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Abstract. In this paper, the definitions of novel classes of generalized con-

nected sets (briefly, g-Tg-connected sets) and generalized disconnected sets
(briefly, g-Tg-disconnected sets) in generalized topological spaces (briefly, Tg-

spaces) are defined in terms of generalized sets (briefly, g-Tg-sets) and, their

properties and characterizations with respect to set-theoretic relations are pre-
sented. The basic properties and characterizations of the notions of local,

pathwise, local pathwise and simple g-Tg-connectedness are also presented.
The study shows that local pathwise g-Tg-connectedness implies local g-Tg-

connectedness, pathwise g-Tg-connectedness implies g-Tg-connectedness, and

g-Tg-connectedness is a Tg-property. Diagrams establish the various relation-
ships amongst these types of g-Tg-connectedness presented here and in the

literature, and a nice application supports the overall theory.

1. Introduction

Among the most important topological properties (briefly, T -properties rela-
tive to ordinary topology, and Tg-properties relative to generalized topology), the
T -properties1 called T-connectedness and g-T-connectedness in T -spaces (ordinary
and generalized connectedness in ordinary topological spaces) and the Tg-properties
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components).
1Notes to the reader: T = (Ω,T ), Tg = (Ω,Tg) are topological spaces (briefly, T -space and

Tg-space) with ordinary and generalized topologies T and Tg (briefly, topology and g-topology).

Subsets of T, Tg, respectively, are called T, Tg-sets; subsets of T , Tg, respectively, are called

T , Tg-open sets, and their complements are called T , Tg-closed sets. Generalizations of T-sets,
T -open and T -closed sets, respectively, are called g-T-sets, g-T -open and g-T -closed sets; gener-

alizations of Tg-sets, Tg-open and Tg-closed sets, respectively, are called g-Tg-sets, g-Tg-open and
g-Tg-closed sets. Connectedness in T with T, g-T-sets are called T, g-T-connectedness, respectively;

connectedness in Tg with Tg, g-Tg-sets are called Tg, g-Tg-connectedness, respectively.
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called Tg-connectedness and g-Tg-connectedness in Tg-spaces (ordinary and gen-
eralized connectedness in generalized topological spaces) are no doubt the most
important invariant properties [1, 2, 3]. Indeed, T-connectedness is an absolute
property of a T-set [1, 4, 5], and g-T-connectedness, Tg-connectedness and g-Tg-
connectedness, respectively, are absolute properties of a g-T-set, a Tg-set, and a
g-Tg-set [3, 6, 7, 8, 9, 10, 11]. Typical examples of g-T-connectedness in T -spaces
are α, β, γ-connectedness [12, 13, 14]; examples of Tg-connectedness in Tg-spaces
are semi∗α, s, gb-connectedness [2, 15, 16], whereas examples of g-Tg-connectedness
in Tg-spaces are bTµ, µ-rgb, π p-connectedness [17, 18, 19], among others.

In the literature of Tg-spaces, the study of g-Tg-sets by various authors has pro-
duced some new classes of g-Tg-connectedness in Tg-spaces, similar in descriptions
to g-T-connectedness in T -spaces [17, 20, 21]. By using the θ-modification gener-
alized topology and γθ-operator introduced by [22], [23] have extended the notion
of θ-connectedness [24] to the setting of Tg-spaces and studied its Tg-properties
accordingly. Based on the work of [12], [20] have introduced a new type of g-Tg-
connectedness in Tg-spaces called hyperconnected and studied the Tg-properties
associated with it and its analogue in the generalized sense. In the same year, [25]
have introduced, studied and exemplified the notion of extremally µ-disconnected
Tg-spaces, just to name a few.

In view of the above references, it would appear that, from every new type of
g-Tg-set introduced in a Tg-space, there can be introduced a new type of g-Tg-
connectedness in the Tg-space. Having introduced a new class of g-Tg-sets and
studied from it some Tg-properties in a Tg-space [6, 7, 8, 9, 10], it seems, therefore,
reasonable to introduce a new type of g-Tg-connectedness in the Tg-space and dis-
cuss its Tg-properties. In this paper, we attempt to make a contribution to such
a development by introducing a new theory, called Theory of g-Tg-Connectedness,
in which it is presented a new generalized version of Tg-connectedness in terms of
the notion of g-T-set, discussing the fundamental properties and giving its charac-
terizations on this ground.

