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To support farming year-round, a variety of smart IoT irrigation devices have recently been developed. 

It is crucial to forecast the soil moisture of agricultural farms so as to produce high yields since the high 

yields depends on the efficiency of water supply on farmlands. In smart irrigation, anytime water is 

needed on the farms, the smart pumps switch on to pump the required water so as to prevent the crops 

from drying up. The smart pumps also shut down if the farms have the ideal level of soil moisture, 

preventing over-flooding of the fields. Data is generated when the smart pumps are ON or OFF at any 

given time. Therefore, it is crucial to classify the data produced by smart IoT-enabled irrigation devices 

when these devices are ON or OFF. In this paper, the soil moisture, temperature, humidity, and time are 

used as inputs into machine learning techniques for classification. These machine learning techniques 

include logistic regression, random forest, support vector machine, and convolutional neural network. 

According to experimental findings, the accuracy of the logistic regression was 71.76%, that of the 

random forest was 99.98%, that of the support vector machine was 90.21%, and that of the convolutional 

neural network was 98.23. Based on the high accuracy that the random forest attained, it has more 

potential to help in assessing smart irrigation conditions (wet or dry) in an optimized manner. 
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1. INTRODUCTION 

Crop growth is now severely hampered by the relative scarcity of water brought on by drought or insufficient 

rainfall throughout the world (Goap et al., 2018). Irrigation is the process of delivering the necessary amount 

of water to plants at predetermined intervals. It is necessary for both farming and raising agricultural output 

and it has historically been the solution to the problem of water scarcity on farms (Surendran et al., 2015). 

Prior to today, farms have relied on conventional irrigation techniques including furrow irrigation, check basin 

irrigation, strip irrigation, and basin irrigation to lessen the impact of water scarcity. To irrigate crops, 

traditional irrigation techniques included buckets, pumps, canals, and watering cans. This approach frequently 

requires a lot of labor to convey water to the roots of the plants (Janani & Jebakumar, 2019). 

Research has produced better irrigation techniques known as "smart irrigation" using the Internet of Things 

(IoT) to control water scarcity on farms. Utilizing sprinklers, pipes, ditches, and other similar equipment, smart 

irrigation distributes a controlled amount of water at the proper moment (Adam et al., 2020). This aims to 

increase crop yields while conserving water and money (Iorliam et al., 2021). Smart irrigation systems that use 

machine learning are more accurate at estimating how much water plants need (Çetin & Beyhan, 2022). In 

order to successfully address the issue of inadequate or excessive irrigation, these machine learning techniques 
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consider agricultural parameters to effectively curtail the issue of under or over irrigation (Çetin & Beyhan, 

2022). Different machine learning techniques have been created or adopted by researchers in order to create 

smart irrigation systems that make use of wireless sensor networks, big data, cloud computing, and the internet 

of things in order to efficiently manage the water requirements of crops on smart farms (Sanjeevi et al., 2020). 

In order to replicate human behaviors and make informed choices, decision-support tools have used irrigation 

data from human specialists to comprehend the scheduling patterns of irrigation systems (Pluchinotta et al., 

2018). These tools continuously learn from their experiences and improve their performances. For the goal of 

smart irrigation management, machine learning methods such as artificial neural networks, support vector 

regressions, decision trees, random forests, and naive bayes have been applied (Goap et al., 2018; Romero et 

al., 2018; Nawandar & Satpute, 2019). By utilizing computational tools to learn from irrigation data, these 

machine learning algorithms or techniques play significant roles in smart irrigation systems. The main goal of 

this learning process is to train IoT-enabled data in order to carry out smart irrigation operations (Janani & 

Jebakumar, 2019). The collection of the training data is determined by some features, which may be binary, 

nominal, or numeric (Janani & Jebakumar, 2019). Therefore, to classify IoT-generated data from smart 

irrigation systems, this research uses machine learning techniques such as logistic regression (LR), random 

forest (RF), support vector machine (SVM), and convolutional neural network (CNN) algorithms. In order to 

identify when the IoT-enabled device is malfunctioning, under attack from malware, or has the potential to 

destroy farms that they are supposed to properly irrigate for the effective and efficient growth of crops, it is 

crucial to classify the IoT-generated data from smart irrigation based on whether it is ON or OFF. Therefore, 

the inability of machine learning techniques to classify the data produced by these devices could indicate that 

they are unsuitable for use in smart irrigation. Four algorithms (LR, RF, SVM, and CNN) were selected for 

this study because they are the machine learning techniques that have been used the most frequently in the 

literature (Torres-Sanchez et al., 2020; Dhasaradhan et al., 2021). We evaluated our proposed approach using 

datasets from Mittal (2020). 

