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1. Introduction 
 

The “Real Frequency Techniques” in short, RFTs, 

are known the best design methods to construct lossless 

matching networks for Communication systems [1-5]. They 
work on the network functions either in complex Laplace 

variable 𝑝 = 𝜎 + 𝑗𝜔 or in Richard variable 𝜆 = 𝛴 + 𝑗𝛺. In 

this regard, accurate synthesis of the network functions are in 

high demand [1-5]. In our previous publications, we 

introduced the high precison synthesis of immittance 

functions generated in Laplace and Richards Domain with 

transmission zeros only at DC and infinity via parametric 

approach [11-13]. However, some applications may demand 

such matching networks with transmission zeros at finite 

frequencies as well as at DC and infinity. Hence, realization 
of finite transmission zeros becomes inavitable. Therefore, in 

this work, previously introduced high precision lumped 

element synthesis techniques are extended to include 

transmission zeros at finite frequencies on the 𝑗𝜔 axis and the 

real transmission zeros in the complex plane described by the 

classical Laplace variable 𝑝 = 𝜎 + 𝑗𝜔. These type of zeros 

are realized as Brune and Darlington’s Type C-Sections  

respectively using our new synthesis algorithms. 

In this paper, we presume that the driving point 

impedance is minimum reactance. This fact does not effect 

the generality of the synthesis approach since the 𝑗𝜔 poles 

can be removed from the given impedance as a Foster 

function  remaining a positive real impedance which is a 

minimum reactance  [16].  

Finite frequencies and RHP transmission zeros are 

realized using modified zero shifting method [14-17, 18-20]. 

In this paper, we introduce two different Brune/Type-C 
section extraction methods. The first one directly works on 

the given impedance function. Therefore, it is called 

“Impedance Based Brune/Type-C section Extraction”. The 

second method utilizes the chain parameters. Hence, it is 

called “Chain Parameters Based Brune/Type-C Section 

Extraction”. After each transmission zero extraction, 

remaining impedance is corrected employing the parametric 

approach to yield the desired electrical performance. In this 

process, left over transmission zeros are imbedded into the 

remaining impedance function in a similar manner to those 

of the algorithms introduced to synthesize LC Ladders[10-
13, 16].  

In the following sections, first we introduce 

Brune/Type-C section extraction algorithms based on 

impedance and chain parameters approach. Then, examples 
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are presented. It is shown that newly proposed high precision 

computer aided Darlington’s synthesis algorithms yield 

successful synthesis of positive real functions with high 

number of reactive elements. 

 

2. Brune Sectıon Extractıon Usıng  

Impedance Based Approach 
 

In this, section we deal with the extraction of a finite 

frequency transmission zero from the given minimum 

reactance impedance. In this regard, let 

𝑍(𝑝) =
𝑎(𝑝)

𝑏(𝑝)

=
𝑎1𝑝𝑛 + 𝑎2𝑝𝑛−1 + ⋯ + 𝑎𝑛𝑝 + 𝑎𝑛+1

𝑏1𝑝𝑛 + 𝑏2𝑝𝑛−1 + ⋯ + 𝑏𝑛𝑝 + 𝑏𝑛+1

 

 

(1) 

be a minimum reactance impedance with a real frequency 

finite transmission zero at 𝜔𝑎  and 𝐷𝐶 transmission zeros of 

order 𝑛𝑑𝑐 to be synthesized in Darlington sense. In this case, 

even part of 𝑍 (𝑝) is given by 

𝑅(𝑝) = 𝐹(𝑝)/[𝑏(𝑝)𝑏(−𝑝)] 
(2a) 

Zeros of the even polynomial 𝐹(𝑝) are called the 

transmission zeros of 𝑍(𝑝) including the ones at DC. For the 

case under consideration, 𝐹(𝑝) is given by 

𝐹(𝑝) = 𝑎0
2(𝑝2+𝜔𝑎

2)2(−1)𝑛𝑑𝑐𝑝2𝑛𝑑𝑐

= ∓𝑓2(𝑝) 

(2b) 

where 

𝑓(𝑝) = 𝑎0(𝑝2 + 𝜔𝑎
2)𝑝𝑛𝑑𝑐 

(2c) 

At the finite  frequency transmission zeros 𝑝 = ∓𝑗𝜔𝑎  

𝑍(𝑗𝜔𝑎) = 𝑅(𝑗𝜔𝑎) + 𝑗𝑋𝑎(𝜔𝑎) 

where 

𝑅(𝑗𝜔𝑎) = 0 

(3a) 

 

(3b) 

Referring to (3), we may extract an inductor 𝐿𝑎 from 𝑍(𝑝) 

such that 

𝑋𝑎 = 𝜔𝑎𝐿𝑎 (4) 

In (4), the inductor 𝐿𝑎 could be positive or negative without 

disturbing the positive real feature of 𝑍(𝑝). Based on (4), we 

can express 𝑍(𝑝) as follows and partially synthesize it as 

shown in Fig.1. 

 

𝑍(𝑝) = 𝑝𝐿𝑎 + 𝑍1(𝑝) 

where 

𝑍1(𝑝) =
𝑎1(𝑝)

𝑏1(𝑝)
 

𝑏1(𝑝) ≡ 𝑏(𝑝) 

𝑎1(𝑝) ≡ 𝑎(𝑝) − (𝑝𝐿𝑎)𝑏(𝑝) 

(5a)  

 

(5b) 

 
(5c) 

 

(5d) 

In (5d), 𝑎1(𝑝) is a degree of (𝑛 + 1) polynomial. 

Z(p)=a(p)/b(p)

La Z1(p)=a1(p)/b1(p)
or

Y1(p)=b1(p)/a1(p)

 
Fig. 1. Extraction of an inductor 𝐿𝑎 from 𝑍(𝑝) 

 

Obviously, as it is introduced above,  𝑍1(𝑝) =
𝑍(𝑝) − 𝐿𝑎𝑝 is zero when 𝑝 = ∓𝑗𝜔𝑎  . In other words, 

𝑍1(𝑗𝜔𝑎) = 𝑍(𝑗𝜔𝑎) − 𝑗𝜔𝑎𝐿𝑎 = 0 
(6) 

Therefore, the numerator polynomial 𝑎1(𝑝) must include the 

term (𝑝2 + 𝜔𝑎
2) such that 

𝑎1(𝑝) = (𝑝2 + 𝜔𝑎
2)𝑎2(𝑝) 

(7) 

or the admittance function 𝑌1(𝑝) has poles at 𝑝 = ∓𝑗𝜔𝑎. That 

is, 

𝑌1(𝑝) =
𝑏1(𝑝)

𝑎1(𝑝)
=

𝑏1(𝑝)

(𝑝2 + 𝜔𝑎
2)𝑎2(𝑝)

 
 

(8 ) 
 

By extracting the poles at 𝑝 = ∓𝑗𝜔𝑎 , 𝑌1(𝑝) can be written 

as 

𝑌1(𝑝) =
𝑘𝑏𝑝

𝑝2 + 𝜔𝑎
2

+ 𝑌2(𝑝) 

where 

𝑌2(𝑝) =
𝑏2(𝑝)

𝑎2(𝑝)
 

 

( 9a ) 

 

(9b ) 

 

In the above formulation 𝑎2(𝑝) and 𝑏2(𝑝) are found as 

𝑎2(𝑝) =
𝑎1(𝑝)

𝑝2 + 𝜔𝑎
2
 

𝑏2(𝑝) = [
1

𝑝2 + 𝜔𝑎
2

] [𝑏(𝑝)

− (𝑘𝑏𝑝)𝑎2(𝑝)] 

 

(10a) 

 

 

(10b) 

Partial synthesis of 𝑌2(𝑝) is depicted in Fig.2. 