The paper is organised as follows: In Sect. 2, preliminary notions are described
in Sect. 2.1 and the main results of g-Tg-connectedness in a Tg-space are reported
in Sect. 3. In Sect. 4, the establishment of the relationships among various
types of g-Tg-connectedness are discussed in Sect. 4.1. To support the work, a
nice application of the concept of g-Tg-connectedness in a Tg-space is presented in
Sect. 4.2. Finally, Sect. 5 provides concluding remarks and future directions of
the notion of g-Tg-connectedness in a Tg-space.

2. Theory

2.1. Preliminaries. Notations and notions not presented below are found in the
standard references [6, 7, 8, 9, 10]. Everywhere, T , Tg-spaces are designated

by the topological structures T
def
= (Ω,T ) and Tg

def
= (Ω,Tg), respectively, on

both of which no separation axioms are assumed unless otherwise mentioned [8,
10, 26, 27, 28]. The symbols I0n, I

∗
n ⊂ N0 designate 0-included and 0-excluded

finite index sets while I0∞, I∗∞ ⊆ N0 the corresponding infinite index sets [10]. By
(Og,Kg) ∈ Tg × ¬Tg ⊆ P (Ω) × P (Ω) are meant a pair of Tg-open and Tg-
closed sets [10]. The operators intg, clg : P (Λ) −→ P (Λ) carrying any Sg ⊂ Tg

into its interior intg (Sg) and closure clg (Sg) are called g-interior and g-closure
operators [9]. The totality of all possible compositions of these g-operators forms
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the class Lg

[
Ω
] def

=
{
opg,νµ (·) =

(
opg,ν (·) ,¬ opg,µ (·)

)
: (ν, µ) ∈ I03 × I03

}
[9].

Then, Sg ⊂ Tg is called a g-Tg-set if and only if there exist (Og,Kg) ∈ Tg × ¬Tg

and opg (·) ∈ Lg [Ω] such that the following statement holds:(
∃ξ

)[(
ξ ∈ Sg

)
∧
((

Sg ⊆ opg (Og)
)
∨
(
Sg ⊇ ¬ opg (Kg)

))]
.(2.1)

The derived class g-ν-S
[
Tg

]
=

⋃
E∈{O,K} g-ν-E

[
Tg

]
is called the class of all g-Tg-

sets of category ν ∈ I03 (briefly, g-ν-Tg-sets) [9, 10]. Accordingly, the class of all
g-Tg-sets [10] are

g-S [Tg] =
⋃
ν∈I0

3

g-ν-S [Tg] =
⋃

(ν,E)∈I0
3×{O,K}

g-ν-E [Tg] =
⋃

E∈{O,K}

g-E [Tg] .

(2.2)

Notations and notions utilized in the theory of g-Tg-connectedness in Tg-spaces
are now presented. By π : Tg,Ω −→ Tg,Σ is meant a (Tg,Ω,Tg,Σ)-map between
Tg-spaces Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ). A map πg : Tg,Ω −→ Tg,Σ is
called a g- (Tg,Ω,Tg,Σ)-map if and only if, for every (Og,ω,Kg,ω) ∈ Tg,Ω × ¬Tg,Ω,
there exists (Og,σ,Kg,σ) ∈ Tg,Σ × ¬Tg,Σ such that:[

πg (Og,ω) ⊆ opg (Og,σ)
]
∨
[
πg (Kg,ω) ⊇ ¬ opg (Kg,σ)

]
.(2.3)

It is said to be of category ν if and only if πg ∈ g-ν-M [Tg,Ω;Tg,Σ] where,

g-ν-M [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,ω,Kg,ω

)(
∃Og,σ,Kg,σ,opg,ν (·)

)
[(
πg (Og,ω) ⊆ opg,ν (Og,σ)

)
∨
(
πg (Kg,ω) ⊇ ¬ opg,ν (Kg,σ)

)]}
.(2.4)

Let g-ν-M [Tg,Ω;Tg,Σ] =
⋃

E∈{O,K} g-ν-ME [Tg,Ω;Tg,Σ] where,

g-ν-MO [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,ω

)(
∃Og,σ,opg,ν (·)

)
[
πg (Og,ω) ⊆ opg,ν (Og,σ)

]}
,

g-ν-MK [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Kω

)(
∃Kg,σ,opg,ν (·)