2. RELATED WORKS 

Automation technology is being used in agriculture more often to reduce costs and increase yields. Automation 

of irrigation systems is essential for controlling water and electricity usage in rice cultivation while preserving 

grain quality. To develop a rice irrigation system, Pfitscher et al. (2011) utilized wireless connectivity and 

Supervisory Control and Data Acquisition (SCADA). It demonstrated a completely automated irrigation 

system for rice. They used an ultrasonic sensor to monitor and control crop water levels, and a GPRS 

communication system to enable system remote control. Both water and power can be supplied by this gadget. 

By using soil moisture to determine when to turn ON or OFF the irrigation system, Tyagi et al. (2017) created 

an automated smart irrigation system. The developed system has benefits including minimal human 

intervention, great affordability, and simplicity of deployment (Tyagi et al., 2017). 

On the basis of precise real-time farm data, Gondchawar and Kawitkar (2016) proposed a smart irrigation 

system with certain sensor modules for measuring light, soil moisture, humidity, and temperature. 

Furthermore, an automated watering system was developed by Shekhar et al. (2017) using Raspberry Pi 3 and 

Arduino Uno integrated electronics that are inexpensive. Shekhar et al. (2017) developed an intelligent IoT-

based system that records and analyzes sensor data related to soil moisture and temperature for irrigation 

forecasting. This is an entirely automated system that uses irrigation intelligence and interacts with other 

devices. The Raspberry Pi 3 edge level processor receives the sensor data serially and employs the K-NN 

machine learning method to make an estimation of the soil quality based on a training set of data. In a direct 

connection to smart farming, several academics have argued for scalable network designs for managing and 

monitoring farms in rural areas (Monaco et al., 2016). Such systems enhance communication by utilizing 

technologies like the cross-layer-based channel access and routing solution for sensing and actuation to 

improve coverage range, throughput, and latency (Dholu & Ghodinde, 2018). 

Reviewing the viability of using several proposed/developed automatic irrigation systems for rice irrigation 

were Kumar et al. (2018). The researchers chose rice because it requires a lot of water and is frequently 

produced underwater. According to the study, an autonomous irrigation system can make use of several 

cutting-edge irrigation approaches, including time-based systems, volume-based systems, real-time feedback 
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mechanisms, and computer-based irrigation control systems (Kumar et al., 2018). A comprehensive IoT 

irrigation design was put up by Fernández-Ahumada et al. (2019) for the automation of irrigation networks for 

agricultural use. The developed system has shown to be extremely reliable and stable. A recent proposal for 

the detection and classification of intrusions on networks created and utilized for agricultural purposes was 

made by Raghuvanshi et al. (2022). For the purpose of classifying preprocessed data such as NSL, KDD, and 

NSL-KDD, they used machine learning techniques. These datasets are not generated by IoT smart irrigation 

systems, even though they are used for anomaly detection. 

Iorliam et al. (2020) proposed a unique approach based on artificial neural networks for classifying soil data 

from IoT-enabled soil nutrients. Between 81.33% and 97.13% of accuracy was attained by their proposed 

approach. For the effective irrigation of crop areas, Roy et al. (2020) created an IoT automatic and manual 

irrigation system. Their research revealed that the AgriSens technology they developed increased crop output 

by 10.21% (Roy et al., 2020). Roy et al. (2020) proposed that in the future, machine learning should be used 

to analyze how factors like wind, humidity, temperature, and UV rays affect crop yields. Neforawati et al. 

