http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 72, Number 1, Pages 240–246 (2023) DOI:10.31801/cfsuasmas.1142926 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: July 10, 2022; Accepted: September 7, 2022

HYBRINOMIALS RELATED TO HYPER-LEONARDO NUMBERS

Efruz Özlem MERSÍN¹ and Mustafa BAHSÍ²

¹Department of Mathematics, Aksaray University, Aksaray, TÜRKİYE ²Department of Mathematics and Science Education, Aksaray University, Aksaray, TÜRKİYE

ABSTRACT. In this paper, we define hybrinomials related to hyper-Leonardo numbers. We study some of their properties such as the recurrence relation and summation formulas. In addition, we introduce hybrid hyper-Leonardo numbers.

1. INTRODUCTION

Integer sequences are the subject of many studies which are shown in recent literature [1–8]. The most famous integer sequence is called Fibonacci sequence and is defined by the following recurrence relation $(n \ge 1)$ [1]:

$$F_{n+1} = F_n + F_{n-1}$$
 with $F_0 = 0$, $F_1 = 1$.

Leonardo sequence, which has similar properties to the Fibonacci sequence, is defined by Catarino and Borges [5], as follows:

$$Le_n = Le_{n-1} + Le_{n-2} + 1$$
 $(n \ge 2),$

with the initial conditions $Le_0 = Le_1 = 1$. Although commonly called "Leonardo numbers" in the literature, Kürüz et al. [9] preferred to call them "Leonardo Pisano numbers" and introduced Leonardo Pisano polynomials as

$$Le_{n}(x) = \begin{cases} 1, & n = 0, 1\\ x + 2, & n = 2\\ 2xLe_{n-1}(x) - Le_{n-3}(x), & n \ge 3. \end{cases}$$

©2023 Ankara University

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 11B37, 11B39.

Keywords. Hyper-Leonardo numbers, polynomials, hybrinomials.

¹²efruzmersin@aksaray.edu.tr-Corresponding author; ⁰0000-0001-6260-9063

² mhvbahsi@yahoo.com; 00000-0002-6356-6592

Hyper Leonardo numbers $Le_n^{(r)}$ are defined as a generalization of the Leonardo numbers by the formula

$$Le_n^{(r)} = \sum_{s=0}^n Le_s^{(r-1)}$$
 with $Le_n^{(0)} = Le_n$, $Le_0^{(r)} = Le_0$ and $Le_1^{(r)} = r+1$,

where r is a positive integer [10]. The hyper-Leonardo numbers have the following recurrence relation for $n \ge 1$ and $r \ge 1$ [10]:

$$Le_n^{(r)} = Le_{n-1}^{(r)} + Le_n^{(r-1)}.$$

Hyper-Leonardo polynomials are defined as:

$$Le_n^{(r)}(x) = \sum_{s=0}^n Le_s^{(r-1)}(x)$$

with the initial conditions $Le_n^{(0)}(x) = Le_n(x)$, $Le_0^{(r)}(x) = 1$ and $Le_1^{(r)}(x) = r + 1$ [11]. Note that, for x = 1, hyper-Leonardo polynomials $Le_n^{(r)}(x)$ give the hyper-Leonardo numbers $Le_n^{(r)}$. Hyper-Leonardo polynomials have the following recurrence relation for $n \ge 1$ and $r \ge 1$ [11]:

$$Le_{n}^{(r)}(x) = Le_{n-1}^{(r)}(x) + Le_{n}^{(r-1)}(x).$$
(1)

For $n \geq 3$ and $r \geq 1$, there is also the recurrence relation for hyper-Leonardo polynomials [11]:

$$Le_{n}^{(r)}(x) = 2xLe_{n-1}^{(r)}(x) - Le_{n-3}^{(r)}(x) + \binom{n+r-1}{r-1} - \binom{n+r-2}{r-1}(2x-1) - \binom{n+r-3}{r-1}(x-2).$$
(2)

If $n \ge 2$ and $r \ge 1$, then there is the summation formula for hyper-Leonardo polynomials [11]:

$$\sum_{s=0}^{r} Le_n^{(s)}(x) = Le_{n+1}^{(r)}(x) + (1-2x) Le_n(x) + Le_{n-2}(x).$$
(3)

In recent years, hybrid numbers have been the subject of research [12–19]. Özdemir [19] introduced hybrid numbers, as a generalization of complex, hyperbolic and dual numbers, sets by:

 $\mathbb{K} = \{a + bi + c\epsilon + dh : a, b, c, d \in \mathbb{R}, i^2 = -1, \epsilon^2 = 0, h^2 = 1, ih = hi = \epsilon + i\}.$