)
[
πg (Kg,ω) ⊇ opg,ν (Kg,σ)

]}
.(2.5)

Then, if πg ∈ g-ν-MO [Tg,Ω;Tg,Σ], it is called a g-ν- (Tg,Ω,Tg,Σ)-open map; if
πg ∈ g-ν-MK [Tg,Ω;Tg,Σ], it is called a g-ν- (Tg,Ω,Tg,Σ)-closed map. Accordingly,
the class of all g-Tg-maps [10] are

g-M [Tg,Ω;Tg,Σ] =
⋃
ν∈I0

3

g-ν-M [Tg,Ω;Tg,Σ]

=
⋃

(ν,E)∈I0
3×{O,K}

g-ν-ME [Tg,Ω;Tg,Σ]

=
⋃

E∈{O,K}

g-ME [Tg,Ω;Tg,Σ] .(2.6)

A map πg : Tg,Ω −→ Tg,Σ is said to be g- (Tg,Ω,Tg,Σ)-continuous if and only if, for
every (Og,σ,Kg,σ) ∈ Tg,Σ × ¬Tg,Σ, there exists (Og,ω,Kg,ω) ∈ Tg,Ω × ¬Tg,Ω such
that the following statement holds:[

π−1
g (Og,σ) ⊆ opg (Og,ω)

]
∨
[
π−1
g (Kg,σ) ⊇ ¬ opg (Kg,ω)

]
.(2.7)
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It is said to be of category ν if and only if πg ∈ g-ν-C [Tg,Ω;Tg,Σ] where,

g-ν-C [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,σ,Kg,σ

)(
∃Og,ω,Kg,ω,opg,ν (·)

)
[(
π−1
g (Og,σ) ⊆ opg,ν (Og,ω)

)
∨
(
π−1
g (Kg,σ) ⊇ ¬ opg,ν (Kg,ω)

)]}
.(2.8)

Obviously, g-C [Tg,Ω;Tg,Σ] =
⋃

ν∈I0
3
g-ν-C [Tg,Ω;Tg,Σ]. A map πg : Tg,Ω −→ Tg,Σ

is said to be g- (Tg,Ω,Tg,Σ)-irresolute if and only if, for every (Og,σ,Kg,σ) ∈ Tg,Σ×
¬Tg,Σ, there exists (Og,ω,Kg,ω) ∈ Tg,Ω ×¬Tg,Ω such that the following statement
holds:[

π−1
g

(
opg (Og,σ)

)
⊆ opg (Og,ω)

]
∨
[
π−1
g

(
¬ opg (Kg,σ)

)
⊇ ¬ opg (Kg,ω)

]
.

(2.9)

It is said to be a g- (Tg,Ω,Tg,Σ)-irresolute map of category ν if and only if πg ∈
g-ν-I [Tg,Ω;Tg,Σ] where,

g-ν-I [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,σ,Kg,σ

)(
∃Og,ω,Kg,ω,opg,ν (·)

)
[(
π−1
g

(
opg,ν (Og,σ)

)
⊆ opg,ν (Og,ω)

)
∨
(
π−1
g

(
¬ opg,ν (Kg,σ)

)
⊇

¬ opg,ν (Kg,ω)
)]}

.(2.10)

Evidently, g-I [Tg,Ω;Tg,Σ] =
⋃

ν∈I0
3
g-ν-I [Tg,Ω;Tg,Σ]. The classes MO [Tg,Ω;Tg,Σ]

and MK [Tg,Ω;Tg,Σ] denote the families of Tg-open and Tg-closed maps, respec-
tively, from Tg,Ω into Tg,Σ, with M [Tg,Ω;Tg,Σ] =

⋃
E∈{O,K} ME [Tg,Ω;Tg,Σ].

Definition 2.1 (g-Tg-Separation, g-Tg-Connected). A g-Tg-separation of category
ν of two nonempty Tg-sets Rg, Sg ⊆ Tg of a Tg-space Tg = (Ω,Tg) is realised if and
only if there exists either a pair (Ug,ξ,Ug,ζ) ∈ g-ν-O

[
Tg

]
× g-ν-O

[
Tg

]
of nonempty

g-Tg-open sets or a pair (Vg,ξ,Vg,ζ) ∈ g-ν-K
[
Tg

]
× g-ν-K

[
Tg

]
of nonempty g-Tg-

closed sets such that:( ⊔
λ=ξ,ζ

Ug,λ = Rg ⊔ Sg

)∨( ⊔
λ=ξ,ζ

Vg,λ = Rg ⊔ Sg

)
.(2.11)

Two nonempty Tg-sets Rg, Sg ⊆ Tg of a Tg-space Tg = (Ω,Tg) which are not
g-Tg-separated of category ν are said to be g-Tg-connected of category ν.