(2019) classified the Paddy growth stage into seeding, transplanting, flowering, and maturity using CNN and 

found that their classifications had an overall accuracy of 82%. Also, Nindam et al. (2019) classified normal 

and abnormal Jasmine rice germination using CNN. According to experimental findings, their suggested 

method had a validation accuracy of 96.43%. Inspired by Iorliam et al. (2020), Roy et al. (2020), Neforawati 

et al. (2019) and Nindam et al. (2019), the researchers proposed using machine learning methods such as LR, 

RF, SVM, and CNN for the classification of IoT-enabled data generated while the smart irrigation devices are 

either ON or OFF. 

3. PROPOSED METHOD  

3.1. Dataset Description and Pre-Processing 

As pointed out by Cheng et al. (2022), there is a general lack of public labelled IoT smart irrigation datasets 

for performing supervised learning experiments. This experiment therefore used publicly available data from 

Mittal (2020), which includes features like soil moisture (SM), temperature (T), humidity (H), and time (t). 

The algorithms employed in this experiment use each of these features as an input. The status column's "ON" 

or "OFF" values acted as class labels (ON = 1, OFF = 0). 

The Kaggle dataset used to produce the smart irrigation IoT dataset is available at: 

http://autoirrigationdataforricecrop.herokuapp.com/. It is critical to classify the secondary data produced by 

IoT smart irrigation devices since it may include extremely intriguing statistical information that can 

characterize the device whether it is ON or OFF. Failure to classify these data points could indicate that the 

designed smart irrigation pump is failing or has been compromised by malware. Figure 1 displays the input 

data we used for this experiment, which includes columns for soil moisture (column A), temperature (column 

B), humidity (column C), time (column D), and status (column E). 

 

Figure 1. Input Data 

http://autoirrigationdataforricecrop.herokuapp.com/
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Machine learning algorithms (LR, RF, SVM, and CNN) were utilized to analyze and categorize the smart 

irrigation dataset based on the device status (ON = 1, OFF = 0). There are 100,000 samples in the overall 

dataset. 70% of the dataset is used for training, while 30% is used for testing. In a Google Colaboratory, Python 

is utilized for programming. The "dropna ()" method in Python is used to remove any rows with NULL values 

during data pre-processing. 

3.2. Methodology 

The proposed model gathers raw data from smart irrigation systems, pre-processes it to extract SM, T, H, and 

t, and then uses this processed data as input into four separate algorithms (LR, RF, SVM, CNN). The outcomes 

of these algorithms' classifications are subsequently produced as confusion matrices. Figure 2 summarizes the 

proposed model's functionality as a whole. 

 

Figure 2. Machine Learning Techniques for Classification of IOT-Enabled Smart Irrigation 

The following is a description of the machine learning techniques used in this paper: 

i. Logistic regression (LR) 

In this instance, the LR is used to classify data that is generated depending on whether the smart irrigation 

equipment is turned "ON" or "OFF." Since the LR technique uses supervised learning, labels are given for 

"ON = 1" and "OFF = 0". Either our dependent or target class is "ON" or it is "OFF." The variables that are 

independent are SM, T, H, and t. 

Taking 𝜋 as the probability of the event occurring, the LR model is therefore represented as: 

𝜋 = 𝑃( 𝑌 = 1|𝑋1 … 𝑋𝑛 = 𝑥𝑛) (1) 

=
1

1 + 𝑒2
 (2) 

where 𝑧 =  𝛽0 + 𝛽1𝑥1  + ⋯ +  𝛽𝑛𝑥𝑛  

and 𝛽0, 𝛽1 … 𝛽𝑛 are model parameters (estimators). 

In our case, 𝑌 represents the outcome of our prediction (ON or OFF). 𝑋1, 𝑋2, … , 𝑋𝑛 are a set of n explanatory 

variables (SM, T, H, and t) (Bhowmik et al., 2011). 
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ii. Random forest (RF) 

The RF has shown to improve the prediction performance of decision tree classifiers and controls over-fitting. 

As a result, it is chosen for the classification of data produced by smart irrigation devices. 

The number of trees chosen for the forest (n-estimators) in our experiment was set to default = 100. The RF 

formula utilized for the classification task is based on the Gini index, which is mathematically stated as:  

Gini Index = 1 − ∑(𝑃𝑘)2

𝑛

𝑘=1

 (3) 

where 𝑃𝑘 = the probability of an object being classified to a particular class (class 1 = “ON”, or class 0 = 

“OFF”) in the dataset 

𝑛= number of classes (2, ON or OFF) (Qi, 2012). 

iii. Support vector machine (SVM) 

Both separable and non-separable instances can be handled by the linear SVM. In our case, the radial basis 

function, or "RBF," was employed as the default kernel. 