Szynal-Liana and Wloch [12] defined the *n*-th Fibonacci hybrid number as

$$HF_n = F_n + iF_{n+1} + \epsilon F_{n+2} + hF_{n+3}.$$

Alp and Koçer [18] defined hybrid-Leonardo numbers by using the Leonardo numbers as:

$$HLe_n = Le_n + Le_{n+1}i + Le_{n+2}\epsilon + Le_{n+3}h.$$

The authors also obtained some identities for the hybrid-Leonardo numbers such as [18]:

$$\begin{split} HLe_n &= HLe_{n-1} + HLe_{n-2} + (1+i+\epsilon+h), \quad (n \geq 2), \\ HLe_n &= 2HF_{n+1} - (1+i+\epsilon+h), \quad (n \geq 0), \\ HLe_{n+1} &= 2HLe_n - HLe_{n-2}, \quad (n \geq 2). \end{split}$$

Kürüz et al. [9] defined Leonardo Pisano hybrinomials, by using the Leonardo Pisano polynomials, as follows:

$$Le_{n}^{[H]}(x) = Le_{n}(x) + iLe_{n+1}(x) + \epsilon Le_{n+2}(x) + hLe_{n+3}(x).$$

The Leonardo Pisano hybrinomials have the following recurrence relation [9]:

$$Le_{n}^{[H]}(x) = 2xLe_{n-1}^{[H]}(x) - Le_{n-3}^{[H]}(x).$$

Motivated by the above papers, we define hybrinomials related to hyper-Leonardo numbers. We also define hybrid hyper-Leonardo numbers by using the newly defined hybrinomials. Then, we investigate some of their properties such as the recurrence relations and summation formulas.

2. Main Results

Definition 1. Hybrinomials related to hyper-Leonardo numbers are defined as

$$LeH_{n}^{(r)}(x) = Le_{n}^{(r)}(x) + Le_{n+1}^{(r)}(x)i + Le_{n+2}^{(r)}(x)\epsilon + Le_{n+3}^{(r)}(x)h,$$

where $Le_n^{(r)}(x)$ are the ordinary hyper-Leonardo polynomials.

The first few hybrinomials related to the hyper-Leonardo numbers are

$$\begin{split} LeH_0^{(1)}(x) &= 1+2i+\epsilon \left(x+4\right)+h \left(2x^2+5x+3\right), \\ LeH_1^{(1)}(x) &= 2+i \left(x+4\right)+\epsilon \left(2x^2+5x+3\right)+h \left(4x^3+10x^2+3x+2\right), \\ LeH_2^{(1)}(x) &= \left(x+4\right)+i \left(2x^2+5x+3\right)+\epsilon \left(4x^3+10x^2+3x+2\right) \\ &+h \left(8x^4+20x^3+6x^2\right) \end{split}$$

and

$$\begin{split} LeH_0^{(2)}\left(x\right) &= 1+3i+\epsilon\left(x+7\right)+h\left(2x^2+6x+10\right),\\ LeH_1^{(2)}\left(x\right) &= 3+i\left(x+7\right)+\epsilon\left(2x^2+6x+10\right)+h\left(4x^3+12x^2+9x+12\right),\\ LeH_2^{(2)}\left(x\right) &= (x+7)+i\left(2x^2+6x+10\right)+\epsilon\left(4x^3+12x^2+9x+12\right)\\ &+h\left(8x^4+24x^3+18x^2+9x+12\right). \end{split}$$

For x = 1, the hybrinomials defined in Definition 1 give the hybrid numbers in the following definition:

Definition 2. The n-th hybrid hyper-Leonardo number $LeH_n^{(r)}$ is defined as $LeH_n^{(r)} = Le_n^{(r)} + iLe_{n+1}^{(r)} + \epsilon Le_{n+2}^{(r)} + hLe_{n+3}^{(r)},$

where $Le_n^{(r)}$ is the n-th hyper-Leonardo numbers.

r = 0r = 1r = 2r = 3 $1+i+3\epsilon+5h$ $1+2i+5\epsilon+10h$ $1 + 3i + 8\epsilon + 18h$ $1+4i+12\epsilon+30h$ n=0n = 1 $1+3i+5\epsilon+9h$ $2+5i+10\epsilon+19h$ $3+8i+18\epsilon+37h$ $4 + 12i + 30\epsilon + 67h$ n=2 $3+5i+9\epsilon+15h$ $5 + 10i + 19\epsilon + 34h$ $8 + 18i + 37\epsilon + 71h$ $12 + 30i + 67\epsilon + 138h$ $18 + 37i + 71\epsilon + 130h$ $30 + 67i + 138\epsilon + 268h$ n=3 $5+9i+15\epsilon+25h$ $10 + 19i + 34\epsilon + 59h$ n=4 $9+15i+25\epsilon+41h$ $19+34i+59\epsilon+100h$ $37+71i+130\epsilon+230h$ $67 + 1381i + 268\epsilon + 498h$

This table contains the values of the hybrid hyper-Leonardo numbers.