The definitions of classes of g-Tg-connected and g-Tg-separated sets of category
ν follow.

Definition 2.2. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg). Then:

– i. The Tg-set Sg ⊂ Tg is said to be g-Tg-connected of category ν if and only
if it belongs to the following class of g-ν-Tg-connected sets:

g-ν-Q [Tg]
def
=

{
Sg ⊂ Tg :

(
∀
(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
× g-ν-K

[
Tg

])
[
¬
( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Vg,λ = Sg

)]}
.(2.12)
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– ii. The Tg-set Sg ⊂ Tg is said to be g-Tg-separated of category ν if and only
if it belongs to the following class of g-ν-Tg-separated sets:

g-ν-D [Tg]
def
=

{
Sg ⊂ Tg :

(
∃
(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
× g-ν-K

[
Tg

])
[( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∨( ⊔
λ=ξ,ζ

Vg,λ = Sg

)]}
.(2.13)

The dependence of g-ν-Q
[
Tg

]
and g-ν-D

[
Tg

]
on both g-ν-O

[
Tg

]
and g-ν-K

[
Tg

]
is immediate. Thus, to define the pairs

(
ν-Q

[
Tg

]
, ν-D

[
Tg

])
,
(
g-ν-Q

[
T
]
, g-ν-D

[
T
])
,

and
(
ν-Q

[
T
]
, ν-D

[
T
])
, respectively, it suffices to let them be dependent on the pairs(

ν-O
[
Tg

]
, ν-K

[
Tg

])
,
(
g-ν-O

[
T
]
, g-ν-K

[
T
])
, and

(
ν-O

[
T
]
, ν-K

[
T
])
; the characters

of these classes are found in our previous works [9, 10]. The notations g-Q [Tg] and
g-D [Tg] stand for g-Q [Tg] =

⋃
ν∈I0

3
g-ν-Q [Tg] and g-D [Tg] =

⋃
ν∈I0

3
g-ν-Q [Tg],

respectively.

Remark 2.3. In defining the classes g-ν-Q [Tg] and g-ν-D [Tg], it is clear that by the
statement

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
× g-ν-K

[
Tg

]
is meant a pair of nonempty

g-Tg-open and g-Tg-closed sets. Furthermore, by Ω ∈ g-ν-Q [Tg] or Ω ∈ g-ν-D [Tg]
is meant a g-Tg-connection of category ν or a g-Tg-separation of category ν of the
Tg-space Tg = (Ω,Tg) is realised.

Definition 2.4. Let Tg = (Ω,Tg) be a Tg-space. Then:

– i. Tg is called a g-ν-T ⟨C⟩
g -space g-ν-T⟨C⟩

g
def
=

(
Ω, g-ν-T ⟨C⟩

g

)
if and only if it is

g-Tg-connected of category ν.

– ii. Tg is called a g-ν-T ⟨D⟩
g -space g-ν-T⟨D⟩

g
def
=

(
Ω, g-ν-T ⟨D⟩

g

)
if and only if it is

g-Tg-separated of category ν.

In the sequel, by g-ν-T⟨LC⟩
g

def
=

(
Ω, g-ν-T ⟨LC⟩

g

)
, g-ν-T⟨PC⟩

g
def
=

(
Ω, g-ν-T ⟨PC⟩

g

)
,

g-ν-T⟨LPC⟩
g

def
=

(
Ω, g-ν-T ⟨LPC⟩

g

)
, and g-ν-T⟨SC⟩

g
def
=

(
Ω, g-ν-T ⟨SC⟩

g

)
, respectively,

are meant locally, pathwise, locally pathwise, and simply g-ν-T ⟨C⟩
g -spaces. Finally,

by a g-ν-T ⟨A⟩
g -space g-T⟨A⟩

g =
(
Ω, g-T ⟨A⟩

g

)
is meant g-T⟨A⟩

g =
∨

ν∈I0
3
g-ν-T⟨A⟩

g =(
Ω,

∨
ν∈I0

3
g-ν-T ⟨A⟩

g

)
=

(
Ω, g-T ⟨A⟩

g

)
, where A ∈ {C,LC,PC,LPC,SC,D}.