La

Lb

Cb

Z2(p)=a2(p)/b2(p)

Z(p)=a(p)/b(p)
 

Fig. 2. Extraction of the poles at 𝑝 = ∓𝑗𝜔𝑎 from the 

admittance function 𝑌1(𝑝) 
 

Finally, we set  

𝑍2(𝑝) =
𝑎2(𝑝)

𝑏2(𝑝)
= 𝐿𝑐𝑝 + 𝑍3(𝑝) 

where 

𝑍3(𝑝) =
𝑎3(𝑝)

𝑏3(𝑝)
 

𝐿𝑐 =
𝑎21

𝑏21

 

(11a) 
 

 

(11b) 

 

 

(11c) 
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𝑎3(𝑝) = 𝑎2(𝑝) − (𝐿𝑐𝑝)𝑏3(𝑝) 

𝑏3(𝑝) = 𝑏2(𝑝) 

(11d) 

 

(11e) 

In (10c), 𝑎21 and 𝑏21 or denote the leading coefficients of the 

polynomial polynomials 𝑎2(𝑝) and 𝑏2(𝑝) respectively. Thus, 

partial synthesis of (1) is shown by Fig.3. 

La

Lb

Cb

Z(p)=a(p)/b(p)

Lc

Z3(p)=a3(p)/b3(p)

 
Fig. 3. Extraction of the poles at ∞ from the impedance 

function 𝑍2(𝑝) 

The above realization process of the finite 

transmission zero 𝜔𝑎   is called the “Brune section 

extraction”. In this form, one of the inductors 𝐿𝑎 or 𝐿𝑐 may 

have a negative value. However, it may be eliminated by 

introducing a coupled coil with mutual inductance 𝑀 > 0 as 

depicted in Fig.4. At the first glance, it is straight forward to 

show that, the way inductors 𝐿𝑎 , 𝐿𝑏 and 𝐿𝑐  are derived, must 

satisfy the condition [9]: 

𝐿𝑎 . 𝐿𝑏 + 𝐿𝑎 . 𝐿𝑐 + 𝐿𝑏 . 𝐿𝑐 = 0 (6) 

In this regard, the negative inductor is removed employing 

(12) and realization of it is depicted in Fig.4. 

 

𝐿1 = 𝐿𝑎 + 𝐿𝑏 > 0 

𝐿2 = 𝐿𝑏 + 𝐿𝑐 > 0 

𝑀 = 𝐿𝑏 > 0 

(7a) 

(13b) 

(13c) 

L1 L2

Cb

M=Lb

Z3(p)=a3(p)/b3(p)

Z(p)=a(p)/b(p)

. .

 
Fig. 4. Brune Section: Elimination of the negative 

inductor using coupled coils with a positive mutual inductance 𝑀.  

 

In the following section, we summarize the 

upgraded version of our high precision synthesis algorithms 

introduced in [11-13] to include the extraction of finite 

frequency transmission zeros a Brune sections. 

 

3. Matlab Implementation Of The New 

Synthesıs Algorıthm  
 

In cascade synthesis [14-17,18-20], transmission 

zeros are realized as the poles of the immitance function at 
each step. In this regard, DC transmission zeros are realized 

either as series capacitors which are the poles of impedance 

functions at 𝑝 = 0 or as shunt inductors which are the poles 

of admittance functions at 𝑝 = 0. In a similar manner, in 

Brune synthesis, a finite frequency transmission zero at 𝜔𝑎 is 

realized by introducing a pole at that frequency into the 

admittance function in the second step of the synthesis. In 

this regard, synthesis algorithm can be implemented within 

three  steps.  

In step 1, at a given finite frequency transmission 

zero 𝜔𝑎, an inductance 𝐿𝑎 is extracted from the given 

impedance function 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝)  to introduce a zero 

in to the remaining impedance function 𝑍1(𝑝) = 𝑎1(𝑝)/
𝑏1(𝑝) which is the pole of the admittance function 𝑌1(𝑝) =
𝑏1(𝑝)/𝑎1(𝑝). This fact is described by equations (3-5). Thus, 

in 𝑀𝑎𝑡𝐿𝑎𝑏, first we generate 

𝑍(𝑗𝜔𝑎) = 𝑅𝑎 + 𝑗𝑋𝑎 
(8) 

In this step, 𝑅𝑎 must be zero since the even part of 

the given impedance is zero at 𝑝 = ∓𝑗𝜔𝑎 as specified by (2). 

However, due to numerical computational errors, 𝑅𝑎 will not 

be exactly zero, rather it will be a small number. In this 

regard, we define an algorithmic zero such that 𝜀𝑧𝑒𝑟𝑜 =
10−𝑚; 𝑚 > 0. If 𝑅𝑎 ≤ 𝜀𝑧𝑒𝑟𝑜 then, we can go ahead with the 

synthesis. Otherwise, synthesis algorithm must be stoped 

meaning that the given impedance does not include a finite 

transmission zero at 𝜔𝑎 . In this case, if 𝑅𝑎 ≤ 𝜀𝑧𝑒𝑟𝑜 , then  by 
(4) we set 

𝐿𝑎 =
𝑋𝑎

𝜔𝑎

 

 

(9) 

In (14), value of 𝐿𝑎 may be positive or negative. 

In the second step, we generate the numerator and 

denominator polynomials of  𝑍1(𝑝) as in (5) as follows. 

𝑎1(𝑝) = 𝑎(𝑝) − 𝑝𝐿𝑎𝑏(𝑝) 

𝑏1(𝑝) = 𝑏(𝑝) 

(15a) 

(15b) 

At this point, we should mention that degree of 

𝑎1(𝑝) is increased by one. Then, the numerator polynomial 

of 𝑍2(𝑝) = 𝑎2(𝑝)/𝑏2(𝑝) is determined as in (6) 

𝑎2(𝑝) =
𝑎1(𝑝)

𝑝2 + 𝜔𝑎
2
 

(16) 

Employing (9b), residue 𝑘𝑏 is found. 

𝑘𝑏 =
𝑏(𝑗𝜔𝑎)

(𝑗𝜔𝑎)𝑎2(𝑗𝜔𝑎 )
 

(17) 

 

𝑘𝑏 must be a real positive number. At this point, we 

completed the extraction of the finite transmission zero 𝜔𝑎 as 

a series resonance circuit in shunt configuration as shown in 

Fig.2 with element values 
 

𝐿𝑏 =
1

𝑘𝑏

> 0  and   𝐶𝑏 =
1

𝜔𝑎
2𝐿𝑏

> 0 
(10) 

 

The last computation of this step is to determine the 

denominator 𝑏2(𝑝) of  𝑍2(𝑝) = 𝑎2(𝑝)/𝑏2(𝑝)(𝑝) such that 

𝑏2(𝑝) = [
1

𝑝2 + 𝜔𝑎
2

] [𝑏(𝑝)

− (𝑘𝑏𝑝)𝑎2(𝑝)] 

 

(19) 
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In 𝑀𝑎𝑡𝐿𝑎𝑏 environment, division by (𝑝2 + 𝜔𝑎
2) is 

performed using the function  [𝑞, 𝑟] = 𝑑𝑒𝑐𝑜𝑛𝑣(𝑢, 𝑣) which 

performs the polynomial division operation 𝑢(𝑝)/𝑣(𝑝) 

resulting in the quotient polynomial 𝑞(𝑝) and the 

remainder 𝑟(𝑝). Obviously, in computing 𝑎2(𝑝) and 𝑏2(𝑝) 

using (16) and (19), remainders must be zero. However, due 

to accumulated numerical errors, remainders may be small 

numbers but not exactly zero. In this case, we can compare 
the norm of remainders with the algorithmic zero if they are 

less than 𝜀𝑧𝑒𝑟𝑜 . If so, then we can go ahead with step 3, 

otherwise the algorithm is stopped indicating that extraction 

of the given transmission zero is not possible. At this step, 

degree of polynomial 𝑎2(𝑝) is 𝑛 − 1 and degree of 𝑏2(𝑝) is 

𝑛 − 2. In this case, the impedance function 𝑍2(𝑝) =
𝑎2(𝑝)/𝑏2(𝑝) must include a pole at infinity. 

