0,1,2,3, · · · . (17)

Substituting Eq. (15) and Eq. (16) in Eq. (14) we get

+∞

∑
n=0

ψn(x,ζ ) =W (x,ζ )−L −1

{
1
sα

L

[
R

(
+∞

∑
n=0

ψn(x,ζ )

)
+

(
+∞

∑
n=0

An

)]}
. (18)

We obtain ψ0(x,ζ ) =W (x,ζ ), and a recurrence relation as shown below

ψn+1(x,ζ ) =−L −1
{

1
sα

L [Rψn(x,ζ )+An]

}
, n ≥ 0. (19)

5. Implementation (LADM) to (RDBS)

[16] Consider the (RDBS) (1) .

ψ
α

ζ
(x,η ,ζ ) = b− (a+1)ψ +ψ

2
φ + γ (ψxx +ψηη) , 0 < α ≤ 1,

φ
β

ζ
(x,η ,ζ ) = aψ −ψ

2
φ + γ (φxx +φηη) , 0 < β ≤ 1,

(20)

with the following initial conditions

ψ(x,η ,0) = h(x,η), φ(x,η ,0) = j(x,η). (21)

Operating L on both sides of eqs. (20), we get

L [Dα

ζ
ψ(x,η ,ζ )] = L [b− (a+1)ψ +ψ

2
φ ]+L [γ (ψxx +ψηη)],

L [Dβ

ζ
φ(x,η ,ζ )] = L [aψ −ψ

2
φ ]+L [γ (φxx +φηη)].

(22)

Now, by using the formula (9), in the above eqs. (22), we have

sαL [ψ(x,η ,ζ )]− sα−1
ψ(x,η ,0) = L [b− (a+1)ψ +ψ

2
φ ]+L [γ (ψxx +ψηη)],

sβ L [φ(x,η ,ζ )]− sβ−1
φ(x,η ,0) = L [aψ −ψ

2
φ ]+L [γ (φxx +φηη)].

(23)

Or

L [ψ(x,η ,ζ )] =

[
ψ(x,η ,0)

s
+

b
sα+1

]
+

1
sα

L [−(a+1)ψ +ψ
2
φ ]+

1
sα

L [γ(∇2
ψ)],

L [φ(x,η ,ζ )] =

[
φ(x,η ,0)

s

]
+

1
sβ

L [aψ −ψ
2
φ ]+

1
sβ

L [γ(∇2
φ)].

(24)

Thus, we apply L −1, to the above equation (24) we get

u(x,η ,ζ ) = ψ(x,η ,0)+
bζ α

Γ(α +1)
+L −1

{
1
sα

L
[
−(a+1)ψ +ψ

2
φ + γ(∇2

ψ)
]}

,

φ(x,η ,ζ ) = φ(x,η ,0)+L −1
{

1
sβ

L
[
aψ −ψ

2
φ + γ(∇2

φ)
]}

.

(25)

Then, we apply the Adomian decomposition method in (25) we obtain

+∞

∑
n=0

ψn = h(x,η)+
bζ α

Γ(α +1)
+L −1

{
1
sα

L

[
−(a+1)

+∞

∑
n=0

ψn + γ(∇2
+∞

∑
n=0

ψn)+
+∞

∑
n=0

An(ψ,φ)

]}
,

+∞

∑
n=0

φn = j(x,η)+L −1

{
1
sβ

L

[
a
+∞

∑
n=0

ψn + γ(∇2
+∞

∑
n=0

φn)−
+∞

∑
n=0

An(ψ,φ)

]}
,

(26)
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where An, are Adomian polynomials that represent nonlinear term ψ2φ , we obtain a recurrence relation to the
approximations as shown below

ψ0(x,η ,ζ ) = h(x,η)+
bζ α

Γ(α +1)
,

ψn+1(x,η ,ζ ) = L −1
{

1
sα

L
[
−(a+1)ψn + γ(∇2

ψn)+An
]}

, n ≥ 0.