By omitting the subscript g in almost all symbols of the above descriptions, very
similar descriptions are obtained but in a T -space [10]. In the following sections,
the main results of the theory of g-Tg-connectedness are presented.

3. Main Results

If for all
(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
neither Ug,ξ ⊔ Vg,ζ = Ω nor

Ug,ζ ⊔ Vg,ξ = Ω is satisfied, then a Tg-space Tg = (Ω,Tg) is said to be g-Tg-
separated. Hence, the following theorem:

Theorem 3.1. If g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
be a g-T ⟨D⟩

g -space, then there exists a pair(
Ug,ξ,Vg,ζ

)
∈ g-O

[
Tg

]
× g-K

[
Tg

]
or a pair

(
Ug,ζ ,Vg,ξ

)
∈ g-O

[
Tg

]
× g-K

[
Tg

]
such

that [
Ug,ξ ⊔ Vg,ζ = Ω

]
∨
[
Ug,ζ ⊔ Vg,ξ = Ω

]
.(3.1)
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Proof. Let g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
be a g-T ⟨D⟩

g -space. Then, there exists a pair(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)
.

If Ug,ξ ∈ g-O
[
Tg

]
then Ug,ζ = ∁ (Ug,ξ) ∈ g-O

[
Tg

]
∩g-K

[
Tg

]
, and if Vg,ξ ∈ g-K

[
Tg

]
then Vg,ζ = ∁ (Vg,ξ) ∈ g-O

[
Tg

]
∩ g-K

[
Tg

]
. Thus, if Ug,ξ ∈ g-O

[
Tg

]
, it suffices to

set Vg,ζ = ∁ (Ug,ξ), and if Vg,ξ ∈ g-K
[
Tg

]
, it suffices to set Ug,ζ = ∁ (Vg,ξ). By

substitutions, it follows, then, that[
Ug,ξ ⊔ Vg,ζ = Ω

]
∨
[
Ug,ζ ⊔ Vg,ξ = Ω

]
,

which was to be proved. □

Remark 3.2. Given (Rg,Sg) ⊆ Tg and ¬ opg,ν : P (Ω) −→ P (Ω), the statement(
Rg ∩ ¬ opg,ν (Sg)

)
∪
(
¬ opg,ν (Rg) ∩ Sg

)
= ∅, when ν = 0, may be called the

Hausdorff-Lennes Separation Condition in the Tg-space Tg = (Ω,Tg).

If a Tg-space Tg = (Ω,Tg) is g-Tg-connected, then either ∁ (Ug,λ) = Ug,η, so
that Ug,λ ∈ g-K

[
Tg

]
or, ∁ (Vg,λ) = Vg,η, so that Vg,λ ∈ g-O

[
Tg

]
, where (λ, η) ∈

{(ξ, ζ) , (ζ, ξ)}. Therefore, Tg is g-Tg-connected if it has no nonempty proper g-Tg-
set Sg ∈ g-O

[
Tg

]
∩ g-K

[
Tg

]
. Hence, these theorems follow:

Theorem 3.3. If a Tg-space Tg = (Ω,Tg) has a nonempty proper g-Tg-open-closed

set Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
, then it is a g-T ⟨D⟩

g -space g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
:

∃Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
=⇒ g-T⟨D⟩

g =
(
Ω, g-T ⟨D⟩

g

)
.(3.2)

Proof. Let Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
be a nonempty proper g-Tg-open-closed set in

Tg. Then, there exists
(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that[

Ug,ξ ⊇ Sg ⊇ ∁ (Ug,ζ)
]
∨
[
∁ (Vg,ξ) ⊇ Sg ⊇ Vg,ζ

]
.

Consequently, the following relation holds:( ⊔
λ=ξ,ζ

Ug,λ ⊇ Sg ∪ Ug,ζ ⊇ ∁ (Ug,ζ) ∪ Ug,ζ

)
∨(

∁ (Vg,ξ) ∪ Vg,ξ ⊇ Sg ∪ Vg,ξ ⊇
⊔

λ=ξ,ζ

Vg,λ

)
.