In step 3, the remaining pole at infinity of 𝑍2(𝑝) =
𝑎2(𝑝)/𝑏2(𝑝) is removed as an inductor 

  𝐿𝑐 = 𝑎2(1)/𝑏2(1) (20) 

It should be noted that, in 𝑀𝑎𝑡𝐿𝑎𝑏 environment, a 

polynomial 𝑃(𝑥) = 𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + ⋯ + 𝑝𝑛𝑥 + 𝑝𝑛+1 of 

degree 𝑛 is described by means of a vector 𝑃 which includes 

all the coefficients {𝑝1, 𝑝2, … , 𝑝𝑛 , 𝑝𝑛+1} such that 

𝑃 = [𝑝(1) 𝑝(2) …  𝑝(𝑛) 𝑝(𝑛 + 1)] (21a) 

Furthermore, norm of a vector 𝑃 is defined as 

𝑛𝑜𝑟𝑚(𝑃)

= √𝑝2(1) + 𝑝2(2) + ⋯ +  𝑝2(𝑛 + 1) 

 

(21b) 

 

Based on the above notation, 𝑎2(1) and 𝑏2(1) are 

the leading coefficients of polynomials 𝑎2(𝑝) and 𝑏2(𝑝) 

respectively. If 𝐿𝑎  is negative, then 𝐿𝑐  must be positive. 

Otherwise, 𝐿𝑐  may take a negative value. Upon completion 

of this process, we end up with the remaining positive real 

impedance 𝑍3(𝑝) = 𝑎3(𝑝)/𝑏3(𝑝). In this case, 

𝑎3(𝑝) = 𝑎2(𝑝) − [𝐿𝑐𝑝][𝑏3(𝑝)] 

𝑏3(𝑝) = 𝑏2(𝑝) 

 

(11a) 
 

(22b) 

In the above equation set, degree of 𝑎3(𝑝) must be 

𝑛𝑎3 = 𝑛 − 3 or 𝑛𝑎3 = 𝑛 − 2 and degree of 𝑏3(𝑝) must be 

𝑛𝑏3 = 𝑛 − 2. It should be mentioned that the above Brune 

section extraction process is also known as zero shifting and 

it is programmed in 𝑀𝑎𝑡𝐿𝑎𝑏 under the following functions: 

[𝐸𝑣𝑒𝑛𝑃𝑎𝑟𝑡 , 𝐿𝑎] 
                 =

𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝑆𝑡𝑒𝑝1( 𝑎, 𝑏, 𝑤𝑎, 𝑒𝑝𝑠_𝑧𝑒𝑟𝑜),  

[ 𝐿𝑏, 𝐶𝑏, 𝑘𝑏, 𝑎2, 𝑏2, 𝑟𝑛𝑜𝑟𝑚] 
                 =

 𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝑆𝑡𝑒𝑝2(𝑤𝑎, 𝐿𝑎, 𝑎, 𝑏, 𝑒𝑝𝑠_𝑧𝑒𝑟𝑜),  

[𝐿𝑐, 𝑎3, 𝑏3, 𝐿1, 𝐿2, 𝑀] 
                 = 𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝑆𝑡𝑒𝑝3(𝐿𝑎, 𝐿𝑏, 𝑎2, 𝑏2). 

Once the extraction process is completed,  we plot the result 

of zero shifting synthesis using our general purpose 𝑀𝑎𝑡𝐿𝑎𝑏 

plot function 𝑃𝑙𝑜𝑡_𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑣1(𝐶𝑇, 𝐶𝑉), where 𝐶𝑇 designates 

the type of component to be drwan and 𝐶𝑉 is the value of that 

component. Based on our nomenclature 𝐶𝑇(𝑖) = 1 

desicribes a series inductor 𝐿𝑖. Components of a series 

resonance circuit  (𝑝𝐿 + 1/𝑝𝐶)in shunt configuration is 

described by 𝐶𝑇(𝑖) = 10 and 𝐶𝑇(𝑖 + 1) = 11 referring to 

inductor 𝐿 and capacitor 𝐶 respectively. Terminating resistor 

𝑅𝑇  is designated by 𝐶𝑇(𝑖) = 9 with the component value 

𝐶𝑉(𝑖) = 𝑅. For a Brune section, we use the following 

𝑀𝑎𝑡𝐿𝑎𝑏 codes: 

𝐶𝑇 = [1, 10, 11, 1, 9],  𝐶𝑉 =
[𝐿𝑎 , 𝐿𝑏 , 𝐶𝑏 ,  𝐿𝑐 , 𝑅𝑇].   

(23) 

If n>2, then the remaining impedance 𝑍3(𝑝) =
𝑎3(𝑝)/𝑏3(𝑝) is synthesized using our high precision LC 

ladder synthesis algorithm yielding the final circuit 

schematic.  

It is noted that, if the driving point immittance 

function  𝐹(𝑝) = 𝑎(𝑝)/𝑏(𝑝) is specified as an admittance, 

then we should flip it over to make it impedance 𝑍(𝑝) =
𝑏(𝑝)/𝑎(𝑝) to be able to apply zero shifting synthesis 

algorithm. In this case,  𝑍(𝑝) may have a pole at infinity and 

a pole at DC. If it is so, then poles of 𝑍(𝑝) are extracted as a 

Foster function as follows. 

𝑍(𝑝) =
𝑏(𝑝)

𝑎(𝑝)
= 𝐿𝑥𝑝 +

1

𝐶𝑥𝑝
+ 𝑍1(𝑝) 

 

(24) 

All the above steps are gathered under the major 

𝑀𝑎𝑡𝐿𝑎𝑏 function called 

[ 𝐶𝑇, 𝐶𝑉, 𝐿1, 𝐿2, 𝑀 ]  =
 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑏𝑦𝑇𝑟𝑎𝑛𝑠𝑧𝑒𝑟𝑜𝑠(𝐾𝐹𝑙𝑎𝑔, 𝑊, 𝑛𝑑𝑐, 𝑎, 𝑏, 𝑒𝑝𝑠_𝑧𝑒𝑟𝑜)
. 

This function synthesizes the immittance function 

𝐹(𝑝) = 𝑎(𝑝)/𝑏(𝑝) as described above. If the input variable 

𝐾𝐹𝑙𝑎𝑔 = 1 selected, 𝐹(𝑝) is an impedance, if 𝐾𝐹𝑙𝑎𝑔 = 0, 

then 𝐹(𝑝) is an admittance. 𝐹(𝑝) may include poles at 𝑝 = 0 

and/or at 𝑝 = ∞. At the beginning of the synthesis, these 

poles are extracted as in (24) leaving a minimum reactance 

function. Then, total number of 𝑛𝑧 finite transmission zeros 

are extracted in a sequential manner, as they are provided by 

the input vector 𝑊 of size 𝑛𝑧. Thereafter, total number of 

𝑛𝑑𝑐 transmission zeros at DC are removed and finally, 

remaining transmission zeros at infinity are extracted using 

our high precision synthesis algorithms introduced in [11-
12].  

 

𝑹𝒆𝒎𝒂𝒓𝒌𝒔 
 It should be emphasized that, in the above synthesis 

process, after each pole extraction, remaining impedance is 

corrected using parametric approach. Therefore, the 

algorithm introduced above may be called “Direct Synthesis 

with Impedance Correction” or in short “𝐷𝑆 − 𝑤𝑖𝑡ℎ 𝐼𝑚𝐶”.  

 It is experienced that “𝐷𝑆 − 𝑤𝑖𝑡ℎ 𝐼𝑚𝐶” is able to extract 
10 Brune/Type-C sections with accumulated numerical error 

less than 10−1 as outlined in Example 1. However, 

straightforward impedance synthesis without correction fails 

due to over/under flows after 3 or 4 Brune section 
extractions.  
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In the next section, we propose an alternative 

method to synthesize Brune sections using the impedance 

based chain parameters in a similar maner to that of described 

by [5]. 

