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Abstract. In this paper, we construct the new integral representation of the Jost solution of Sturm-Liouville equa-
tion with impuls in the semi axis [0,+∞) and we give this type of relation, examine the properties of the Kernel
function and their partial derivatives with x and t, constructed integral representation and obtain the partial differ-
ential equation provided by this Kernel function. Finally, in the paper we prove uniqueness of the determination of
the potential by the scattering data.
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1. Introduction

The boundary value problems for Sturm-Liouville equations with discontinuities inside the interval often appear in
mathematical physics, geophysics, electromagnetic, elasticity and other branches of engineering and natural sciences.
For example, we take a rod consisting of two homogeneous parts that have different modules of elasticity with cross
section and connected at the point x = a. The vibration problem of this rod can be expressed as follows

∂2u(x, t)
∂t2 =

∂

∂x

(
ρ(x)

∂u(x, t)
∂x

)
, x ∈ (0, a) ∪ (a,+∞), t > 0,

u(0, t) = 0,
u(a − 0, t) = u(a + 0, t),

ρ(a − 0)ux(a − 0, t) − ρ(a + 0)ux(a + 0, t) = Mutt(a, t) ,
where M is a condensed mass at point x = a, ρ(x) is the coefficient of elasticity of the rod and the piecewise continuous
function

ρ(x) =
{

1, x < a,
α2, x > a.

Moreover, the boundary value problems with discontinuities in an interior point arise in geophysical models for
oscillations of the Earth [19, 20], in heat and mass transfer problems [7] and in vibrating stirring problems which an
interior point is under the action of a damping force [12], in addition, for the various applications of discontinuous
boundary value problems, the works [5,9,10,13,24–27] can be given. From the point of view applications in quantum
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mechanics [23], of interest is the study of direct and inverse problems for the Sturm-Liouville differential equation on
a semi axis [0,+∞).

In recent years, Sturm-Liouville problems with discontinuity conditions (or transmission conditions ) at interior
points of the interval and semi axis [0,+∞) began to attract a great deal of attention because of the application of
these problems in physics, mechanics and engineering. Hereby, this type of problems were widely investigated by
many authors, also the investigations were continued and developed in many directions. For example, some aspect
of the direct spectral problems were studied in [1–4, 6–10, 12–23] and the references therein, moreover, the inverse
spectral problems (according to Weyl function and/or spectral data and etc.) are examined in the works [4, 7–9, 22]
where further references can be found. In particular, in the paper [11] on noncompact A-graph consider scattering
problem for Sturm-Liouville operator with standard matching conditions in the internal vertices with the following
continuity condition limx→ν,x∈intr y(x) = limx→ν,x∈intr′ y(x) for any two edges r, r′ ∈ I(ν) and establish some properties
of the spectral characteristics and investigate the inverse problem of recovering the operator from the scattering data
and uniqueness theorem has been proven according to the Weyl function for such inverse problem.

In this present paper, as different from other studies, we construct the new integral representation of the Jost so-
lution of Sturm-Liouville equation with discontinuity conditions in the semi axis [0,+∞). In the special cases with
discontinuity conditions in the point x = a ∈ [0, π], the integral representation for the Sturm-Liouville equation is
obtained in [4] and solved inverse problems by the spectral data and by the Weyl function. By the way, we note that the
integral representations and transformation operators or used for the solution of inverse problems of spectral analysis,
especially, the relation between the potential function of the problem and the kernel function of the integral represen-
tations and transformation operator plays the central role in the solution of the inverse problems. Therefore, in this
paper, we give this type of relation , examining the properties of the kernel function and their partial derivatives with x
and t, constructed integral representation and obtain the partial differential equation provided by this kernel function.
Additionally, unlike the other works [8,11,16], it is shown that the kernel function is real valued and has a discontinuity
along the line t = 2a − x for x > a. Finally, in the paper we prove uniqueness of the determination of the potential by
the scattering data.

2. Preliminaries

Consider the boundary value problem generated on the semi axis 0 ≤ x < ∞ by the differential equation:

l(y) := −y′′ + q(x)y = λ2y, (2.1)

with discontinuity conditions at a point a ∈ (0,∞)

y(a − 0) = αy(a + 0), y′(a − 0) = α−1y′(a + 0), (2.2)

and boundary condition

y(0) = 0, (2.3)

where α (α > 0, α , 1)is a real constant, λ is a complex parameter, q(x) is a real valued function with

∞∫
0

x |q(x)| dx < ∞.