Since ∁ (Ug,ζ) ∪ Ug,ζ = Ω, Sg ∪ Ug,ζ = Ω and, consequently,
⊔

λ=ξ,ζ Ug,λ = Ω;

observe that, Ug,ξ = Sg = ∁ (Ug,ζ) because Sg ∈ g-O
[
Tg

]
∩g-K

[
Tg

]
is a nonempty

proper g-Tg-open-closed set in Tg. Since ∁ (Vg,ξ) ⊔ Vg,ξ = Ω and Sg ∈ g-O
[
Tg

]
∩

g-K
[
Tg

]
, ∁ (Vg,ξ) = Sg = Vg,ζ . Therefore, ∁ (Vg,ξ)∪Vg,ξ = Sg∪Vg,ξ =

⊔
λ=ξ,ζ Vg,λ.

By substitutions, it consequently follows that( ⊔
λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)
,

which was to be proved. □

The converse of the above theorem also holds as demonstrated below.
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Theorem 3.4. If g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
be a g-T ⟨D⟩

g -space, then it has a nonempty

proper g-Tg-open-closed set Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
:

∃Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
⇐= g-T⟨D⟩

g =
(
Ω, g-T ⟨D⟩

g

)
.(3.3)

Proof. Let g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
be a g-T ⟨D⟩

g -space. Then, there exists a pair(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)
.

But
⊔

λ=ξ,ζ Ug,λ = Ω implies either Ug,ξ = ∁ (Ug,ζ) or Ug,ζ = ∁ (Ug,ξ), and on

the other hand,
⊔

λ=ξ,ζ Vg,λ = Ω implies either Vg,ξ = ∁ (Vg,ζ) or Vg,ζ = ∁ (Vg,ξ).
Consequently, there exists a Tg-set Sg ⊂ Tg such that[

Ug,ξ ⊇ Sg ⊇ ∁ (Ug,ζ)
]
∨
[
∁ (Vg,ξ) ⊇ Sg ⊇ Vg,ζ

]
.

Hence, g-T⟨D⟩
g has a nonempty proper g-Tg-open-closed set Sg ∈ g-O

[
Tg

]
∩g-K

[
Tg

]
;

this completes the proof of the theorem. □

Combined together, the above theorems establish the necessary and sufficient
conditions for a Tg-space Tg = (Ω,Tg) to be g-Tg-separated and g-Tg-connected,
and hence the following corollary.

Corollary 3.5. Let Tg = (Ω,Tg) be a Tg-space. Then it is a g-T ⟨D⟩
g -space

g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
if and only if Tg has a nonempty proper g-Tg-open-closed

set Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
:

g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
⇐⇒ ∃Sg ∈ g-O

[
Tg

]
∩ g-K

[
Tg

]
.(3.4)

A g-Tg-separation is realised if the only g-Tg-sets in Tg which are both g-Tg-
open-closed sets are the improper Tg-sets ∅, Ω ⊆ Tg. The theorem follows.

Theorem 3.6. A Tg-space Tg = (Ω,Tg) is said to be a g-T ⟨D⟩
g -space g-T⟨D⟩

g =(
Ω, g-T ⟨D⟩

g

)
if the only g-Tg-sets in Tg which are both g-Tg-open-closed sets are the

improper Tg-sets ∅, Ω ⊆ Tg.

Proof. Let Sg ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
be a g-Tg-set in Tg. Then, there exists(

Ug,Vg

)
∈ g-O

[
Tg

]
× g-K

[
Tg

]
such that Ug ⊇ Sg ⊇ Vg. Consequently, ∁ (Ug) ⊆

∁ (Sg) ⊆ ∁ (Vg). Since
(
∁ (Vg) , ∁ (Ug)

)
∈ g-O

[
Tg

]
× g-K

[
Tg

]
, it follows that,

∁ (Sg) ∈ g-O
[
Tg

]
∩ g-K

[
Tg

]
. Since Sg ∩ ∁ (Sg) = ∅, implying Sg ∪ ∁ (Sg) = Ω, it

results, obviously, that,[(
Sg, ∁ (Sg)

)
∈ (∅,Ω)

]
∨
[(

Sg, ∁ (Sg)
)
∈ (Ω, ∅)

]
.

This completes the proof of the theorem. □

The logical relationship between Tg-connectedness and g-Tg-connectedness is
contained in the following theorem.