 

4. Synthesıs Vıa Chaın Matrıx Method 
 

Referring to Fig. 5a and (1), a lossless two-port 

terminated in a unit resistance can be described by means of 

its driving point impedance based chain paramter matrix 

𝑇(𝑝) such that 

 

𝑇 =
1

𝑓𝑇

(
𝐴𝑇 𝐵𝑇

𝐶𝑇 𝐷𝑇
) 

(125) 

where 

      𝐴𝑇(𝑝) =
{𝑒𝑖𝑡ℎ𝑒𝑟 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑎(𝑝)},    

      𝐵𝑇 (𝑝) =
{𝑒𝑖𝑡ℎ𝑒𝑟 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑎(𝑝)}, 

𝐶𝑇(𝑝) =
{𝑒𝑖𝑡ℎ𝑒𝑟 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑏(𝑝)}, 𝐷𝑇(𝑝) =

{𝑒𝑖𝑡ℎ𝑒𝑟 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑏(𝑝)}  

 

and the polynomial 𝑓𝑇(𝑝)inclueds all the finite transmission 

zeros of 𝑍(𝑝) and may be expressed as in (2) such that 

𝑓𝑇 (𝑝) = 𝑎0𝑝𝑛𝑑𝑐 ∏ (𝑝2 + 𝜔𝑖
2)

𝑛𝑧

𝑖=1
 

 

(26) 

In (26), 𝜔𝑖 is a finite transmission zero of 𝑍(𝑝) 

which is realized as a Brune section. Referring to Fig.5b, 

chain matrix of Brune section with a transmission zero 

𝜔𝑖 = 𝜔𝑎  is given as 

𝑇1 =
1

𝑓1

(
𝐴1 𝐵1

𝐶1 𝐷1
) 

 

(13a) 

where 

𝐴1(𝑝) = 𝑅𝐶𝑏(𝐿𝑎 + 𝐿𝑏)𝑝2 + 𝑅 

𝐵1(𝑝) = (𝐿𝑎 + 𝐿𝑐)𝑝 

𝐶1(𝑝) = 𝑅𝐶𝑏𝑝 

𝐷1(𝑝) = 𝐶𝑏(𝐿𝑏 + 𝐿𝑐)𝑝2 + 1 

𝑓1(𝑝) = 𝑎01(𝑝2 + 𝜔𝑎
2)

= 𝐿𝑏𝐶𝑏(𝑝2

+ 𝜔𝑎
2) 

𝑎01 = 𝐿𝑏𝐶𝑏 

(27b) 

(27c) 

(27d) 

(27e) 

(27f) 

(27g) 

 

AT    BT

CT    DT

V1 V2

+ +

I1 I2

R
=

1
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TBTA

pb

pa
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)(
)(

 

11

11

1

1
1
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)(
)(

DC

BA

pb
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Fig.5a. Chain 
parameters representation of a 
lossless two-port 

Fig.5b. Chain 
parameters representation of a 
Brune/Type-C Section 

Referring to (27a), Fig.5a and Fig.6, synthesis of  𝑍(𝑝) 

may be initiated by extracting the first finite transmission 

zero 𝜔1as a Brune section as described by the chain matrix 

𝑇1  of (27).  

A1     B1

C1    D1

A2     B2

C2    D2

TDTC
TBTA

Z





22

22
)(

2

)(
2)(

2 DC

BA

pb

pa
pZ






 
Fig.6. Extraction of a Type-C Section from 𝑇 = 𝑇1𝑇2 

 

In this case,  𝑇 = 𝑇1𝑇2  or  
 

𝑇 =
1

𝑓𝑇

[
𝐴𝑇 𝐵𝑇

𝐶𝑇 𝐷𝑇
]

= {
1

𝑓1

[
𝐴1 𝐵1

𝐶1 𝐷1
]} {

1

𝑓2

[
𝐴2 𝐵2

𝐶2 𝐷2
]} 

 

(14) 

where 𝑇2 is the chain matrix of the remaining lossless two-

port after the extraction of 𝑇1from the given chain matrix 𝑇, 

i.e. 

  

𝑇2 =
1

𝑓2

(
𝐴2 𝐵2

𝐶2 𝐷2
) = 𝑇1

−1𝑇 
(29a) 

where 

 𝐴2 = (𝐴𝑇𝐷1 − 𝐶𝑇𝐵1)/𝑓1
2,                            (29b) 

𝐵2 = (𝐵𝑇𝐷1 − 𝐷𝑇𝐵1)/𝑓1
2,                           (29c) 

𝐶2 = (𝐶𝑇𝐴1 − 𝐴𝑇𝐶1)/𝑓1
2,                            (29d) 

𝐷2 = (𝐷𝑇𝐴1 − 𝐵𝑇𝐶1)/𝑓1
2.                           (29e) 

Eventually, the driving point input impedance 

𝑍2(𝑝) = 𝑎2(𝑝)/𝑏2(𝑝) is given by 

𝑍2 =
𝐴2 + 𝐵2

𝐶2 + 𝐷2

=
𝑎2(𝑝)

𝑏2(𝑝)
 

 

(30a) 

where 

𝑎2(𝑝) = [𝑎(𝑝)𝐷1(𝑝) −
𝑏(𝑝)𝐵1]/𝑓1

2, 

(30b) 

𝑏2(𝑝) = [𝑏(𝑝)𝐴1(𝑝) −
𝑎(𝑝)𝐶1]/𝑓1

2. 

(30c) 

Thus, the alternative method of zero shifting may be 

implemented as described in the following algorithm. 

 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎: 𝑰𝒎𝒑𝒆𝒅𝒂𝒏𝒄𝒆 𝑺𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒔 𝒗𝒊𝒂 𝑪𝒉𝒂𝒊𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 

Inputs: Polynomials 𝑎(𝑝) and 𝑏(𝑝) of degree 𝑛 of an   

impedance 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) with 𝑛𝑧 finite transmission 

zeros of 𝑊 = {𝜔1 , 𝜔2, … , 𝜔𝑛𝑧} and 𝑛𝑑𝑐 transmission zeros 

at DC. It should be noted that 𝑛 ≥ 𝑛𝑑𝑐 + 2𝑛𝑧.  

Computational steps: 

Step 1: Compute the chain parameters of 𝑇1  as in (27). 

Step 2: Compute the chain parameters of 𝑇2  as in (29). 

Step 3: Compute the driving point impedance 𝑍2(𝑝) =
𝑎2(𝑝)/𝑏2(𝑝)employing (30). 
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Step 4a:Determine the component values of the extracted 

Brune section as in (14),  (18), (19),  (21) and (12). Store all 

the component codes and values. 

Step 4b: Correct the impedance 𝑍2(𝑝) = 𝑎2(𝑝)/𝑏2(𝑝) by 

inserting the remaining transmission zeros in its even part 

employing the parametric approach. 

 Step 5: Repeat the Steps 1-4 𝑛𝑧 times until all the finite 

transmission zeros are extracted. Then, store the remaining 

impedance as 𝑍2(𝑝) = 𝑍𝑟(𝑝) = 𝑎𝑟(𝑝)/𝑏𝑟(𝑝) which will 

only have transmission zeros at DC and infinity. 

Step 6: Finally, synthesize 𝑍𝑟(𝑝) = 𝑎𝑟(𝑝)/𝑏𝑟(𝑝) using the 

high precision synthesis method introduced in [13]. 

  The above algorithm is programed under a 

𝑀𝑎𝑡𝐿𝑎𝑏function called 

“𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝑣𝑖𝑎𝐶ℎ𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛”. 
 