					(m)
TARE 1	The first	fow hybrid	hyper-Leonardo	numbers	$L \rho H^{(T)}$
TADLE I.	THC HISU	icw nybrid	nyper-neonaruo	numbers	L_{n} .

Theorem 1. $LeH_n^{(r)}(x)$ has the recurrence relation for $n \ge 1$ and $r \ge 1$:

$$LeH_{n}^{(r)}(x) = LeH_{n-1}^{(r)}(x) + LeH_{n}^{(r-1)}(x).$$
(4)

Proof. By using Definition 1 and the recurrence relation in equation (1), we have

$$\begin{split} &LeH_{n-1}^{(r)}\left(x\right) + LeH_{n}^{(r-1)}\left(x\right) \\ &= \left(Le_{n-1}^{(r)}\left(x\right) + iLe_{n}^{(r)}\left(x\right) + \epsilon Le_{n+1}^{(r)}\left(x\right) + hLe_{n+2}^{(r)}\left(x\right)\right) \\ &+ \left(Le_{n}^{(r-1)}\left(x\right) + iLe_{n+1}^{(r-1)}\left(x\right) + \epsilon Le_{n+2}^{(r-1)}\left(x\right) + hLe_{n+3}^{(r-1)}\left(x\right)\right) \\ &= Le_{n-1}^{(r)}\left(x\right) + Le_{n}^{(r-1)}\left(x\right) + i\left(Le_{n}^{(r)}\left(x\right) + Le_{n+1}^{(r-1)}\left(x\right)\right) \\ &+ \epsilon\left(Le_{n+1}^{(r)}\left(x\right) + Le_{n+2}^{(r-1)}\left(x\right)\right) + h\left(Le_{n+2}^{(r)}\left(x\right) + Le_{n+1}^{(r-1)}\left(x\right)\right) \\ &= Le_{n}^{(r)}\left(x\right) + iLe_{n+1}^{(r)}\left(x\right) + \epsilon Le_{n+2}^{(r)}\left(x\right) + hLe_{n+3}^{(r)}\left(x\right) \\ &= Le_{n}^{(r)}\left(x\right) + iLe_{n+1}^{(r)}\left(x\right) + \epsilon Le_{n+2}^{(r)}\left(x\right) + hLe_{n+3}^{(r)}\left(x\right) \\ &= LeH_{n}^{(r)}\left(x\right). \end{split}$$

Corollary 1. The hybrid hyper-Leonardo numbers have the recurrence relation for $n \ge 1$ and $r \ge 1$:

$$LeH_n^{(r)} = LeH_{n-1}^{(r)} + LeH_n^{(r-1)}.$$

Theorem 2. $LeH_n^{(r)}(x)$ has the summation formula:

$$\sum_{s=0}^{n} LeH_{s}^{(r)}(x) = LeH_{n}^{(r+1)}(x) - \left(iLe_{0}^{(r+1)}(x) + \epsilon Le_{1}^{(r+1)}(x) + hLe_{2}^{(r+1)}(x)\right).$$

Proof. We use the induction method on n. Since,

$$\begin{split} &LeH_{0}^{(r+1)}\left(x\right) - \left(iLe_{0}^{(r+1)}\left(x\right) + \epsilon Le_{1}^{(r+1)}\left(x\right) + hLe_{2}^{(r+1)}\left(x\right)\right) \\ &= Le_{0}^{(r+1)}\left(x\right) + iLe_{1}^{(r+1)}\left(x\right) + \epsilon Le_{2}^{(r+1)}\left(x\right) + hLe_{3}^{(r+1)}\left(x\right) \\ &- \left(iLe_{0}^{(r+1)}\left(x\right) + \epsilon Le_{1}^{(r+1)}\left(x\right) + hLe_{2}^{(r+1)}\left(x\right)\right) \\ &= Le_{0}^{(r+1)}\left(x\right) + i\left(Le_{1}^{(r+1)}\left(x\right) - Le_{0}^{(r+1)}\left(x\right)\right) + \epsilon\left(Le_{2}^{(r+1)}\left(x\right) - Le_{1}^{(r+1)}\left(x\right)\right) \\ &+ h\left(Le_{3}^{(r+1)}\left(x\right) - Le_{2}^{(r+1)}\left(x\right)\right) \\ &= Le_{0}^{(r)}\left(x\right) + iLe_{1}^{(r)}\left(x\right) + \epsilon Le_{2}^{(r)}\left(x\right) + hLe_{3}^{(r)}\left(x\right) \\ &= LeH_{0}^{(r)}\left(x\right), \end{split}$$