The following illustration shows a two-dimensional data set that can be divided along a line:  

𝑦 = 𝑎𝑥 + 𝑏 (4) 

if 𝑦 = 𝑥2, and 𝑥 = 𝑥1, the we get: 

𝑎𝑥1 − 𝑥2 + 𝑏 = 0 (5) 

When 𝑥 = (𝑥1, 𝑥2), 𝑎𝑛𝑑 𝑤 = (𝑎, −1)  

We therefore get: 

𝑤 ∗ 𝑥𝑖 + 𝑏 = 0 (6) 

Based on the hyperplane, we can make predictions using the hypothesis function (h), defined as: 

ℎ(𝑥𝑖) = {
+1, 𝑖𝑓 𝑤 ∗  𝑥𝑖 + 𝑏 ≥ 0
−1, 𝑖𝑓 𝑤 ∗  𝑥𝑖 + 𝑏 < 0

 (7) 

Therefore, any point above the hyperplane will be classified as +1 class, whereas any point below the 

hyperplane will be considered as -1 class (Fan, 2018).  

iv. Convolutional Neural Network (CNN) 

The CNN (Krizhevsky et al., 2017) is used in this paper since it has been demonstrated in literature to be one 

of the most often used artificial neural networks. The objective of this experiment is to use CNN to categorize 

IoT-smart irrigation data according to whether the device is "ON" or "OFF." The first class is denoted by the 

number 1 for "ON," and the second class, "class 0," is denoted by the number 0 for "OFF." The following steps 

illustrate the CNN setup used in this paper: 
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1. The dataset described in 3.1 is used  

2. The sequential model “sequential ( )” is used as the first layer due to the fact that we are using linear 

stack of layers 

3. Our model added the first hidden layer with 4 input parameters, and 480 neurons. The rectified linear 

activation function (ReLu) is first chosen due to its ability to achieve higher performance 

4. Additional two dense layers are added with 240, and 120 neurons, respectively 

5. Our model is ended with a dense layer, no activation, and a sigmoid activation function. The sigmoid 

activation function is chosen because we are considering a binary classification (ON or OFF) and the 

sigmoid activation function best fits our case in order to acquire our score 

6. Our compiled model is done using the binary crossentropy, the Adam optimizer, and accuracy. 

7. The training data of X, training data of Y are fit to our model using 1000 epochs, and a batch size of 

128. The test data of X, and test data of Y are validated as well using the same epochs and batch size. 

Based on the above setup, the results achieved are presented in Section 4 D. 

3.3. Evaluation Metrics 

To evaluate the proposed approach, the following evaluation measures are used: 

i. Accuracy: Expressed mathematically as: 

Accuracy =  
(TP +  TN)

(TP +  TN +  FP + FN)
 (8) 

ii. Precision: Expressed mathematically as: 

Precision =  
(TP)

(TP +  FP )
 (9) 

iii. Recall: Expressed mathematically as: 

Recall =  
(TP)

(TP +  FN )
 (10) 

iv. F1-Score: Expressed mathematically expressed as: 

F1 − Score =  
(2 x Precision x Recall)

(Precision +  Recall )
 (11) 

where: 

True Positive (TP): The outcome of the developed model correctly predicts the positive class. 

True Negative (TN): The outcome where the negative class is correctly predicted by the developed model. 

False Positive (FP): The outcome where the positive class is incorrectly predicted by the developed model. 

False Negative (FN): The outcome where the negative class is incorrectly predicted by the developed model. 

4. RESULTS AND DISCUSSIONS 

To classify data from IoT-enabled smart irrigation devices, four algorithms were used (LR, RF, SVM, and 

CNN). Based on the information produced by the IoT smart irrigation system, the machine learning algorithms 

were able to divide the dataset into two classes. Class 0 (information while the smart irrigation pump is off) 
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and Class 1 (data when the smart irrigation pump is ON). The data (100,000 rows) are divided at random into 

70% training and 30% testing, with the results displayed and discussed in 4 A–D. 

