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HYBRINOMIALS RELATED TO HYPER-LEONARDO NUMBERS
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Abstract. In this paper, we define hybrinomials related to hyper-Leonardo

numbers. We study some of their properties such as the recurrence relation
and summation formulas. In addition, we introduce hybrid hyper-Leonardo

numbers.

1. Introduction

Integer sequences are the subject of many studies which are shown in recent
literature [1–8]. The most famous integer sequence is called Fibonacci sequence
and is defined by the following recurrence relation (n ≥ 1) [1]:

Fn+1 = Fn + Fn−1 with F0 = 0, F1 = 1.

Leonardo sequence, which has similar properties to the Fibonacci sequence, is de-
fined by Catarino and Borges [5], as follows:

Len = Len−1 + Len−2 + 1 (n ≥ 2) ,

with the initial conditions Le0 = Le1 = 1. Although commonly called “Leonardo
numbers” in the literature, Kürüz et al. [9] preferred to call them “Leonardo Pisano
numbers” and introduced Leonardo Pisano polynomials as

Len (x) =


1, n = 0, 1

x+ 2, n = 2

2xLen−1 (x)− Len−3 (x) , n ≥ 3.
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Hyper Leonardo numbers Le
(r)
n are defined as a generalization of the Leonardo

numbers by the formula

Le(r)n =

n∑
s=0

Le(r−1)
s with Le(0)n = Len, Le

(r)
0 = Le0 and Le

(r)
1 = r + 1,

where r is a positive integer [10]. The hyper-Leonardo numbers have the following
recurrence relation for n ≥ 1 and r ≥ 1 [10]:

Le(r)n = Le
(r)
n−1 + Le(r−1)

n .

Hyper-Leonardo polynomials are defined as:

Le(r)n (x) =

n∑
s=0

Le(r−1)
s (x)

with the initial conditions Le
(0)
n (x) = Len (x), Le

(r)
0 (x) = 1 and Le

(r)
1 (x) = r + 1

[11]. Note that, for x = 1, hyper-Leonardo polynomials Le
(r)
n (x) give the hyper-

Leonardo numbers Le
(r)
n . Hyper-Leonardo polynomials have the following recur-

rence relation for n ≥ 1 and r ≥ 1 [11]:

Le(r)n (x) = Le
(r)
n−1 (x) + Le(r−1)

n (x) . (1)

For n ≥ 3 and r ≥ 1, there is also the recurrence relation for hyper-Leonardo
polynomials [11]:

Le(r)n (x) =2xLe
(r)
n−1 (x)− Le

(r)
n−3 (x) +

(
n+ r − 1

r − 1

)
−
(
n+ r − 2

r − 1

)
(2x− 1)−

(
n+ r − 3

r − 1

)
(x− 2) .

(2)

If n ≥ 2 and r ≥ 1, then there is the summation formula for hyper-Leonardo
polynomials [11]:

r∑
s=0

Le(s)n (x) = Le
(r)
n+1 (x) + (1− 2x)Len (x) + Len−2 (x) . (3)

In recent years, hybrid numbers have been the subject of research [12–19].

Özdemir [19] introduced hybrid numbers, as a generalization of complex, hyper-
bolic and dual numbers, sets by:

K = {a+ bi+ cϵ+ dh : a, b, c, d ∈ R, i2 = −1, ϵ2 = 0, h2 = 1, ih = hi = ϵ+ i}.
Szynal-Liana and Wloch [12] defined the n-th Fibonacci hybrid number as

HFn = Fn + iFn+1 + ϵFn+2 + hFn+3.

Alp and Koçer [18] defined hybrid-Leonardo numbers by using the Leonardo
numbers as:

HLen = Len + Len+1i+ Len+2ϵ+ Len+3h.
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The authors also obtained some identities for the hybrid-Leonardo numbers such
as [18]:

HLen = HLen−1 +HLen−2 + (1 + i+ ϵ+ h) , (n ≥ 2) ,

HLen = 2HFn+1 − (1 + i+ ϵ+ h) , (n ≥ 0) ,

HLen+1 = 2HLen −HLen−2, (n ≥ 2) .

Kürüz et al. [9] defined Leonardo Pisano hybrinomials, by using the Leonardo
Pisano polynomials, as follows:

Le[H]
n (x) = Len (x) + iLen+1 (x) + ϵLen+2 (x) + hLen+3 (x) .

The Leonardo Pisano hybrinomials have the following recurrence relation [9]:

Le[H]
n (x) = 2xLe

[H]
n−1 (x)− Le

[H]
n−3 (x) .

Motivated by the above papers, we define hybrinomials related to hyper-Leonardo
numbers. We also define hybrid hyper-Leonardo numbers by using the newly de-
fined hybrinomials. Then, we investigate some of their properties such as the re-
currence relations and summation formulas.