5. Real And Complex Transmission Zeros 
 

A driving point input impedance may as well 

include real and complex transmission zeros in the complex 

frequency domain. A real transmission zero 𝜎𝑎 > 0 appears 

as the suquare of a second order even polynomial 

(𝑝2 − 𝜎𝑎
2)2; and the complex conjugate mirror image  paired 

transmission zeros appear as the square of a fourth order even 

polynomial (𝑝4 + 𝑑𝑝2 + 𝑒)2  in the numerator polynomial 

𝐹(𝑝) of the even part  impedance  function 𝑅(𝑝). Thus,  

𝐹(𝑝) = 𝑎0
2(𝑝2 − 𝜎𝑎

2)2(𝑝4 + 𝑑𝑝2

+ 𝑒)2�̂�(𝑝) 

 �̂�(𝑝) = (−1)𝑛𝑑𝑐𝑝2𝑛𝑑𝑐 ∏ (𝑝2
𝑛𝑧

𝑖=1

+ 𝜔𝑖
2)2 

(31a) 
 

 

(31b) 

A positive - real transmission zero 𝜎𝑎  can be 

extracted as a Darlington Type-C section like a transmission 

zero located at a finite frequency 𝜔𝑎. Thus, one can employ 

the Brune section extraction algorithm replacing 𝜔𝑎
2 by −𝜎𝑎

2. 

In this case, even part 𝑅(𝑝) of 𝑍(𝑝) will be zero at 𝑝 = ∓𝜎𝑎 

such that 

𝑍(𝑝) = 𝑅(𝑝) + 𝑜𝑑𝑑(𝑝) 

with 

𝑅(𝜎𝑎) = 0 

(32a) 

 

(32b) 

At this point, we presume that 𝑜𝑑𝑑(𝑝) consist of a single 

positve inductor 𝐿𝑎 such that 𝑜𝑑𝑑(𝑝) = 𝑝𝐿𝑎 or 

𝐿𝑎 =   
𝑎(𝜎𝑎)𝑏(−𝜎𝑎) − 𝑎(−𝜎𝑎)𝑏(𝜎𝑎)

2𝜎𝑎𝑏(𝜎𝑎)𝑏(−𝜎𝑎)
 (33) 

After extracting  𝑝𝐿𝑎   from 𝑍(𝑝), the remaining impedance, 

𝑍1(𝑝) = 𝑍(𝑝) − 𝑝𝐿𝑎 must have a zero at 𝑝 = ∓𝜎𝑎 or  the 

admittace 𝑌1(𝑝) has a pole at 𝑝 = ∓𝜎𝑎. Then,  
 

𝑌1(𝑝) =
𝑏1(𝑝)

𝑎1(𝑝)
=

𝑘𝑏𝑝

𝑝2 − 𝜎𝑎
2

+ 𝑌2(𝑝) 

 

where  𝑎1(𝑝), 𝑏(𝑝) are as in 

(5c,d)  and   

𝑎2(𝑝) =
𝑎1(𝑝)

𝑝2 − 𝜎𝑎
2
 

 

𝑘𝑏 =
𝑏(𝜎𝑎)

𝜎𝑎𝑎2(𝜎𝑎)
> 0 

 

 

(34a) 

 

 

(34b) 

 
 

(34c) 

Partial synthesis of  the impedance  𝑍2(𝑝) =  1/𝑌2(𝑝) =
𝑎2(𝑝)/𝑏2(𝑝) can be obtained as  a series LC circuit with   

𝐿𝑏 = −
1

𝑘𝑏

< 0 ,   𝐶𝑏 =
𝑘𝑏

𝜎𝑎
2

> 0  

 

 

(35) 

 

The rest of the elements of Darlington Type-C 

section is given as in (21-22).  As we did before, the negative 

inductor 𝐿𝑏 is removed using a perfectly coupled coil as 

specified by (12) with a negative coupling coefficient 𝑀 =
−1/𝑘𝑏 = 𝐿𝑏. The negative coupling coefficient 𝑀 is realized 

by reversely winding  𝐿1 = 𝐿𝑎 + 𝐿𝑏 > 0 and 𝐿2 = 𝐿𝑐 +
𝐿𝑏 > 0 of Fig.4. 

Complex transmission zeros in quadruplet 

symmetry are realized as a Darlington Type-D sections. 

However, usage of Type-D section does not have much 

practical importance. Therefore, its synthesis and realization 

details are skipped in this paper. Interested readers are 

referred to [18-20]. 

 

6. Impedance Correction Via Paremetric 

Approach 
 

In this section, we presume that a minimum 

reactance impedance 𝑍𝑘(𝑝) = 𝑎𝑘(𝑝)/𝑏𝑘(𝑝) of degree of 𝑛𝑘 
is  obtained with a random numerical error as the result of 

Brune/Type-C section extractions and/or any pole 

extractions at DC and infinity. However, its remaining 

transmission zeros are precisily known in advance and they 

are specified under a 𝑀𝑎𝑡𝐿𝑎𝑏 vector 𝑊 = [𝜔1  𝜔2 … 𝜔𝑛𝑧] 
and  as 𝑝2𝑛𝑑𝑐. Due to the random numerical errors, the 

computed even part of 𝑍𝑘(𝑝) which is given by  

𝑅(𝑝) =
𝑎𝑘(𝑝)𝑏𝑘(−𝑝) + 𝑎𝑘(−𝑝)𝑏𝑘(𝑝)

2𝑏𝑘(𝑝)𝑏𝑘(−𝑝)
 

 

(36a) 

𝑅(𝑝)

=
𝐴1𝑝2𝑚 + 𝐴2𝑝2(𝑛𝑘−1) + ⋯ + 𝐴𝑚𝑝2 + 𝐴𝑚+1

𝑏𝑘(𝑝)𝑏𝑘(−𝑝)
 

 

(36b) 

with 𝑚 ≥ 𝑛𝑘 , may not precisely yield the pre-defined 

transmission zeros at finite frequencies {𝜔1  𝜔2 … 𝜔𝑛𝑧} 

and/or at DC of order 2𝑛𝑑𝑐. In this case, keeping the same 

denominator 𝑏(𝑝), we can generate a corrected  even part 

function such that 

𝑅𝑐𝑘(𝑝)

=
𝑎0

2(−1)𝑛𝑑𝑐𝑝2𝑛𝑑𝑐 ∏ (𝑝2 + 𝜔𝑖
2)2𝑛𝑧

𝑖=1

𝑏𝑘(𝑝)𝑏𝑘(−𝑝)
 

 

(36c) 
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where 𝑎0 is determined from the leading coefficient of the 

even polynomial 𝐹(𝑝) = 𝑎𝑘(𝑝)𝑏𝑘(−𝑝) + 𝑎𝑘(−𝑝)𝑏𝑘(𝑝) 

such that 𝑎0=√|𝐴1| . Hence, using (31), even part of 𝑍𝑘(𝑝) 

is  re-generated precisely to include exact transmission zeros. 

In this case, corrected minimum reactance impedance  

𝑍𝑘𝑐(𝑝) may be determined by means of parametric approach 

[16]. In this method firstly, roots 𝑝𝑖𝑘of  𝑏𝑘(𝑝) = 𝑏1𝑘𝑝𝑛𝑘 + ⋯ +

𝑏𝑛𝑘𝑝 + 1  are computed. Then, the corrected impedance is 

expressed as 

𝑍𝑘𝑐 = 𝑍0𝑘 + ∑
𝐾𝑖

𝑝 − 𝑝𝑖𝑘

𝑛𝑘

𝑖=1

=
𝑎𝑘𝑐(𝑝)

𝑏𝑘𝑐(𝑝)
 

 

(157a) 

where the residues 𝐾𝑖 are given by 

𝐾𝑖 = (−1)𝑛𝑘
(−1)𝑛𝑑𝑐𝑎0

2

𝑝𝑖𝑘𝐵1𝑘 ∏ 𝑝𝑖𝑘
2 − 𝑝𝑗𝑘

2𝑛
𝑗=1
𝑗≠𝑖

 

     

(37b) 

𝐵1𝑘 = (−1)𝑛𝑘𝑏1𝑘
2  

𝑍𝑜𝑘 =
𝑎1𝑘

𝑏1𝑘

 

(37c) 

 

(37d) 

Thus, the given impedance 𝑍𝑘(𝑝) is corrected to 
warrant the  desired network topologywith prescribed 

transmission zeros. 