A. Performance of Logistic Regression 

The pre-processed IoT-enabled smart irrigation data given in 3.1 are supplied into the LR algorithm. As can 

be seen in Figure 3, the logistic regression technique achieved 71.76% accuracy, 0.7155 F1 score, 0.7303 

precision value, and 0.7501 recall, respectively. 

 

Figure 3. Results of Logistic Regression 

Again, Figure 4 shows the result of the confusion matrix for the LR algorithm. The LR algorithm correctly 

classified 9469 as class 0 (OFF) and wrongly classified 4454 samples of class 0 as class 1 (ON). Furthermore, 

the LR algorithm correctly classified 12059 samples of class 1 (ON), and wrongly classified 4018 samples of 

class 1 as class 0 (OFF).  

 

Figure 4. Confusion Matrix for Logistic Regression 

Recent research by Raghuvanshi et al. (2022) showed that the LR's classification accuracy on intrusion 

detection datasets like NSL, KDD, and NSL-KDD was less than 78%. Our classification accuracy using LR 

on a realistic smart irrigation dataset is 71.76%, which is quite similar to the outcome in Raghuvanshi et al. 

(2022). 
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B. Performance of Random Forest  

As can be observed in Figure 5, the Random Forest (RF) algorithm achieved 99.98%, 0.9998, 0.9996, and 

0.9999 for the Accuracy, F1 score, Precision value, and Recall, respectively. 

 

Figure 5. Results for Random Forest 

The RF’s confusion matrix shows that the algorithm correctly classified 13917 as class 0 (OFF) and wrongly 

classified 6 samples of class 0 as class 1 (ON). Furthermore, the RF algorithm correctly classified 16076 

samples of class 1 (ON), and wrongly classified only 1 sample of class 1 as class 0 (OFF) as seen in Figure 6.  

 

Figure 6. Confusion Matrix for Random Forest 

This shows that the RF algorithm accurately classified data generated by IOT smart irrigation device up to 

99.98%. Our accuracy outperformed that of Raghuvanshi et al. (2022), when they used the RF algorithm on 

intrusion detection datasets such as NSL, KDD, and NSL-KDD and achieved an accuracy of less than 78% 

(Raghuvanshi et al., 2022). Moreover, our accuracy also outperformed that of Ok et al. (2012) when they 

utilized the random forest algorithm for agricultural crop classification and achieved an accuracy of 85.89%. 

C. Performance of Support Vector Machine 

As shown in Figure 7, the Support Vector Machine (SVM) algorithm achieved 90.21% Accuracy, 0.9014 F1 

scores, 0.9019 Precision value, and 0.9170 Recall. 
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Figure 7. Support Vector Machine Results 

Again, the confusion matrix for the SVM shows that it correctly classified 12319 samples as class 0 (OFF) and 

wrongly classified 1604 samples of class 0 as class 1 (ON). Furthermore, the SVM algorithm correctly 

classified 14743 samples of class 1 (ON), and wrongly classified 1334 samples of class 1 as class 0 (OFF) as 

seen in Figure 8. 

 

Figure 8. Confusion Matrix for Support Vector Machine 

This further proves that our proposed method can effectively be applicable for the separability of smart 

irrigation IoT data using SVM with a high accuracy of 90.21%. Our proposed method performs a bit lesser as 

compared to Raghuvanshi et al. (2022), when they used the SVM algorithm on intrusion detection datasets 

such as NSL, KDD, and NSL-KDD and achieved an accuracy of more than 98% (Raghuvanshi et al., 2022). 

Interestingly, our proposed method achieved a slightly higher result to that of Jagtap et al. (2022) when they 

applied the SVM in the classification of crop images and achieved an accuracy that was less than 90%.  

D. Performance of Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) algorithm achieved an accuracy of 0.9823, precision of 0.98, recall 

of 0.98, and F1 score of 0.98. Furthermore, the training loss vs the epochs for the CNN classification of the 

IoT-enabled dataset is presented in Figure 9. 
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Figure 9. Training Loss Vs Epochs for the CNN 

Generally, when the Loss Vs Epochs graph is taken into account, lower Loss values result in a good 

performance. Figure 9 shows that the graph was more consistent for the train datasets. The Loss values got 

closer to zero as the number of Epochs tends towards 1000. Additionally, as Epoch values tends towards 1000, 

the Loss values tends more towards zero (0) for the validation dataset. 