Theorem 3.7. If Tg = (Ω,Tg) be a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
, then it

is also a T
⟨C⟩
g -space T

⟨C⟩
g =

(
Ω,T

⟨C⟩
g

)
:

g-T⟨C⟩
g =

(
Ω, g-T ⟨C⟩

g

)
=⇒ T

⟨C⟩
g =

(
Ω,T

⟨C⟩
g

)
.(3.5)
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Proof. Let Tg = (Ω,Tg) be a T
⟨D⟩
g -space T

⟨D⟩
g =

(
Ω,T

⟨D⟩
g

)
. Then it has a

nonempty proper Tg-open-closed set Sg ∈ O [Tg] ∩ K [Tg] in T
⟨D⟩
g . Since O [Tg] ∩

K [Tg] ⊆ g-O [Tg] ∩ g-K [Tg], it follows that, Sg ∈ g-O [Tg] ∩ g-K [Tg] in T
⟨D⟩
g .

This proves that T
⟨D⟩
g is also a g-T ⟨D⟩

g -space g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
. In other

words, if Tg is a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
, then it is also a T

⟨C⟩
g -space

T
⟨C⟩
g =

(
Ω,T

⟨C⟩
g

)
, and the proof is complete. □

By virtue of the above theorem, the following corollary follows.

Corollary 3.8. If Tg = (Ω,Tg) be a T
⟨D⟩
g -space T

⟨D⟩
g =

(
Ω,T

⟨D⟩
g

)
, then it is also

a g-T ⟨D⟩
g -space g-T⟨D⟩

g =
(
Ω, g-T ⟨D⟩

g

)
:

g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
⇐= T

⟨D⟩
g =

(
Ω,T

⟨D⟩
g

)
.(3.6)

A Tg-set Sg ⊂ Tg of a Tg-space Tg = (Ω,Tg) is g-Tg-connected if and only if it
is g-Tg-connected as a Tg-subspace. The theorem follows.

Theorem 3.9. If Sg ⊂ Tg,Γ is a Tg-set of a Tg-subspace Tg,Γ = (Γ,Tg,Γ) of a
Tg-space Tg,Ω = (Ω,Tg,Ω), then Sg is g-Tg,Γ-connected if and only if it is g-Tg,Ω-
connected:

Sg ∈ g-Q
[
Tg,Γ

]
⇐⇒ Sg ∈ g-Q

[
Tg,Ω

]
.(3.7)

Proof. – Necessity. Let Sg ⊂ Tg,Γ be a Tg-set of a Tg-subspace Tg,Γ = (Γ,Tg,Γ)
of a Tg-space Tg,Ω = (Ω,Tg,Ω) and suppose that Sg ∈ g-Q

[
Tg,Γ

]
. Then, Sg /∈

g-D
[
Tg,Γ

]
and, hence, for all

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg,Γ

]
× g-K

[
Tg,Γ

]
,

¬
( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Vg,λ = Sg

)
,

But, Tg,Γ × ¬Tg,Γ ⊆ Tg,Ω × ¬Tg,Ω, and on the other hand, opg,Γ (·) ∈ Lg

[
Γ
]

implies opg,Γ (Og,λ) = Γ ∩ opg,Ω (Og,λ) = opg,Ω (Og,λ) and ¬ opg,Γ (Kg,λ) = Γ ∩
¬ opg,Ω (Kg,λ) = ¬ opg,Ω (Kg,λ) for any (Og,Kg) ∈ Tg,Γ×¬Tg,Γ, where opg,Ω (·) ∈
Lg

[
Ω
]
. Thus, for all

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
,

¬
( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Vg,λ = Sg

)
.

Consequently, Sg /∈ g-D
[
Tg,Ω

]
and, hence, Sg ∈ g-Q

[
Tg,Ω

]
.

– Sufficiency. Conversely, suppose that Sg ∈ g-Q
[
Tg,Ω

]
. This implies that

Sg /∈ g-D
[
Tg,Ω

]
. Therefore, for all

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
,

¬
( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Vg,λ = Sg

)
.