We call the Jost solution of the equation (2.1) with conditions (2.2) the solution e(λ, x) satisfying the condition at
infinity

lim
x→∞

e(λ, x)e−iλx = 1.

Let us denote

σ(x) =

∞∫
x

|q(s)| ds, σ1(x) =

∞∫
x

σ(s)ds.
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It can be easy shown that if q(x) ≡ 0, then the Jost solution is

e0(λ, x) =

 eiλx, a < x,

A+eiλx + A−eiλ(2d−x), x < a,

where A± =
1
2

(
α ±

1
α

)
.

The following theorem and lemma are obtained from [3] by some formal changes.

Theorem 2.1. [ [3], Theorem 1.] Equation (2.1) with the discontinuity conditions (2.2) has the Jost solution e(λ, x)
which is represented as

e(λ, x) = e0(λ, x) +

+∞∫
x

K(x, t)eiλtdt (2.4)

for all λ from the closed upper half plane Imλ ≥ 0. Here the kernel K(x, t) satisfies the inequalities

|K(x, t)| ≤
c
2
σ

( x + t
2

)
ecσ1(x), 0 < |x − a| < t − a, (2.5)

|K(x, t)| ≤
{

c
2
σ

( x + t
2

)
+
|A−|

2
σ

(
2a + x − t

2

)}
ecσ1(x), |t − a| < x − a, (2.6)

where C = A+ + |A−| . Moreover, the function K(x, t) is continuous at t , 2a − x, x , a and the following relations are
satisfied:

K(x, x) =
A+

2

∞∫
x

q(t)dt, x < a, (2.7)

K(x, x) =
1
2

∞∫
x

q(t)dt, x > a, (2.8)

K(x, 2a − x + 0) − K(x, 2a − x − 0) =
A−

2


∞∫

a

q(t)dt −

a∫
x

q(t)dt

 , x < a. (2.9)

There exists both first order partial derivatives of the function K(x, t) when t , 2a − x, x , a. In addition∣∣∣∣∣∂K(x1, x2)
∂xi

+
1
4

q
( x1 + x2

2

)∣∣∣∣∣ ≤ 1
2
σ(x1)σ

( x1 + x2

2

)
, x1 > a,∣∣∣∣∣∣∂K(x1, x2)

∂xi
+

A+

4
q
( x1 + x2

2

)
+ (−1)i A−

4
q
(

x2 + 2a − x1

2

)∣∣∣∣∣∣
≤

C2

2
σ(x1)σ

( x1 + x2

2

)
eCσ1(x), x2 > 2a − x1, x1 < a,

∣∣∣∣∣∂K(x1, x2)
∂x1

+
A+

4
q
( x1 + x2

2

)
+(−1)i+1 A−

4
q
(

2a + x1 − x2

2

)
+ (−1)i A−

4
q
(

2a + x2 − x1

2

)∣∣∣∣∣∣
≤

C
2

[
Cσ

( x1 + x2

2

)
+ |A−|σ

(
2a + x1 − x2

2

)]
×σ(x1)eCσ1(x), x1 ≤ x2 ≤ 2a − x1.
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Also note that the kernel K(x, t) and the derivative Kx(x, t) satisfy the following discontinuity conditions at x = a, t > a;

K(a − 0, t) = αK(a + 0, t), (2.10)

Kx(a − 0, t) = α−1Kx(a + 0, t). (2.11)

If the function q(x) is differentiable, the function K(x, t) has the second partial derivatives and the equation

∂2K(x, t)
∂x2 −

∂2K(x, t)
∂t2 = q(x)K(x, t) (2.12)

is satisfied for t , 2a − x, x , a. Moreover

lim
x+t→∞

∂K(x, t)
∂x

= lim
x+t→∞

∂K(x, t)
∂t

= 0. (2.13)

Conversely, if the function is the solution of the partial derivative equation (2.12) with conditions (2.7)-(2.9), (2.10),
(2.11) and (2.13) then the function e(λ, x) constructed by the formula (2.4) is the Jost solution of equation (2.1) with
discontinuity conditions (2.2). Now, we investigate some additional properties of solutions of the equation (2.1) with
discontinuity conditions (2.2).