2. Main Results

Definition 1. Hybrinomials related to hyper-Leonardo numbers are defined as

LeH(r)
n (x) = Le(r)n (x) + Le

(r)
n+1 (x) i+ Le

(r)
n+2 (x) ϵ+ Le

(r)
n+3 (x)h,

where Le
(r)
n (x) are the ordinary hyper-Leonardo polynomials.

The first few hybrinomials related to the hyper-Leonardo numbers are

LeH
(1)
0 (x) = 1 + 2i+ ϵ (x+ 4) + h

(
2x2 + 5x+ 3

)
,

LeH
(1)
1 (x) = 2 + i (x+ 4) + ϵ

(
2x2 + 5x+ 3

)
+ h

(
4x3 + 10x2 + 3x+ 2

)
,

LeH
(1)
2 (x) = (x+ 4) + i

(
2x2 + 5x+ 3

)
+ ϵ

(
4x3 + 10x2 + 3x+ 2

)
+h

(
8x4 + 20x3 + 6x2

)
and

LeH
(2)
0 (x) = 1 + 3i+ ϵ (x+ 7) + h

(
2x2 + 6x+ 10

)
,

LeH
(2)
1 (x) = 3 + i (x+ 7) + ϵ

(
2x2 + 6x+ 10

)
+ h

(
4x3 + 12x2 + 9x+ 12

)
,

LeH
(2)
2 (x) = (x+ 7) + i

(
2x2 + 6x+ 10

)
+ ϵ

(
4x3 + 12x2 + 9x+ 12

)
+h

(
8x4 + 24x3 + 18x2 + 9x+ 12

)
.

For x = 1, the hybrinomials defined in Definition 1 give the hybrid numbers in
the following definition:

Definition 2. The n-th hybrid hyper-Leonardo number LeH
(r)
n is defined as

LeH(r)
n = Le(r)n + iLe

(r)
n+1 + ϵLe

(r)
n+2 + hLe

(r)
n+3,

where Le
(r)
n is the n-th hyper-Leonardo numbers.
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This table contains the values of the hybrid hyper-Leonardo numbers.

r = 0 r = 1 r = 2 r = 3

n=0 1 + i + 3ϵ + 5h 1 + 2i + 5ϵ + 10h 1 + 3i + 8ϵ + 18h 1 + 4i + 12ϵ + 30h

n=1 1 + 3i + 5ϵ + 9h 2 + 5i + 10ϵ + 19h 3 + 8i + 18ϵ + 37h 4 + 12i + 30ϵ + 67h

n=2 3 + 5i + 9ϵ + 15h 5 + 10i + 19ϵ + 34h 8 + 18i + 37ϵ + 71h 12 + 30i + 67ϵ + 138h

n=3 5 + 9i + 15ϵ + 25h 10 + 19i + 34ϵ + 59h 18 + 37i + 71ϵ + 130h 30 + 67i + 138ϵ + 268h

n=4 9 + 15i + 25ϵ + 41h 19 + 34i + 59ϵ + 100h 37 + 71i + 130ϵ + 230h 67 + 1381i + 268ϵ + 498h

Table 1. The first few hybrid hyper-Leonardo numbers LeH
(r)
n .

Theorem 1. LeH
(r)
n (x) has the recurrence relation for n ≥ 1 and r ≥ 1:

LeH(r)
n (x) = LeH

(r)
n−1 (x) + LeH(r−1)

n (x) . (4)

Proof. By using Definition 1 and the recurrence relation in equation (1), we have

LeH
(r)
n−1 (x) + LeH

(r−1)
n (x)

=
(
Le

(r)
n−1 (x) + iLe

(r)
n (x) + ϵLe

(r)
n+1 (x) + hLe

(r)
n+2 (x)

)
+
(
Le

(r−1)
n (x) + iLe

(r−1)
n+1 (x) + ϵLe

(r−1)
n+2 (x) + hLe

(r−1)
n+3 (x)

)
= Le

(r)
n−1 (x) + Le

(r−1)
n (x) + i

(
Le

(r)
n (x) + Le

(r−1)
n+1 (x)

)
+ϵ

(
Le

(r)
n+1 (x) + Le

(r−1)
n+2 (x)

)
+ h

(
Le

(r)
n+2 (x) + Le

(r−1)
n+1 (x)

)
= Le

(r)
n (x) + iLe

(r)
n+1 (x) + ϵLe

(r)
n+2 (x) + hLe

(r)
n+3 (x)

= LeH
(r)
n (x) .

□

Corollary 1. The hybrid hyper-Leonardo numbers have the recurrence relation for
n ≥ 1 and r ≥ 1:

LeH(r)
n = LeH

(r)
n−1 + LeH(r−1)

n .