φ0(x,η ,ζ ) = j(x,η),

φn+1(x,η ,ζ ) = L −1
{

1
sβ

L
[
aψn + γ(∇2

φn)−An
]}

, n ≥ 0.

(27)

These are the first values of An

A0 = ψ
2
0 φ0,

A1 = 2ψ0ψ1φ0 +ψ
2
0 φ1,

A2 = (2ψ0ψ2 +ψ
2
1 )φ0 +2ψ0ψ1φ1 +ψ

2
0 φ2,

A3 = (2ψ1ψ2 +2ψ0ψ3)φ0 +(2ψ0ψ2 +ψ
2
1 )φ1 +2ψ0ψ1φ2 +ψ

2
0 φ3,

A4 = (2ψ0ψ4 +2ψ1ψ3 +ψ
2
2 )φ0 +(2ψ1ψ2 +2ψ0ψ3)φ1 +(2ψ0ψ2 +ψ

2
1 )φ2 +2ψ0ψ1φ3 +ψ

2
0 φ4,

...

6. Numerical results and discussion

Example 1: [15, 16] Consider the (RDBS) (1), for a = 1, b = 0, and γ = 1
4 .

ψ
α

ζ
=−2ψ +ψ

2
φ +

1
4
(ψxx +ψηη) ,

φ
β

ζ
= ψ −ψ

2
φ +

1
4
(φxx +φηη) ,

(28)

with the following initial conditions

ψ(x,η ,0) = e−(x+η), φ(x,η ,0) = e(x+η). (29)

Therefore from (26), the following procedure can be defined

+∞

∑
n=0

ψn = e−(x+η)+L −1

{
1
sα

L

[
−2

+∞

∑
n=0

ψn +
1
4
(∇2

+∞

∑
n=0

ψn)+
+∞

∑
n=0

An(ψ,φ)

]}
,

+∞

∑
n=0

φn = e(x+η)+L −1

{
1
sβ

L

[
+∞

∑
n=0

ψn +
1
4
(∇2

+∞

∑
n=0

φn)−
+∞

∑
n=0

An(ψ,φ)

]}
.

(30)

Thus, we obtain ψ0(x,η ,ζ ) = e−(x+η),φ0(x,η ,ζ ) = e(x+η), and a recurrence relation as shown below

ψn+1(x,η ,ζ ) = L −1
{

1
sα

L

[
−2ψn +

1
4
(∇2

ψn)+An

]}
, n ≥ 0.

φn+1(x,η ,ζ ) = L −1
{

1
sβ

L

[
ψn +

1
4
(∇2

φn)−An

]}
, n ≥ 0.

(31)
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By applying (31), we obtain

ψ1(x,η ,ζ ) =−1
2

e−(x+η)ζ α

Γ(1+α)
,

φ1(x,η ,ζ ) =
1
2

e(x+η)ζ β

Γ(1+β )
,

ψ2(x,η ,ζ ) =
1
4

e−(x+η)

(
− ζ 2α

Γ(1+2α)
+

2ζ α+β

Γ(1+α +β )

)
,

φ2(x,η ,ζ ) =
1
2

e−(x+η)ζ α+β

Γ(1+α +β )
+

1
4
(−2e−(x+η)+ e(x+η))ζ 2β

Γ(1+2β )
,

ψ3(x,η ,ζ ) =−1
2

e−(x+η)Γ(1+α +β )ζ 2α+β

Γ(1+α)Γ(1+β )Γ(1+2α +β )
+

1
4

e−(x+η)Γ(1+2α)ζ 3α

(Γ(1+α))2Γ(1+3α)
− 1

8
e−(x+η)ζ 3α

Γ(1+3α)