the result is true for n = 0. Assume that the result is true for n = k. Then,

$$\sum_{s=0}^{k} LeH_{s}^{(r)}(x) = LeH_{k}^{(r+1)}(x) - \left(iLe_{0}^{(r+1)}(x) + \epsilon Le_{1}^{(r+1)}(x) + hLe_{2}^{(r+1)}(x)\right).$$

Now, we must show that the result is true for n = k+1. Considering the recurrence relation in equation (4), we get

$$\sum_{s=0}^{k+1} LeH_s^{(r)}(x) = \sum_{s=0}^k LeH_s^{(r)}(x) + LeH_{k+1}^{(r)}(x)$$

= $LeH_k^{(r+1)}(x) - \left(iLe_0^{(r+1)}(x) + \epsilon Le_1^{(r+1)}(x) + hLe_2^{(r+1)}(x)\right)$
+ $LeH_{k+1}^{(r)}(x)$
= $LeH_{k+1}^{(r+1)}(x) - \left(iLe_0^{(r+1)}(x) + \epsilon Le_1^{(r+1)}(x) + hLe_2^{(r+1)}(x)\right).$

Corollary 2. The hybrid hyper-Leonardo numbers have the summation formula:

$$\sum_{s=0}^{n} LeH_{s}^{(r)} = LeH_{n}^{(r+1)} - \left(iLe_{0}^{(r+1)} + \epsilon Le_{1}^{(r+1)} + hLe_{2}^{(r+1)}\right).$$

Theorem 3. For $n \ge 3$ and $r \ge 1$, the recurrence relation

$$\begin{aligned} LeH_{n}^{(r)}\left(x\right) &= 2xLeH_{n-1}^{(r)}\left(x\right) - LeH_{n-3}^{(r)}\left(x\right) \\ &+ \binom{n+r-1}{r-1} - \binom{n+r-2}{r-1}\left(2x-1\right) - \binom{n+r-3}{r-1}\left(x-2\right) \\ &+ i \left[\binom{n+r}{r-1} - \binom{n+r-1}{r-1}\left(2x-1\right) - \binom{n+r-2}{r-1}\left(x-2\right)\right] \\ &+ \epsilon \left[\binom{n+r+1}{r-1} - \binom{n+r}{r-1}\left(2x-1\right) - \binom{n+r-1}{r-1}\left(x-2\right)\right] \\ &+ h \left[\binom{n+r+2}{r-1} - \binom{n+r+1}{r-1}\left(2x-1\right) - \binom{n+r}{r-1}\left(2x-1\right)\right] \end{aligned}$$

is true.

Corollary 3. For $n \ge 3$ and $r \ge 1$, the hybrid hyper-Leonardo numbers have the recurrence relation:

$$\begin{split} LeH_n^{(r)} &= 2LeH_{n-1}^{(r)} - LeH_{n-3}^{(r)} + \binom{n+r-1}{r-1} - \binom{n+r-2}{r-1} + \binom{n+r-3}{r-1} \\ &+ i \left[\binom{n+r}{r-1} - \binom{n+r-1}{r-1} + \binom{n+r-2}{r-1} \right] \\ &+ \epsilon \left[\binom{n+r+1}{r-1} - \binom{n+r}{r-1} + \binom{n+r-1}{r-1} \right] \\ &+ h \left[\binom{n+r+2}{r-1} - \binom{n+r+1}{r-1} + \binom{n+r}{r-1} \right]. \end{split}$$

Theorem 4. If $n \ge 2$ and $r \ge 1$, then the summation formula

$$\sum_{s=0}^{r} LeH_{n}^{(s)}(x) = LeH_{n+1}^{(r)}(x) + (1-2x)LeH_{n}(x) + LeH_{n-2}(x)$$