Lemma 2.2. The solution e(λ, x) is an analytic function of the variable λ on the upper half plane Imλ ≥ 0 and if is
continuous for λ ∈ (−∞,+∞). For all λ from the closed upper half plane Imλ ≥ 0 we have

|e(λ, x)| ≤ 2C (1 + σ1(x)) e−Imλx+Cσ1(x),∣∣∣e′(λ, x) − e′0(λ, x)
∣∣∣ ≤ 2C2 (1 + σ1(x))σ(x)e−Imλx+Cσ1(x),

|e(λ, x) − e0(λ, x)| ≤ C1 (1 + σ1(x))
(
σ1(x) − σ1(x +

1
|λ|

)
)

e−Imλx+Cσ1(x), x > a,

|e(λ, x) − e0(λ, x)| ≤ C1 (1 + σ1(x))
[
A+

(
σ1(x) − σ1(x + 1

|λ|
)
)

+ |A−|
(
σ1(2a − x) − σ1(2a − x + 1

|λ|
)
)

+ |A−| |λ|−1 σ(a)
]
,

x < a.

Proof. If x > a then equation (2.5) is satisfied, so from equation (2.4) we have

|e(λ, x)| ≤ Ce−Imλx+Cσ1(x) (1 + σ1(x)) . (2.14)

Since the solution e(λ, x) also satisfies the integral equation

e(λ, x) = e0(λ, x) +

+∞∫
x

S 0(x, t, λ)q(t)e(λ, t)dt, (2.15)

where

S 0(x, t, λ) =


sin λ(t − x)

λ
, a < x < t or x < t < a,

A+
sin λ(t − x)

λ
+ A−

sin λ(t − 2a + x)
λ

, x < a < t,

then x > a the equation (2.14) takes a form of

e(λ, x) = e0(λ, x) +

+∞∫
x

sin λ(t − x)
λ

q(t)e(λ, t)dt. (2.16)
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From (2.16),(2.14) and (2.15) we obtain

∣∣∣e(λ, x) − eiλx
∣∣∣ ≤ +∞∫

x

∣∣∣∣∣ sin λ(t − x)
λ

∣∣∣∣∣ |q(t)|C (1 + σ1(t)) e−Imλt+Cσ1(x)dt

=
+∞∫
x

∣∣∣∣∣ sin λ(t − x)
λ

eiλ(t−x)
∣∣∣∣∣ |q(t)| dtC (1 + σ1(x)) e−Imλx+Cσ1(x)

≤

 x+ 1
|λ|∫

x
(t − x) |q(t)| dt + 1

|λ|

+∞∫
x
|q(t)| dt

C (1 + σ1(x)) e−Imλx+Cσ1(x)

= C
(
σ1(x) − σ1

(
x + 1

|λ|

))
(1 + σ1(x)) e−Imλx+Cσ1(x),

i.e. ∣∣∣e(λ, x) − eiλx
∣∣∣ ≤ C

(
σ1(x) − σ1

(
x +

1
|λ|

))
(1 + σ1(x)) e−Imλx+Cσ1(x).

Similarly from (2.16),(2.14) and (2.15) we find∣∣∣e′(λ, x) − iλeiλt
∣∣∣ ≤ C (1 + σ1(x))σ(x)e−Imλx+Cσ1(x).

Let now x < a. In this case equation (2.5) satisfied for t > 2a − x and equation (2.6) is satisfied for t < 2a − x. So, we
have from equation (2.4)

|e(λ, x)| ≤ 2C (1 + σ1 (x))−Imλx+Cσ1(x) . (2.17)

Further, from the equation (2.15) we have for x < a

e(λ, x) = A+eiλx + A−eiλ(2a−x) +
a∫

x

sin λ(t − x)
λ

q(t)e (t, λ) dt

+
+∞∫
a

[
A+

sin λ(t − x)
λ

+ A−
sin λ(t − 2a + x)

λ

]
q(t)e (t, λ) dt.

(2.18)

Therefore by (2.14) and (2.17)

|e(λ, x) − e0(λ, x)| ≤
a∫

x

∣∣∣∣∣ sin λ(t − x)
λ

∣∣∣∣∣ |q(t)| 2C (1 + σ1 (t))

×e−Imλt+Cσ1(t)dt +
+∞∫
a

[
A+

∣∣∣∣∣ sin λ(t − x)
λ

∣∣∣∣∣
+ A−

∣∣∣∣∣ sin λ(t − 2a + x)
λ

∣∣∣∣∣] |q(t)|

×C (1 + σ1 (t)) e−Imλt+Cσ1(t)dt

≤ 2C1 (1 + σ1 (x)) e−Imλtx+Cσ1(x)

×
[
A+

(
σ1(x) − σ1

(
x + 1

|λ|

))
+ |A−|

(
σ1(2a − x) − σ1

(
2a − x + 1

|λ|

))]
+
|A−|
λ
σ(a).