+
1
4
(−2e−(3x+3η)+ e−(x+η))ζ α+2β

Γ(1+α +2β )
+

1
4
(2e−(3x+3η)+ e−(x+η))ζ 2α+β

Γ(1+2α +β )
,

φ3(x,η ,ζ ) =
1
2

e−(x+η)Γ(1+α +β )ζ α+2β

Γ(1+α)Γ(1+β )Γ(1+α +2β )
− 1

4
e−(x+η)Γ(1+2α)ζ β+2α

(Γ(1+α))2Γ(1+β +2α)
+

1
4

e−(x+η)ζ β+2α

Γ(1+β +2α)

+
1
8
(e(x+η)+4e−(3x+3η)−4e−(x+η))ζ 3β

Γ(1+3β )
− 1

4
(2e−(3x+3η)+ e−(x+η))ζ α+2β

Γ(1+α +2β )
,

in this way, the remaining components of the solution can be obtained.
The solution in series form when α = β = 1, is given by

ψ(x,η ,ζ ) = e−x−η

(
1− 1

2
ζ +

1
8

ζ
2 − 1

48
ζ

3 + · · ·
)
= e−x−η− 1

2 ζ ,

φ(x,η ,ζ ) = ex+η

(
1+

1
2

ζ +
1
8

ζ
2 +

1
48

ζ
3 + · · ·

)
= ex+η+ 1

2 ζ .

(32)

Example 2: [10, 12] Consider the (RDBS) (1), for a = 1
2 , b = 1, and γ = 1

500 :

ψ
α

ζ
= 1− 3

2
ψ +ψ

2
φ +

1
500

(ψxx +ψηη) ,

φ
β

ζ
=

1
2

ψ −ψ
2
φ +

1
500

(φxx +φηη) ,

(33)

with the following initial conditions

ψ(x,η ,0) = x2, φ(x,η ,0) = η
2. (34)

By using (26), we get

+∞

∑
n=0

ψn = x2 +
ζ α

Γ(α +1)
+L −1

{
1
sα

L

[
−3

2

+∞

∑
n=0

ψn +
1

500
(∇2

+∞

∑
n=0

ψn)+
+∞

∑
n=0

An(ψ,φ)

]}
,

+∞

∑
n=0

φn = η
2 +L −1

{
1
sβ

L

[
1
2

+∞

∑
n=0

ψn +
1

500
(∇2

+∞

∑
n=0

φn)−
+∞

∑
n=0

An(ψ,φ)

]}
.

(35)

we obtain ψ0(x,η ,ζ ) = x2 +
ζ α

Γ(α +1)
,φ0(x,η ,ζ ) = η2 and a recurrence relation as shown below

ψn+1(x,η ,ζ ) = L −1
{

1
sα

L

[
−3

2
ψn +

1
500

(∇2
ψn)+An

]}
, n ≥ 0.

φn+1(x,η ,ζ ) = L −1
{

1
sβ

L

[
1
2

ψn +
1

500
(∇2

φn)−An

]}
, n ≥ 0.

(36)
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Substituting ψ0 and φ0 into (36), we get

ψ1(x,η ,ζ ) =
Γ(1+2α)η2ζ 3α

(Γ(1+α))2Γ(1+3α)
+

1
250

(1−375x2 +250x4η2)ζ α

Γ(1+α)
+

1
2
(4x2η2 −3)ζ 2α

Γ(1+2α)
,

φ1(x,η ,ζ ) =
Γ(1+2α)η2ζ 2α+β

(Γ(1+α))2Γ(1+2α +β )
+

1
250

(1+250x2 −250x4η2)ζ β

Γ(1+β )
+

(−2x2η2 +1)ζ α+β

Γ(1+α +β )
,

and so on. In this manner the rest of the iterative components can be found.

7. Tables and Figures

Below we know the approximate solution of the four order (Ψ4,Φ4), which we use in the four molar tables to
compare with the exact solution and calculate the absolute error for various values of α and β .

Ψ4 = ψ0 +ψ1 +ψ2 +ψ3.

Φ4 = φ0 +φ1 +φ2 +φ3.

Table 1: Numerical results at the point (0.4,0.6).