 $is\ true.$

Proof. By considering equation (3), we get

$$\sum_{s=0}^{r} LeH_{n}^{(s)}(x) = \sum_{s=0}^{r} \left(Le_{n}^{(s)}(x) + iLe_{n+1}^{(s)}(x) + \epsilon Le_{n+2}^{(s)}(x) + hLe_{n+3}^{(s)}(x) \right)$$

$$= \sum_{s=0}^{r} Le_{n}^{(s)}(x) + i\sum_{s=0}^{r} Le_{n+1}^{(s)}(x) + \epsilon \sum_{s=0}^{r} Le_{n+2}^{(s)}(x)$$

$$+h\sum_{s=0}^{r} Le_{n+3}^{(s)}(x)$$

$$= Le_{n+1}^{(r)}(x) + (1 - 2x) Le_{n}(x) + Le_{n-2}(x)$$

$$+i \left(Le_{n+2}^{(r)}(x) + (1 - 2x) Le_{n+1}(x) + Le_{n-1}(x) \right)$$

$$+\epsilon \left(Le_{n+3}^{(r)}(x) + (1 - 2x) Le_{n+2}(x) + Le_{n}(x) \right)$$

$$+h \left(Le_{n+4}^{(r)}(x) + (1 - 2x) Le_{n+3}(x) + Le_{n+1}(x) \right)$$

$$= LeH_{n+1}^{(r)}(x) + (1 - 2x) LeH_{n}(x) + LeH_{n-2}(x).$$

Corollary 4. If $n \ge 1$ and $r \ge 1$, then there is the relation between the hybrid hyper-Leonardo numbers and Fibonacci hybrid numbers:

$$\sum_{s=0}^{r} LeH_n^{(s)} = LeH_{n+1}^{(r)} - 2HF_n.$$

Author Contribution Statements The authors confirm sole responsibility for the following concepts involved in this study and design, data collection, analysis and interpretation of results, and manuscript preparation.

Declaration of Competing Interests The authors declare that they have no competing interests.

References

- Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
- [2] Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63(1) (2012), 36-41. https://doi.org/10.1016/j.camwa.2011.10.055
- Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
- [4] Horadam A.F., Basic properties of a certain generalized sequence of numbers, *The Fibonacci Quarterly*, 3 (1965), 161-176.
- [5] Catarino P., Borges A., On Leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1) (2020) 75-86.
- [6] Edson M., Yayenie O., A new generalization of Fibonacci sequences and extended Binet's formula, *Integers*, 9 (2009), 639–654. https://doi.org/10.1515/INTEG.2009.051
- [7] Yayenie O., A note on generalized Fibonacci sequences, Applied Mathematics and Computation, 217 (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
- [8] Kilic E., Tan E., More general identities involving the terms of W (a, b; p, q), Ars Combinatoria, 93 (2009), 459-461.
- Kürüz F., Dağdeviren A. and Catarino P., On Leonardo Pisano hybrinomials, *Mathematics*, 9(22) (2021), 2923. https://doi.org/10.3390/math9222923.
- [10] Mersin E. Ö., Bahşi M., Hyper-Leonardo numbers, Conference Proceedings of Science and Technology, 5(1) (2022), 14-20.
- [11] Mersin E. Ö., Hyper-Leonardo Polynomials, 9th International Congress on Fundamental and Applied Sciences 2022 (ICFAS2022) Proceeding Book, icfas2022.intsa.org, ISBN 978-605-67052-7-4.
- [12] Szynal-Liana A., Wloch I., The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3–10, (2019).
- [13] Szynal-Liana A., The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications, 38 (2018), 91-98. https://doi.org/10.7151/dmgaa.1287
- [14] Szynal-Liana A., Wloch I., On Jacopsthal and Jacopsthal-Lucas hybrid numbers, Annales Mathematicae Silesianae, 33 (2019), 276-283. https://doi.org/10.2478/amsil-2018-0009
- [15] Öztürk İ., Özdemir M., Similarity of hybrid numbers, Mathematical Methods in the Applied Science, 43 (2020), 8867-8881 https://doi.org/10.1002/mma.6580
- [16] Yağmur T., A note on generalized hybrid tribonacci numbers, Discussiones Mathematicae General Algebra and Applications, 40(2) (2020), 187-199. https://doi.org/10.7151/dmgaa.1343
- [17] Ferson S., Ginzburg L., Hybrid arithmetic, Proceeding of 3rd International symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, (1995), 619-623. https://doi.org/10.1109/ISUMA.1995.527766
- [18] Alp Y., Koçer G. E., Hybrid Leonardo numbers, Chaos, Solitons and Fractals, 150 (2021). https://doi.org/10.1016/j.chaos.2021.111128
- [19] Özdemir M., Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3