From the equation (2.18), we also have

e′(λ, x) − e′0(λ, x) =
a∫

x
cos λ(t − x)q(t)e (t, λ) dt

+
a∫

x

[
A− cos λ(t − 2a + x) − A+ cos λ(t − x)

]
q(t)e (t, λ) dt.
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So, using again the equation (2.14) and (2.17) we find that∣∣∣e′(λ, x) − e′0(λ, x)
∣∣∣ ≤ a∫

x
|cos λ(t − x)| |q(t)| 2C (1 + σ1 (t)) e−Imλt+Cσ1(t)dt

+
+∞∫
a

A+ |cos λ(t − x)| |q(t)|C (1 + σ1 (t)) e−Imλt+Cσ1(t)dt

+ |A−|
2a−x∫
a
|cos λ(2a − x − t)| |q(t)|C (1 + σ1 (t)) e−Imλt+Cσ1(t)dt

+ |A−|
+∞∫

2a−x
|cos λ(t − 2a + x)| |q(t)|C (1 + σ1 (t)) e−Imλt+Cσ1(t)dt

≤ 2C(1 + σ1 (x))e−Imλx+Cσ1(x)
[
A+

+∞∫
a
|q(t)| dt

+ |A−|
2a−x∫
a
|q(t)| dt + |A−|

+∞∫
2a−x
|q(t)| dt


≤ 2C2(1 + σ1 (x))e−Imλx+Cσ1(x)σ (x) .

Note that for all real λ , 0 the functions e(λ, x) and e(−λ, x) are linearly independent solutions (x , a) of equation
(2.1) with the wronskian

ω [e(λ, x), e(−λ, x)] = e(λ, x), e′(−λ, x) − e′(λ, x), e(−λ, x) = −2iλ.

Let the function ω(λ, x,∞) = O(x), x→ 0 satisfies the integral equation

ω(λ, x,∞) = S 0(x, λ) +

x∫
0

S (x, t, λ) q(t)ω(λ, t,∞)dt, (2.19)

where

S 0(x, λ) =


sin λx
λ

, 0 ≤ x < a,

A+
sin λx
λ
− A−

sin λ(2a − x)
λ

, x > a,

S (x, t, λ) =


sin λ (x − t)

λ
, a < t ≤ x, or 0 ≤ t ≤ x < a,

A+
sin λ (x − t)

λ
+ A−

sin λ(x + t − 2a)
λ

, 0 ≤ t ≤ a < x.

It is clear that ω(λ, x,∞) is the solution of the equation (2.1) with the discontinuity conditions (2.2) and the conditions

ω(λ, x,∞) = x (1 + o(1)) , ω′(λ, x,∞) = 1 + o(1), x→ 0

(see [17]) .
Let us show that the solution ω(λ, x,∞) is a entire function of the parameter λ and satisfies the inequalities the

following inequality for all Imλ ≥ 0, x , a;

∣∣∣ω(λ, x,∞)eiλx
∣∣∣ ≤ Cxe

C
x∫

0
t|q(t)|dt

, (2.20)

∣∣∣[λω(λ, x,∞) − λS 0(x, λ)] eiλx
∣∣∣ ≤ C

[
σ1(0) − σ1

(
1
|λ|

)]
e

C
x∫

0
t|q(t)|dt

, (2.21)

where C = A+ + |A−| .
Let

ω(λ, x,∞) = xe−iλxZ(λ, x), Imλ ≥ 0. (2.22)
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Then, we have the following equation for the function

Z(λ, x) =
S 0(x, λ)eiλx

x
+

x∫
0

S (x, , λ)eiλ(x−t)

x
tq(t)Z(λ, t)dt.

We apply the method of successive approximation to the integral equation to find the solution Z(λ, x). Put

Z(λ, x) =
∞∑

k=0

Zk(λ, x), (2.23)

Z0(λ, x) =
S 0(x, λ)eiλx

x
,

Zk(λ, x) =

x∫
0

S (x, t, λ)eiλ(x−t)

x
tq(t)Zk−1(λ, t)dt, k = 1, 2, . . . . (2.24)

0 ≤ x ≤ a, we have

|Z0(λ, x)| =
∣∣∣∣∣ sin λx
λx

eiλx
∣∣∣∣∣ ≤ 1, (Imλ ≥ 0)

and if x > a we have for Imλ ≥ 0

|Z0(λ, x)| =
∣∣∣∣∣A+ sin λx

λx
eiλx − A−

sin λ(2a − x)
λx

eiλx
∣∣∣∣∣

≤ A+ + |A−| = C.