 

7. Assesment Of The Synthesıs Error 
 

We can device several methods to assess the 
accumulated numerical errors in the course of immittance 

synthesis.  For example, as described in Section VI, we can 

generate a positive real impedance function 𝑍(𝑝) =
𝑎(𝑝)/𝑏(𝑝) with transmission zeros located in the right half 

plane as well as on the finite frequencies using parametric 

approach. Then, synthesis is carried out, which in turn yields 

the lossless Darlington two-port in resistive termination. In 

this regard, impedance based accumulated numerical error 

may be derived by generating the actual driving point 

impedance 𝑍𝑇(𝑝) = 𝑎𝑇(𝑝)/𝑏𝑇(𝑝) from the element values 
of the synthesized network. Thus, relative error may be 

described by 

𝐸𝑟𝑟𝑜𝑟𝑅 = 𝑛𝑜𝑟𝑚(𝑎 − 𝑎𝑇)/𝐶𝑚𝑎𝑥 + 𝑛𝑜𝑟𝑚(𝑏
− 𝑏𝑇)/𝐶𝑚𝑎𝑥 

 

(38a) 
 

where the vector pairs {𝑎, 𝑎𝑇} and  {𝑏, 𝑏𝑇} include 

coefficients of the numerator and denominator polynomials 

of 𝑍(𝑝) and 𝑍𝑇(𝑝) respectively and  𝐶𝑚𝑎𝑥 =
𝑚𝑎𝑥(𝑎, 𝑎𝑇 , 𝑏, 𝑏𝑇). Similarly, we can define an absolute error 

as 

𝐸𝑟𝑟𝑜𝑟𝐴 = 𝑛𝑜𝑟𝑚(𝑎 − 𝑎𝑇) + 𝑛𝑜𝑟𝑚(𝑏 − 𝑏𝑇) 
(38b) 

 

8. Examples 
 

In this section two examples are presented to exhibit the 

utilization of the impedance synthesis algorithms introduced 

in this paper. In the first one, we test the numerical robustness 

of the newly proposed synthesis algorithms on the randomly 

generated minimum reactance function. In the second 

example, the proposed impedance synthesis algorithm is 

integrated with the real frequency technique to design a 

lossless matching network for an actual monopole antenna.  

𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟏 

In this example, general form of a driving point 

input impedance 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) is synthesized in 

Darlington sense employing the algorithms developed in this 

paper. For this purpose, 𝑍(𝑝) is generated from its even part 

𝑅(𝑝2) employing the parametric approach of Section VI as a 

minimum reactance. 𝑅(𝑝2) is constructed with 𝑛𝑟 = 3 

positive real - right half plane zeros, 𝑛𝑧 = 3 finite frequency 

zeros and 𝑛𝑑𝑐 = 3 zeros at DC. Thus, as in (36), its 

numerator polynomial 𝐹(𝑝2) is given by  

𝐹(𝑝) = 𝑎0
2(−1)𝑛𝑑𝑐𝑝2𝑛𝑑𝑐 ∏(𝑝2

𝑛𝑟

𝑖=1

− 𝜎𝑖
2)

2
∏(𝑝2 + 𝜔𝑖

2)
2

𝑛𝑧

𝑗=1

 

 

(16) 

 

Furthermore, its denominator polynomial 𝐵(𝑝2) =
𝑏(𝑝)𝑏(−𝑝) is expressed by means of an auxiliary 

polynomial 𝑐(𝜔) such that 

𝐵(𝑝2) = 𝑏(𝑝)𝑏(−𝑝)

=
1

2
[𝑐2(𝜔)

+ 𝑐2(−𝜔)]|𝜔2=−𝑝2 > 0 

 

(40) 

where 𝑐(𝜔) is selected as an 18th degree polynomial (i.e. 

𝑛 = 18.) with real arbitrary coefficients 𝑐𝑖 such that 

𝑐(𝜔) = [ ∑ 𝑐𝑖𝜔
𝑖

𝑛=18

𝑖=1

] + 1 

 

(41) 

 

 

Then, 𝑍(𝑝) is generated as described in Section VI, using our 

𝑀𝑎𝑡𝐿𝑎𝑏 function :  
[𝑎, 𝑏] =

𝑍𝑒𝑟𝑜𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔𝑀𝑖𝑛𝑖𝑚𝑢𝑚_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝐻𝑃(𝑛𝑑𝑐, 𝑊, 𝑆, 𝑎0, 𝑐). 

In this function, input vectors 𝑊𝑇 =
[𝜔1  𝜔2 … 𝜔𝑛𝑧] includes all the selected finite frequency 

transmission zeros, 𝑆𝑇 = [𝜎1 𝜎2  …  𝜎𝑛𝑟] contains all the 

selected positive real-right half plane zeros of 𝑅(𝑝2) and 

𝑐𝑇 = [𝑐1 𝑐2  … 𝑐𝑛] includes the real coefficients of the 

auxiliary polynomial 𝑐(𝜔). Input variable 𝑎0 is the leading 

coefficient of (39) and 𝑛𝑑𝑐 is the total number of 

transmission zeros located at DC. In this regard, degree 𝑛 is 

given by 𝑛 = 2(𝑛𝑟 + 𝑛𝑧) + 𝑛𝑑𝑐 + 𝑛𝐿 , where 𝑛𝐿 designates 
the total number of transmission zeros at infinity. For the 

example under consideration 𝑛𝐿 = 3.  

Once the input variables are set, our  Matlab 

function,    𝑍𝑒𝑟𝑜𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔𝑀𝑖𝑛𝑖𝑚𝑢𝑚_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑅𝐻𝑃  

generates 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) as 𝑀𝑎𝑡𝐿𝑎𝑏 vectors 𝑎 and 𝑏 

such that  
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𝑎(𝑝) = ∑ 𝑎𝑖𝑝
𝑖

𝑛+1=19

𝑖=1

 and   𝑏(𝑝)

= ∑ 𝑏𝑖𝑝
𝑖

𝑛+1=19

𝑖=1

 

 

(42) 

 

 

All the input variables are listed in Table 1a and the resulting 

coefficents of 𝑎(𝑝) and 𝑏(𝑝) are listed in Table 1b. 

 
Table 1a. Generation of 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) with transmission 

zeros located in RHP [S], on the finite frequencies [W], at DC 
(𝑛𝐷𝐶) and infinity(𝑛𝐿) 

𝜀𝑧𝑒𝑟𝑜

= 10−8 

𝑎0 =500 𝑛𝑑𝑐 = 3 𝑛𝐿 = 3 𝐾𝐹𝑙𝑎𝑔 = 1  

𝑐(𝜔) = 𝑐1𝜔𝑛 + 𝑐2𝜔𝑛−1 + ⋯ + 𝑐𝑛𝜔 + 1 

𝑛𝑟 = 3; [𝑆] 𝑛𝑧 = 3; [𝑊] 𝑐1 … 𝑐6 𝑐7 … 𝑐12 𝑐13 … 𝑐18 

𝝈𝟏 = 0.1 
𝝈𝟐 = 0.3 
𝝈𝟑 = 1.7 

𝜔1 = 0.2 
𝜔2 = 1.5 
𝜔3 = 2.0 

1.6294   

1.8116 

0.2540 

1.8268 

1.2647  

0.1951 

 