Once more, while examining the training accuracy vs. epochs for this experiment as shown in Figure 10, it can 

be seen that the accuracies for the train dataset and test dataset were over 0.98 when the epochs were closer to 

1000. 

 

Figure 10. Training Accuracy Vs Epochs for the CNN 

This demonstrates that for this experiment, epochs of over 1000 were well suited for the effective classification 

of IoT enabled data. 

The confusion matrix is shown in Figure 11 to clearly demonstrate the number of samples that were classified 

using CNN based on the "ON" or "OFF" of the smart irrigation device. 
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Figure 11. Confusion Matrix for the CNN 

It can be seen from Figure 11 that the CNN algorithm correctly classified 0.98 (98%) samples as class 0 (OFF) 

and wrongly classified 0.02 (2%) samples of class 0 as class 1 (ON). Furthermore, the CNN algorithm correctly 

classified 0.98 (98%) samples of class 1 (ON), and wrongly classified 0.02 (2%) samples of class 1 as class 0 

(OFF). With an accuracy of up to 98% shown in the confusion matrix, it proved that the proposed method of 

using the CNN for the classification of IoT-enabled data was very successful. 

The accuracy of our proposed method (98.23%) outperformed that of Neforawati et al. (2019), when they used 

the CNN to classify Paddy growth level and achieved an overall accuracy of 82%. Furthermore, the accuracy 

of our proposed method outperformed that of Nindam et al. (2019) when they utilized the CNN for the 

classification of normal and abnormal Jasmine rice germination and achieved a validation accuracy of 96.43%. 

In summary, Table 1 and Figure 12 compares the results of the machine learning techniques achieved in this 

paper. 

Table 1. Comparison Performance of Algorithms 

Algorithm Accuracy F1 score Precision Value Recall 

LR 71.760 0.715 0.730 0.750 

RF 99.980 0.999 0.999 0.999 

SVM 90.210 0.901 0.901 0.917 

CNN 98.230 0.980 0.980 0.980 

Applying machine learning techniques for the separability of data produced by IoT-enabled smart irrigation 

devices is necessary because, if an IoT smart irrigation pump is supposed to go "OFF" but does not, this could 

result in flooding of the farm that is receiving irrigation, and vice versa. Therefore, the precise classification 

of data derived from whether the smart irrigation pump is "OFF" or "ON" can help in identifying when such a 

device is faulty (malfunctioning), under attack from malware, and has a potential of destroying farms which 

they are supposed to properly irrigate for the effective and efficient growth of crops. 
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In this study, the RF algorithm outperformed the SVM, LR, and CNN in all the evaluation metrics employed. 

The classification accuracy of the RF is 99.98%, followed by the CNN which is 98.23%, then the SVM which 

is 90.21%, and the LR which is 71.76%. From the comparative analysis, it can also be deduced that the LR 

performed least in all evaluation metrics used in this study. 

 

Figure 12. Graph Showing the Performance of Algorithms 

5. CONCLUSION AND FUTURE WORK 

This study examines how to classify (separate) data produced by IoT-enabled smart irrigation devices using 

machine learning approaches. The researchers concluded that smart irrigation device pre-processed IoT-

generated datasets can be employed as input data into machine learning algorithms to understand patterns and 

carry out classification tasks. The RF algorithm, which was one of the four machine learning algorithms (LR, 

RF, SVM, and CNN) used in this study, was judged to be the most successful because it accurately 

distinguished between the times when the smart irrigation device was "ON" and "OFF" with 99.98%, 0.9998, 

0.9996, and 0.9999 for the Accuracy, F1 score, Precision value, and Recall, respectively. The precise 

classification of IoT smart irrigation data by machine learning algorithms may indicate that the IoT devices 

that produced such data are particularly effective and efficient in the irrigation of crop farms, which may result 

in improved crop yields. In the future, we intend to classify IoT-enabled smart irrigation data for agricultural 

purposes using Benford's law and Zipf's law. 
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