Therefore, we have for all Imλ ≥ 0, x , a
|Z0(λ, x)| ≤ C, (2.25)

where C = A+ + |A−| = max
(
α,

1
α

)
.

By the similar way we obtain for all Imλ ≥ 0, 0 ≤ t ≤ x and x , a that∣∣∣∣∣S (x, t, λ)
x

eiλ(x−t)
∣∣∣∣∣ ≤ 1 −

t
x
≤ 1 if a < t ≤ x or 0 ≤ t ≤ x < a

and ∣∣∣∣∣S (x, t, λ)
x

eiλ(x−t)
∣∣∣∣∣ ≤ C, if 0 ≤ t ≤ a ≤ x.

Therefore, ∣∣∣∣∣S (x, t, λ)
x

eiλ(x−t)
∣∣∣∣∣ ≤ C, (2.26)

for all Imλ ≥ 0, 0 ≤ t ≤ x and x , a.
Because of (2.25) and (2.26) we obtain from the (2.24) that

|Zk(λ, x)| ≤
Ck+1

k!


x∫

0

t |q(t)| dt


k

, Imλ ≥ 0, x > 0, x , a.

Then, we observe that the series (2.23) uniformly converges in the region Imλ ≥ 0, x ∈ [0, a)∪ (a, b] for any b > 0. For
the Z(λ, x) of the series (2.23) we have

|Z(λ, x)| ≤ Ce
C

x∫
0

t|q(t)|dt
. (2.27)

Now, from (2.22) and (2.27) we obtain (2.20). Therefore, the solution ω(λ, x,∞) is an analytic function of λ (Imλ > 0)
and it is continuous in the closed upper plane Imλ ≥ 0.

For the solution similar way, we prove that the solution ω(λ, x,∞) is analytic function of the parameter λ in the half
plane Imλ < 0 and it is continuous in the closed half plane Imλ ≤ 0. Hence the solution ω(λ, x,∞) is an entire function
of the parameter λ.
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Now, let us prove the estimation (2.21). From the equation (2.19) and the estimation (2.20) we have

|ω(λ, x,∞) − S 0(x, λ)| ≤ Cx

x∫
0

t |q(t)| dte
|Imλx|+C

x∫
0

t|q(t)|dt
,

∣∣∣ω′(λ, x,∞) −C0(x, λ)
∣∣∣ ≤ C

x∫
0

t |q(t)| dte
|Imλx|+C

x∫
0

t|q(t)|dt
,

where

C0(x, λ) =
{

cos λx, 0 ≤ x < a
A+ cos λx + A− cos λ (2a − x) , x > a.

Using again the (2.19) and (2.27), we obtain in Imλ ≥ 0

|ω(λ, x,∞) − S 0(x, λ)| ≤
x∫

0

∣∣∣S (x, t, λ)eiλ(x−t)
∣∣∣ t |q(t)|Z(λ, t)dt

≤ C
x∫

0
t |q(t)| e

C
t∫

0
s|q(s)|ds

dt

= e
C

x∫
0

t|q(t)|dt
− 1.

In particular, we have

∣∣∣[λω(λ, x,∞) − S 0(x, λ)] eiλx
∣∣∣ ≤

C
x∫

0

t |q(t)| dt

 e
C

x∫
0

t|q(t)|dt
, (2.28)

∣∣∣λω(λ, x,∞)eiλx
∣∣∣ ≤ e

C
x∫

0
t|q(t)|dt

. (2.29)

Now, let Imλ ≥ 0 and |λ|−1 < x.
Then, from (2.19), (2.27) and (2.29) we have

∣∣∣[λω(λ, x,∞) − S 0(x, λ)] eiλx
∣∣∣ ≤ x∫

0

∣∣∣λS (x, t, λ)eiλ(x−t)
∣∣∣ |q(t)| eiλtω(λ, t,∞)dt

≤

C |λ|−1∫
0

t |q(t)| dt +C |λ|−1
x∫

|λ|−1

|q(t)| dt

 e
C

x∫
0

t|q(t)|dt

= C
(
σ1(0) − σ1

(
1
|x|

))
e

C
x∫

0
t|q(t)|dt

.

Hence, the estimation (2.21) holds for x > |λ|−1 . Let x ≤ |λ|−1 . Then, the estimation (2.21) is obtained from the (2.28)
because of

x∫
0

t |q(t)| dt = −xσ(x) +
x∫

0
σ(t)dt

≤ σ1(0) − σ1(x) ≤ σ1(0) − σ1

(
1
|λ|

)
.