Theorem 2. LeH
(r)
n (x) has the summation formula:

n∑
s=0

LeH(r)
s (x) = LeH(r+1)

n (x)−
(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.
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Proof. We use the induction method on n. Since,

LeH
(r+1)
0 (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
= Le

(r+1)
0 (x) + iLe

(r+1)
1 (x) + ϵLe

(r+1)
2 (x) + hLe

(r+1)
3 (x)

−
(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
= Le

(r+1)
0 (x) + i

(
Le

(r+1)
1 (x)− Le

(r+1)
0 (x)

)
+ ϵ

(
Le

(r+1)
2 (x)− Le

(r+1)
1 (x)

)
+h

(
Le

(r+1)
3 (x)− Le

(r+1)
2 (x)

)
= Le

(r)
0 (x) + iLe

(r)
1 (x) + ϵLe

(r)
2 (x) + hLe

(r)
3 (x)

= LeH
(r)
0 (x) ,

the result is true for n = 0. Assume that the result is true for n = k. Then,

k∑
s=0

LeH(r)
s (x) = LeH

(r+1)
k (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.

Now, we must show that the result is true for n = k+1. Considering the recurrence
relation in equation (4), we get

k+1∑
s=0

LeH(r)
s (x) =

k∑
s=0

LeH(r)
s (x) + LeH

(r)
k+1 (x)

= LeH
(r+1)
k (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
+LeH

(r)
k+1 (x)

= LeH
(r+1)
k+1 (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.

□

Corollary 2. The hybrid hyper-Leonardo numbers have the summation formula:
n∑

s=0

LeH(r)
s = LeH(r+1)

n −
(
iLe

(r+1)
0 + ϵLe

(r+1)
1 + hLe

(r+1)
2

)
.

Theorem 3. For n ≥ 3 and r ≥ 1, the recurrence relation

LeH
(r)
n (x) = 2xLeH

(r)
n−1 (x)− LeH

(r)
n−3 (x)

+

(
n+ r − 1

r − 1

)
−

(
n+ r − 2

r − 1

)
(2x− 1)−

(
n+ r − 3

r − 1

)
(x− 2)

+i

[(
n+ r

r − 1

)
−

(
n+ r − 1

r − 1

)
(2x− 1)−

(
n+ r − 2

r − 1

)
(x− 2)

]
+ϵ

[(
n+ r + 1

r − 1

)
−
(
n+ r

r − 1

)
(2x− 1)−

(
n+ r − 1

r − 1

)
(x− 2)

]
+h

[(
n+ r + 2

r − 1

)
−

(
n+ r + 1

r − 1

)
(2x− 1)−

(
n+ r

r − 1

)
(x− 2)

]
is true.



HYBRINOMIALS RELATED TO HYPER-LEONARDO NUMBERS 245

Proof. Considering Definition 1 and equation (2), the proof is clear.
□

Corollary 3. For n ≥ 3 and r ≥ 1, the hybrid hyper-Leonardo numbers have the
recurrence relation:

LeH
(r)
n = 2LeH

(r)
n−1 − LeH

(r)
n−3 +

(
n+ r − 1

r − 1

)
−

(
n+ r − 2

r − 1

)
+

(
n+ r − 3

r − 1

)
+i

[(
n+ r

r − 1

)
−
(
n+ r − 1

r − 1

)
+

(
n+ r − 2

r − 1

)]
+ϵ

[(
n+ r + 1

r − 1

)
−

(
n+ r

r − 1

)
+

(
n+ r − 1

r − 1

)]
+h

[(
n+ r + 2

r − 1

)
−

(
n+ r + 1

r − 1

)
+

(
n+ r

r − 1

)]
.

Theorem 4. If n ≥ 2 and r ≥ 1, then the summation formula

r∑
s=0

LeH(s)
n (x) = LeH

(r)
n+1 (x) + (1− 2x)LeHn (x) + LeHn−2 (x)

is true.

Proof. By considering equation (3), we get

r∑
s=0

LeH(s)
n (x) =

r∑
s=0

(
Le(s)n (x) + iLe

(s)
n+1 (x) + ϵLe

(s)
n+2 (x) + hLe

(s)
n+3 (x)

)
=

r∑
s=0

Le(s)n (x) + i

r∑
s=0

Le
(s)
n+1 (x) + ϵ

r∑
s=0

Le
(s)
n+2 (x)

+h

r∑
s=0

Le
(s)
n+3 (x)

= Le
(r)
n+1 (x) + (1− 2x)Len (x) + Len−2 (x)

+i
(
Le

(r)
n+2 (x) + (1− 2x)Len+1 (x) + Len−1 (x)

)
+ϵ

(
Le

(r)
n+3 (x) + (1− 2x)Len+2 (x) + Len (x)

)
+h

(
Le

(r)
n+4 (x) + (1− 2x)Len+3 (x) + Len+1 (x)

)
= LeH

(r)
n+1 (x) + (1− 2x)LeHn (x) + LeHn−2 (x) .

□

Corollary 4. If n ≥ 1 and r ≥ 1, then there is the relation between the hybrid
hyper-Leonardo numbers and Fibonacci hybrid numbers:

r∑
s=0

LeH(s)
n = LeH

(r)
n+1 − 2HFn.
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