α = β = 1 α = β = 0.9 α = β = 0.8
ζ ψ Exact Ψ4 Ψ4 Ψ4

0.1 0.3499377491111554 0.3499376542593101 0.3446579328808398 0.3381770131237322
0.2 0.3328710836980796 0.3328695810199602 0.3258880488044142 0.3181852991081172
0.3 0.3166367693790532 0.3166292365232458 0.3091774383430047 0.3016193376402662
0.4 0.3011942119122021 0.3011706358390207 0.2939999865300189 0.2873383399060295
0.5 0.2865047968601901 0.2864477940371386 0.2800836892671381 0.2748070199554759
0.6 0.2725317930340126 0.2724147261874530 0.2672528759832714 0.2637083996441059

Table 2: Numerical results at the point (0.4,0.6).

α = β = 1 α = β = 0.9 α = β = 0.8
ζ φ Exact Φ4 Φ4 Φ4

0.1 2.857651118063164 2.857650403038997 2.902768404574928 2.961911368085330
0.2 3.004166023946433 3.004154467418655 3.073643397868355 3.159324321821366
0.3 3.158192909689768 3.158133806826573 3.245886670787438 3.350234564546649
0.4 3.320116922736547 3.319928206491313 3.422208983952619 3.540549820548468
0.5 3.490342957461841 3.489877451641429 3.603890449326122 3.732756435818485
0.6 3.669296667619244 3.668321327505480 3.791718269201408 3.928207358812717

Table 3: Absolute error |ψExact −Ψ4|.

(x,η) ζ α = β = 1 α = β = 0.9 α = β = 0.8
(0.1,0.9) 0.1 0.0000000948518453 0.0052798162303156 0.0117607359874232
(0.2,0.8) 0.2 0.0000015026781194 0.0069830348936654 0.0146857845899624
(0.3,0.7) 0.3 0.0000075328558074 0.0074593310360485 0.0150174317387870
(0.4,0.6) 0.4 0.0000235760731814 0.0071942253821832 0.0138558720061726
(0.5,0.5) 0.5 0.0000570028230515 0.0064211075930520 0.0116977769047142
(0.6,0.4) 0.6 0.0001170668465596 0.0052789170507412 0.0088233933899067
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Table 4: Absolute error |φExact −Φ4|.

(x,η) ζ α = β = 1 α = β = 0.9 α = β = 0.8
(0.1,0.9) 0.1 0.000000715024167 0.045117286511764 0.104260250022166
(0.2,0.8) 0.2 0.000011556527778 0.069477373921922 0.155158297874933
(0.3,0.7) 0.3 0.000059102863195 0.087693761097670 0.192041654856881
(0.4,0.6) 0.4 0.000188716245234 0.102092061216072 0.220432897811921
(0.5,0.5) 0.5 0.000465505820412 0.113547491864281 0.242413478356644
(0.6,0.4) 0.6 0.000975340113764 0.122421601582164 0.258910691193473

Figure 1: The behavior of ψ and Ψ4 for Example 1, when ζ = 0.3, α = β = 1.

Figure 2: The behavior of φ and Φ4 for Example 1, when ζ = 0.3, α = β = 1.
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Figure 3: The behavior of Ψ4 and Φ4 for Example 1, when ζ = 0.3, α = β = 0.9.

Conclusion

The approximate solutions to time fractional reaction-diffusion Brusselator system with initial conditions were
successfully and flexibly found using the effective method (LADM), although a case study, the order of the
fractional time derivatives is different between ψ and φ , ie ψα

ζ
,0 < α ≤ 1, φ

β

ζ
,0 < β ≤ 1 , however, good approx-

imations were obtained gradually, it has been shown by comparing the numerical results obtained with the exact
solution when α = β = 1, in the first example, it is observed that they are in perfect agreement. In the second
example, although there is no known analytic solution, but we were able to find approximate solutions using the
present method without any transformation, discretization, perturbation, which proves that the (LADM) is very
efficient and reliable, and can be used to solve a wide class of nonlinear fractional order differential equations,
especially since most of them do not contain exact analytic solutions.
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