Consequently, we have proved the following theorem. □

Theorem 2.3. For all values of the parameter λ the equation (2.1) has solution ω(λ, x,∞) satisfying the discontinuity
conditions (2.2) and the conditions

ω(λ, x,∞) = x (1 + o(1)) , ωx(λ, x,∞) = 1 + o(1), x > 0, x→ 0.

The solution ω(λ, x,∞) is an entire function with respect to λ and for Imλ ≥ 0 the inequalities (2.20) and (2.21) are
hold.
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3. Derivation of the Fundamental Equation

To derive the fundamental equation, we use the equality

−
2iλω(λ, x)

e(λ, 0)
= e(−λ, x) − S (λ)e(λ, x),

which was obtained Lemma 3.1.5. in [2]. Here e(λ, x) has a Jost solution, regular with respect to λ in the upper
half-plane Imλ > 0, continuous for Imλ ≥ 0 and representable in the form (2.4), so that

−2iλω(λ, x)
{

1
e(λ, 0)

−
1

e0(λ, 0)

}
−

2iλ
e0(λ, 0)

{ω(λ, x) − ω0(λ, x)}

=
∞∫
x

K(x, t)e−iλtdt + {S 0(λ) − S (λ)}

×

{
e0(λ, x) +

∞∫
x

K(x, t)eiλtdt
}
− S 0(λ)

∞∫
x

K(x, t)eiλtdt,

(3.1)

where
S 0(λ) =

e0(−λ, 0)
e0(λ, 0)

, S (λ) =
e0(λ, 0)

e0(−λ, 0)
,

ω0(λ, x) =


sin λx
λ

, 0 < x ≤ a

α+
sin λx
λ
+ α−

sin λ(x − 2a)
λ

x > a

is the solution of the equation −y′′ = λ2y satisfying conditions (2.2) and ω0(λ, 0) = 0, ω′0(λ, 0) = 1. As was shown in
Lemma 1.3.7 in [2], S 0(λ) − S (λ) is a Fourier transform of the function

Fs(y) =
1

2π

∞∫
−∞

[S 0(λ) − S (λ)] e−iλydλ. (3.2)

Next, since

S 0(λ) =
α+ + α−e−2iλa

α+ + α−e2iλa =

(
1 +

α−

α+
e−2iλa

) 1 − α−α+ e2iλa +

(
α−

α+

)2

e4iλa . . .


we have

1
2π

∞∫
−∞

S 0(λ)eiλtdλ = δ(t) +
α−

α+
δ(t − 2a) −

(
α−

α+

)2

δ(t)−

−

α−α+ −
(
α−

α+

)3 δ(t + 2a).

Let iλk (k = 1, n) be the zeros of the function e(λ, 0), numbered in the order of increase of their modula (0 < λ1 <
λ2 < . . . < λn), and let m−1

k be the norm of the function e(iλk, x) in L2[0,∞). Moreover as x→ ∞ these solutions satisfy
the asymptotic formulae;

u(λ, x) = e−iλx − S (λ)eiλx + o(1), (λ ∈ R \ {0}) (3.3)

u(iλk, x) = mke−λk x (1 + o(1)) ,
(
k = 1, n

)
. (3.4)

A totality of quantities {S (λ), λk,mk} is said to be scattering data of problem (2.1)-(2.3).
Thus, the scattering data completely determines the behavior of the normed eigenfunctions of problem (2.1)-(2.3).

The inverse scattering problem for boundary value problem (2.1)-(2.3) consists of reconstruction of the function q(x)
by the scattering data.
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As was shown in [2], multiplying the both hand sides of equality (2.1) by 1
2πeiλy and integrating with respect to

−∞ < λ < ∞ and taking into account (2.2) and (2.3) in the right hand side, we get

K(x, y) + F1s(x, y) +
+∞∫
x

K(x, t)Fs(t + y)dt−

−

1 − (
α−

α+

)2 K(x,−y) −
α−

α+
K(x, 2a − y)+

+

α−α+ +
(
α−

α+

)3 K(x,−y − 2a),

(3.5)

where

F1s(x, y) =

 Fs(x + y), x > a

α+Fs(x + y) + α−Fs(2a − x + y), 0 < x ≤ a.
Hence, for the y > x, the expression (3.5) takes the form

K(x, y) + F1s(x, y) +

+∞∫
x

K(x, t)Fs(t + y)dt +
α−

α+
K(x, 2a − y). (3.6)