0.5570    

1.0938    

1.9150    

1.9298    

0.3152    

1.9412 

    1.9143 

    0.9708 

   1.6006 

    0.2838 

    0.8435 

    1.8315 

 
Table 1b. 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) such that  𝑛 = 18, 𝑛𝑑𝑐 = 3, 𝑛𝐿 =

3,  𝑛𝑟 = 3 with 𝑆𝑇  = [ 0.1 0.3 1.7], and 𝑛𝑧 = 3 with 𝑊𝑇  =
[ 0.2 1.5 2] 

𝑎(𝑝) 𝑏(𝑝) 

0 
7.640386374191374𝑒 + 04 
9.477565802382027𝑒 + 05 
5.748126748609327𝑒 + 06 
2.255362397132513𝑒 + 07 
6.393411837380380𝑒 + 07 
1.384849904981637𝑒 + 08 
2.364596946610408𝑒 + 08 
3.238068035051984𝑒 + 08 
3.583006791852569𝑒 + 08 
3.204420015909864𝑒 + 08 
2.304831538762949𝑒 + 08 
1.319330848881640𝑒 + 08 
5.898551922123835𝑒 + 07 
1.993957497958470𝑒 + 07 
4.811178659928725𝑒 + 06 
7.402976617981475𝑒 + 05 
5.461218267980077𝑒 + 04 

0 

      1.629400000000002𝑒 + 00 
     2.021199578409565𝑒 + 01 
     1.240994058599176𝑒 + 02 
     4.997625503065354𝑒 + 02 
     1.476782670622500𝑒 + 03 
     3.396224286336301𝑒 + 03 
     6.293526108606870𝑒 + 03 
     9.601210825123586𝑒 + 03 
     1.221637655172800𝑒 + 04 
     1.305433366323806𝑒 + 04 
     1.173859256942452𝑒 + 04 
     8.858425592653462𝑒 + 03 
     5.567059212761518𝑒 + 03 
     2.873327778659241𝑒 + 03 
     1.190802369500236𝑒 + 03 
     3.821715429382096𝑒 + 02 
     8.935564490704259𝑒 + 01 
     1.355554064078911𝑒 + 01 
     1.000000000000000𝑒 + 00 

 

𝑍(𝑝) is synthesized employing the proposed 

algorithms; 𝐶𝑇𝑅𝐻𝑃, 𝐶𝑉𝑅𝐻𝑃, 𝐿𝐿1, 𝐿𝐿2, 𝑀𝑀, 𝑎𝑅, 𝑏𝑅 ]   =
 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑏𝑦𝑅𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑧𝑒𝑟𝑜𝑠(𝐾𝐹𝑙𝑎𝑔, 𝑊, 𝑆, 𝑛𝑑𝑐, 𝑎, 𝑏, 𝑒𝑝𝑠_𝑧𝑒𝑟𝑜) 

 and [ 𝐶𝑇, 𝐶𝑉, 𝐿1, 𝐿2, 𝑀 ]  =
 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑏𝑦𝑇𝑟𝑎𝑛𝑠𝑧𝑒𝑟𝑜𝑠(𝐾𝐹𝑙𝑎𝑔, 𝑊, 𝑛𝑑𝑐, 𝑎𝑅, 𝑏𝑅, 𝑒𝑝𝑠_𝑧𝑒𝑟𝑜). 

During the execution of the above statements, firstly 𝑛𝑟 =
3 positive real right half plane zeros 𝜎1 = 0.1, 𝜎2 = 0.3 and 

𝜎3 = 1.7 are extracted from 𝑍(𝑝) = 𝑎(𝑝)/𝑏(𝑝) as Type-C 

sections using “𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑏𝑦𝑅𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑧𝑒𝑟𝑜𝑠”. In this 

function, the remaning impedance 𝑍𝑅(𝑝) = 𝑎𝑅(𝑝)/𝑏𝑅(𝑝) is 

returned as 𝑀𝑎𝑡𝑙𝑎𝑏 vectors 𝑎𝑅 and 𝑏𝑅. Then, 𝑍𝑅(𝑝) =
𝑎𝑅(𝑝)/𝑏𝑅(𝑝) is synthesized employing the 𝑀𝑎𝑡𝐿𝑎𝑏 function 

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑏𝑦𝑇𝑟𝑎𝑛𝑠𝑧𝑒𝑟𝑜𝑠. In this regards, finite frequency 

transmission zeros 𝜔1 = 0.2, 𝜔2 = 1.5 and 𝜔3 = 2.0 are 

extracted as Brune sections. Then, 𝑛𝑑𝑐 = 3 transmission 

zeros at DC, and finally, 𝑛𝐿 = 3  transmission zeros at 

infinity are removed. Hence, we end up with the synthesis as 

depicted in Fig. 7. Element values of the final circuit is listed 

in Table 1c. 
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Fig.7. Synthesis of Z(p) as specified by Table 1a and b 
 

Table 1c. Element values of the synthesized network 
Type-C Sections Brune Sections Highpass 

Sections 

𝜎1 L1=53.9342 kH 

L2=-668.814 mH 

C3=149.518 mF 

L4=677.212 mH 

𝜔1 L13=883.859 μH 

L14=168.818 μH 

C15=148.089 kF 

L16=-141.744 μH 

L25=23.7736 μH 

C26=521.685 kF 

L27=107.029 μH 

𝜎1 L5=663.21 mH 

L6=-86.7987mH 

C7=128.01 F 

L8=99.8692 mH 

𝜔2 L17=-1.04075μH 

L18=15.9144 μH 

C19=27.9272 kF 

L20=1.11358 μH 

 

 

Lowpass 

Sections 

𝜎3 L9=481.815 μH 

L10=-387.053 μH 

C11=893.989 F 

L12=1.96795 mH 

𝜔3 L21=3.92545 μH 

L22=34.2182 μH 

C23=7.30606 kF 

L24=-3.52147 μH 

C28=49.7319 kF 

L29=1.9386 μH 

C30=10.0286 kF 

R31=8.03857μ𝞨 

𝑒𝑟𝑟𝑜𝑟 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 

𝑒𝑟𝑟𝑜𝑟_𝑎 𝑒𝑟𝑟𝑜𝑟_𝑏 𝐶𝑚𝑎𝑥 

1.64 × 10−9 2.54 × 10−14 3.58
× 108 

 
At the end of synthesis, accumulated numerical 

error is assessed by re-generating the driving point input 

impedance 𝑍𝑇(𝑝) = 𝑎𝑇(𝑝)/𝑏𝑇(𝑝) from the synthesized 

circuit. Eventually, the accumulated numerical error is 

computed using (39). It is found that 𝑒𝑟𝑟𝑜𝑟𝑎 = 1.64 × 10−9 

and 𝑒𝑟𝑟𝑜𝑟𝑏 = 2.54 × 10−14 or total relative error is found 

as 𝐸𝑟𝑟𝑜𝑟𝑅 = 𝑒𝑟𝑟𝑜𝑟𝑎 + 𝑒𝑟𝑟𝑜𝑟𝑏 = 7.45 × 10−9.  
All the above computations are gathered under a 

𝑀𝑎𝑡𝑙𝑎𝑏 program called 

𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝐹𝑜𝑟𝑚𝑍. 𝑚 
and it is provided as an open source code for the interested 

readers in [17]. 

Remarks:  

 It should be mentioned that size of the accumulated 

numerical error occurs in the course of synthesis, depends on 

the total number and the value of the real and finite 

transmission zeros as well as the values of the selected 

coefficients of the auxiliary polynomial 𝑐(𝜔).  

 In order to asses the robustness of the newly developed 
high precision zero shifting extraction methods, we run 

several  tests. In this regard, finite transmission zeros are 

selected in ascending order and total number of 𝑛 = 2 × 𝑛𝑧 
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coefficients of the auxiliarly polynomial 𝑐(𝜔) are initialized 

using the random number generator of 𝑀𝑎𝑡𝐿𝑎𝑏. For 

example, when we run the program with 𝑛𝑧 = 9 finite 

transmission zeros as given in the vector 𝑊 =
[ 0.1 0.3 1 1.2 1.4 1.6 1.8 2 2.1], at the end of the synthesis, we 

end up with 36 reactive elements and various size of relative 

erros ranging between 10−10 and 10−4.  