Consequently, the integral of the product of the left-hand side of identity (3.1) and
1
2

eiλy, taken over the real line
−∞ < λ < ∞, must equal (3.6). Let us show that for x > y, this integral converges and can be calculated by contour
integration. In fact, the first term in the integral,

−2iλω(λ, x)
{

1
e(λ, 0)

−
1

e0(λ, 0)

}
is regular everywhere in the upper plane, apart from a finite number of points iλk

(
k = 1, n

)
, which are simple zeros

of the function e(λ, 0) : moreover it is continuous for real λ , 0 and bounded in a neighborhood of λ = 0 (Imλ ≥ 0).
Furthermore, since the function λω(λ, x)eiλx is bounded in the half plane Imλ ≥ 0, and since the function 1

e(λ,0) −
1

e0(λ,0)
tends uniformly to zero in this half plane as |λ| → ∞, an application of Jordan’s Lemma yields, for y > x we get

I =
n∑

k=1

2iλkω(iλk ,x)
e(iλk ,0) = −

n∑
k=1

m2
ke(iλk, x)e−λky

= −
n∑

k=1
m2

ke0(iλk, x)e−λky −

+∞∫
x

K(x, t)
n∑

k=1
m2

ke−λk(t+y)dt,

the second term in the integral in question 2iλ
e0(λ,0) {ω(λ, x) − ω0(λ, x)} is an entire function of λ and Jordan’s Lemma,

+∞∫
−∞

2iλ
e0(0, λ)

{ω(λ, y) − ω0(λ, y)} e−iλydy = 0

for y > x. Equating I and expressions from (3.6) we get the fundamental equations of the inverse problem for K(x, t)

K(x, y) −
α−

α+
K(x, 2a − y) + F1(x, y) +

+∞∫
x

K(x, t)F(t + y)dt = 0, y > x, (3.7)

where

F(y) = Fs(y) +
n∑

k=1

m2−λky
k ,

F1(x, y) =

 F(x + y), x > a

α+F(x + y) + α−F(2a − x + y), 0 ≤ x ≤ a.
(3.8)



Inverse Scattering Problem for the Sturm-Liouville Equation 302

We have thus proved the following result:

Theorem 3.1. The kernel K(x, t) of the transformation operator satisfies the fundamental equation (3.7).

Equation (3.7) plays an important part in solving the inverse problem of the scattering theory. In terms of the
scattering data, the potential q(x) is recovered uniquely. In fact, given the scattering data, one can construct the function
F(y) via formula (3.8) and then write the fundamental equation (3.7). If the fundamental equation has a unique solution
for every x ≥ 0, then the solution is the kernel K(x, y) of the transformation operator, and hence the potential q(x) is
form formulas (2.7), (2.8).

4. Solvability of the Fundamental Equation

From the property of the function Fs(x) and from the form F(x) it follows that for each fixed x ≥ 0, the operator

(Fx f ) (y) =

+∞∫
x

F(t + y) f (t)dt

acting in the space L1(x,+∞) (also in L2(x,+∞)) is completely continuous.
In the fundamental equation we’ll consider the kernel K(x, t) as unknown and consider it as Fredholm type equation

in the space L2(x,+∞) (or L1(x,+∞)) for each fixed x. At first, we show that for each fixed x ≥ 0, the operator

(Mx f ) (y) =
{

f (y), x > a
f (y) − α−

α+
f (2a − y) 0 ≤ x ≤ a

acting in the space L2(x,+∞) is invertible.
It suffices to consider the case 0 ≤ x ≤ a. Let’s consider the equation

f (y) −
α−

α+
f (2a − y) = g(y). (4.1)

Making substitution y→ 2a − y, hence we have

f (2a − y) −
α−

α+
f (y) = g(2a − y). (4.2)

From the system of equations (4.1)-(4.2) we get

f (y) =
α+

4
[
α+g(y) + α−g(2a − y)

]
,

i.e., the operator Mx has the inverse. From the last formula, we have
+∞∫
x

| f (y)|2 dy ≤ C

+∞∫
x

|g(y)|2 dy,

where C are some constants. Thus, we proved that for each fixed x ≥ 0, the operator Mx is invertible in the space
L2(x,+∞).

Now, let’s denote that the fundamental equation is equivalent to the equation

K(x, y) + M−1
x F1(x, y) + M−1

x (FK(x, ·)) (y) = 0, y > x

i.e., to the equation with completely continuous operator, since M−1
x F is a completely continuous operator.

Thus, in order to prove the solvability of the fundamental equation, it suffices to show that the homogeneous equation

fx(y) + M−1
x (F fx) (y) = 0,
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i.e., the equation

fx(y) −
α−

α+
fx(2a − y) +

+∞∫
x

fx(t)F(t + y)dt = 0, y > x (4.3)

has only a zero solution fx(·) ∈ L2(x,+∞).
We multiply the equation (4.3) by fx(y) and integrate with respect to y in the interval (x,+∞). As the result,

according to (3.2) and (3.8) we get

+∞∫
x
| fx(y)|2 dy − α−

α+

+∞∫
x

fx(2a − y) f̃x(y)dy

+ 1
2π

+∞∫
−∞

[S 0(λ) − S (λ)] f̃ (−λ) f̃ (λ)dλ +
n∑

k=1
m2

k

∣∣∣∣ f̃ (−iλk)
∣∣∣∣2 = 0,

where

f̃ (λ) =

+∞∫
−∞

fx(y)e−iλydy.

Here, taking into account the equality (see (3.2))

α−

α+

+∞∫
x

fx(2a − y) f̃x(y)dy =
1

2π

+∞∫
−∞

S 0(λ) f̃ (−λ) f̃ (λ)dλ,

and also Parseval equality
+∞∫
x

| fx(y)|2 dy =
1

2π

+∞∫
−∞

f̃ (λ) f̃ (λ)dλ.

We finally have
n∑

k=1

m2
k

∣∣∣∣ f̃ (−iλk)
∣∣∣∣2 + 1

2π

+∞∫
−∞

{
f̃ (λ) − S (λ) f̃ (−λ)

}
f̃ (λ)dλ = 0. (4.4)

Since |S (λ)| = 1, then by the Cauchy-Bunyakovskii inequality∣∣∣∣∣∣∣∣
+∞∫
−∞

S (λ) f̃ (−λ) f̃ (λ)dλ

∣∣∣∣∣∣∣∣ ≤
+∞∫
−∞

∣∣∣∣ f̃ (λ)2
∣∣∣∣ dλ.

Consequently, the second term at the left hand side of (4.4) is non-negative. Therefore, from equality (4.4) we have

f̃ (−iλk) = 0, k = 1, n,
+∞∫
−∞

{
f̃ (λ) − S (λ) f̃ (−λ)

}
f̃ (λ)dλ = 0.

Assuming z(λ) = f̃ (λ) − S (λ) f̃ (−λ), we see that this function is orthogonal to the function f̃ (λ). But then,∥∥∥∥ f̃ (λ)
∥∥∥∥2
=

∥∥∥∥S (λ) f̃ (−λ)
∥∥∥∥2
=

∥∥∥∥ f̃ (λ) − z(λ)
∥∥∥∥2
=

∥∥∥∥ f̃ (λ)
∥∥∥∥2
+ ∥z(λ)∥2 ,

that is possible only for z(λ) = 0. So, we have

f̃ (−iλk) = 0, k = 1, n, (4.5)

f̃ (λ) = S (λ) f̃ (−λ). (4.6)
By definition S (λ) substituting at in (4.6), we have

f̃ (λ)
e(−λ, 0)

=
f̃ (−λ)
e(λ, 0)

, −∞ < λ < +∞.
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Hence, it follows that f̃ (λ)
e(−λ,0) is a meromorphic function on the whole of complex plane and has poles of first order

in the zeros of the function e(λ, 0). Consequently,

f̃ (−λ)
e(λ, 0)

=

n∑
k=1

1
λ − iλk

f̃ (−iλk)
e(iλk, 0)

+ ψ(λ),

where ψ(λ) is an entire function. It follows from (4.5) that

f̃ (−λ)
e(λ, 0)

= ψ(λ).

Obviously, as |λ| → ∞ the left hand side tends to zero. Consequently, ψ(λ) ≡ 0. Then we have f̃ (−λ) = 0, i.e.
fx(y) = 0.

We have thus proved the following result:

Theorem 4.1. Fundamental equation (3.7) has a unique solution K(x, ·) ∈ L2(x,+∞).

Corollary 4.2. The potential q(x) is uniquely determined by the scattering data.
Algorithm:Given a collection of scattering data {S (λ), λk,mk}satisfying the conditions of (3.3) and (3.4), we con-

struct the function Fs(y) by (3.2) and the functions F(y) and F1(x,y) by (3.8) and consider the fundamental equation of
the inverse problem for K(x,t) by (3.7). Solving integral equation (3.7) we find K(x,t) Next, and find α by (2.10) and
(2.11), consequently q(x) by (2.7) and (2.8).
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