 It is experienced that, we can employ “impedance 
based- zero shifting” algoithm with impedance correction, to 

extract 13 or beyond Brune sections whereas the “chain 

matrix based-finite transmission zero extraction with 

impedance correction”  fails after 10 Type-C and/or Brune 

section extractions. On the other hand, It was not possibe to 

utilize impedance or chain matrix based extraction 

algorithms without impedance correction beyond 𝑛𝑟 = 𝑛𝑧 =
3 𝑜𝑟 4 Type-C/Brune section extractions. Furthermore, if we 

increase the number of finite transmission zeros up to 𝑛 =
2 × 𝑛𝑧 = 20, then the accumulated relative error increases 

up to 10−1. In this case, synthesis includes total number of 

40 reactive elements. The above results can be reproduced by 

using our 𝑀𝑎𝑡𝐿𝑎𝑏 program called 

𝑍𝑒𝑟𝑜𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔_𝐸𝑥𝑎𝑚𝑝𝑙𝑒1𝑏. 𝑚 which is  provided as an 

open source code in our web-page [17]. 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟐 

In this example, we design a wideband monopole 

antenna matching network over 40 𝑀𝐻𝑧 to 85 𝑀𝐻𝑧 
employing the real frequency technique via parametric 

approach [16]. Measured Antenna impedance data is given in 

Table 2a. In the design, we use the real part form of the 

driving point impedance as expressed by (2). In this regard, 

we insert two transmission zero at the normalized angular 

frequencies 𝜔1 = 0.2  and 𝜔2 = 1.0 (meaning that  𝑓1 =
20𝑀𝐻𝑧 and 𝑓2 = 100 𝑀𝐻𝑧). 

 
Table 2a. Measured Impedance Data for Monopole Antenna over 

20 MHz to 100 MHz 
Frequency    (𝑀𝐻𝑧) Real Part 

𝑅𝐿𝐴(𝑓) (𝞨) 

ImaginaryPart 

𝑋𝐿𝐴 (𝑓) (𝞨) 

20 

30 

40 

45 

50 

55 

60 

65 

70 

75 

80 

90 

100 

0.6000 

0.8000 

0.8000 

1.0000 

2.0000 

3.4000 

7.0000 

15.0000 

22.4000 

11.0000 

5.0000 

1.6000 

1.0000 

-6.0000 

-2.2000 

0.0000 

1.4000 

2.8000 

4.6000 

7.6000 

8.8000 

-5.4000 

-13.0000 

-10.8000 

-6.8000 

-4.4000 

 

These transmission zeros helps to concentrate the 

power delivered to the antenna within the desired band of 
operation. On the other hand, we wish terminate the lossless 

equalizer in 𝑅0 = 50 ohm which corresponds to a normalized 

unit termination. In this case we fixed the coefficient of the 

numerator as 𝑎0 = 1/(𝜔1
2𝜔2

2) = 25. 

Eventually, using the RFT-parametric method, 

transducer power gain of the matched antenna is optimized 

yielding the normalized driving point input impedance  
𝑍𝐵(𝑝) = 𝑎(𝑝)/𝑏(𝑝) of the matching network as listed in 

Table 2b. During the optimization of the transducer power 

gain, impedances are normalized with respect to 𝑅0 = 50𝞨. 

For the frequency normalization, we use 𝑓0 = 100 𝑀𝐻𝑧. 

 
Table 2b. Coefficients of  the driving point input impedance 
𝑍𝐵(𝑝) = 𝑎(𝑝)/𝑏(𝑝) of the matching network for Example 2 

𝑎(𝑝) 𝑏(𝑝) 

0 
0.1285 
4.7280 
5.9732 
5.6160 
3.7764 
0.8576 

0.2657 

1.0000 
36.7818 
46.9881 
62.7998 
44.0998 
26.1939 
5.0048 

0.2657 

 

Synthesis of the normalized impedance 𝑍(𝑝) =
𝑎(𝑝)/𝑏(𝑝) is depicted in Fig. 8a. In this figure, normalized 

element values are denormalized by replacing inductors 𝐿𝑖  

by 𝐿𝑖𝐴 = 𝐿𝑖 × 𝑅0/𝜔0 and capacitors 𝐶𝑖 by 𝐶𝑖𝐴 = 𝐶𝑖/(𝑅0𝜔0). 

The resulting element values are as in Table 2c.   
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Fig. 8a. Synthesis of the matching network for the monopole 

antenna over 40-85 MHz. 

 
Table 2c. Element Values of the Matching Network 

𝐹𝑖𝑟𝑠𝑡 𝐵𝑟𝑢𝑛𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 

𝐿1(𝑚𝐻) 𝐿2(𝐻) 𝐿4(𝐻) 𝐶3(𝐹) 

−936.584 1.47569 2.5637 16.9412 

𝑆𝑒𝑐𝑜𝑛𝑑 𝐵𝑟𝑢𝑛𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 

𝐿5(𝐻) 𝐿6(𝐻) 𝐿8(𝐻) 𝐶7(𝑚𝐹) 

−1.52892 4.49579 2.31683 222.43 

𝐿𝑜𝑤𝑝𝑎𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑅 

𝐶9(𝐹) 𝐿10(𝑚𝐻) 𝐶11(𝑚𝐹) 𝑅12 (𝛺) 

1.64324 812.306 27.1874 1 

 

Furthermore, inductive tees (L1,L2,L4) and 

(L5,L6,L8) can be replaced by coupled coils which 
eliminates the negative inductors as reviewed by (12) of 

Section III. Thus, we obtained the matching network with 

actual elements as depicted in Fig. 8b with element values 

shown in Table 2d. Corresponding transducer power gain 

versus normalized angular frequency is shown in Fig. 9.  

Close examination of Fig.9 reveals that at 𝜔 = 0.2 and 𝜔 =
1.0 transducer power gain goes down to minus infinity as 

forced by means of finite transmission zeros located at 𝜔1 =
0.2 and 𝜔2 = 1. 
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Fig. 8b. Antenna matching network  with coupled coils 

 
Table 2d. Element Values of Antenna Matching Network with 

Coupled Coils 

𝐿𝑎1(𝑛𝐻) 𝐿𝑏1(𝑛𝐻) 𝑀1(𝑛𝐻) 𝐶3𝐴(𝑝𝐹) 

42.90 321.44 117.43 539.2 

𝐿𝑎2(𝑛𝐻) 𝐿𝑏2(𝑛𝐻) 𝑀2(𝑛𝐻) 𝐶7𝐴(𝑝𝐹) 

236.1 542.13 357.76 7.08 

𝐶9𝐴(𝑝𝐹) 𝐿10𝐴(𝑛𝐻) 𝐶11𝐴(𝑝𝐹) 𝑅12 (𝛺) 

52.306 64.64 0.865 50 
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Fig. 9. Large view of TPG over 𝜔 = 0.2 and 𝜔 = 1.0. 

 

9. Conclusion 
 

As the continuation of our previous works, in this 

paper, “High precision Bandpass LC Ladder Synthesis” 

algorithm is modified to include extraction of real and finite 

frequency transmission zeros as Darlington Type-C and 

Brune sections respectively. The modified algorithm also 
utilizes the parametric approach at each transmission zero 

extraction to correct the remaining impedance. It is verified 

that the proposed algorithm can safely be utilized to 

synthesize immittance functions up to 40 elements yielding 

the accumulated numerical error about  10−1. The new high 

precision synthesis algorithm is integrated with the real 

frequency direct computational technique to construct 

matching networks with optimum transducer power gain and 

circuit topology. The new synthesis algorithm is provided as 

open source codes to all the users. 
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