But the statement
(
Ug,λ,Vg,λ

)
λ=ξ,ζ

⊆
(
Sg,Sg

)
⊆ Tg,Γ × Tg,Γ implies, evidently,(

Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg,Γ

]
× g-K

[
Tg,Γ

]
, since opg,Γ (·) ∈ Lg

[
Γ
]
is equivalent

to opg,Γ (·) = Γ ∩ opg,Ω (·) ∈ Lg

[
Ω
]
. Consequently, for all

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈
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g-O
[
Tg,Γ

]
× g-K

[
Tg,Γ

]
,

¬
( ⊔

λ=ξ,ζ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Vg,λ = Sg

)
,

Therefore, Sg /∈ g-D
[
Tg,Γ

]
and, thus, Sg ∈ g-Q

[
Tg,Γ

]
. □

There are some very fundamental Tg-properties of g-Tg-connected sets which
follow from the next theorem.

Theorem 3.10. If Sg ∈ g-Q
[
Tg

]
be a g-Tg-connected set of a g-T ⟨D⟩

g -space

g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
, then there exists

(
Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that ( ∨

λ=ξ,ζ

(
Sg ⊆ Ug,λ

))∨( ∨
λ=ξ,ζ

(
Sg ⊆ Vg,λ

))
.(3.8)

Proof. Let Sg ∈ g-Q
[
Tg

]
be a g-Tg-connected set in a g-T ⟨D⟩

g -space g-T⟨D⟩
g =(

Ω, g-T ⟨D⟩
g

)
. Then, for all

(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
,

¬
( ⊔

λ=ξσ,ζσ

Ug,λ = Sg

)∧
¬
( ⊔

λ=ξσ,ζσ

Vg,λ = Sg

)

⇒ ¬
( ⋂

λ=ξσ,ζσ

Ug,λ = ∅
)∧

¬
( ⋂

λ=ξσ,ζσ

Vg,λ = ∅
)

⇒
( ⋂

λ=ξσ,ζσ

Ug,λ ̸= ∅
)∧( ⋂

λ=ξσ,ζσ

Vg,λ ̸= ∅
)
.

Since Tg is a g-T ⟨D⟩
g -space g-T⟨D⟩

g =
(
Ω, g-T ⟨D⟩

g

)
, there exists, therefore, pairs(

Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)

⇒
( ⊔

λ=ξ,ζ

(
Sg ∩ Ug,λ

)
= Sg

)∨( ⊔
λ=ξ,ζ

(
Sg ∩ Vg,λ

)
= Sg

)

⇒
( ∨

λ=ξ,ζ

(
Sg ⊆ Ug,λ

))∨( ∨
λ=ξ,ζ

(
Sg ⊆ Vg,λ

))
.

Since
⋂

λ=ξσ,ζσ
Ug,λ,

⋂
λ=ξσ,ζσ

Vg,λ ̸= ∅ hold, and, moreover, Tg is a g-T ⟨D⟩
g -space

g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
, the proof at once follows. □

Equivalently stated, the following proposition states that, any Tg-set which is
contained in a g-Tg-connected set is also a g-Tg-connected.

Proposition 1. Let Rg, Sg ⊂ Tg be Tg-sets in a Tg-space Tg = (Ω,Tg). If
Sg ∈ g-Q

[
Tg

]
and Rg satisfies[

Rg ⊆ opg (Sg)
]
∨
[
Rg ⊆ ¬ opg (Sg)

]
,(3.9)

then Rg ∈ g-Q
[
Tg

]
.
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Proof. Let Rg, Sg ⊂ Tg be Tg-sets in a Tg-space Tg = (Ω,Tg), where Sg ∈
g-Q

[
Tg

]
, and, by hypothesis, Rg ∈ g-D

[
Tg

]
. Since Rg ∈ g-D

[
Tg

]
, there exists,

then,
(
Ug,λ,Vg,λ

)
λ=ξρ,ζρ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that,( ⊔

λ=ξρ,ζρ

Ug,λ = Rg

)∨( ⊔
λ=ξρ,ζρ

Vg,λ = Rg

)
.

Since Sg ∈ g-Q
[
Tg

]
, it must be contained in either of Ug,ξρ , Ug,ζρ , or in either of

Vg,ξρ , Vg,ζρ . Consequently,( ∨
λ=ξρ,ζρ

(
Sg ⊆ Ug,λ

))∨( ∨
η=ξρ,ζρ

(
Sg ⊆ Vg,η

))

⇒
( ∨

λ=ξρ,ζρ

(
opg (Sg) ⊆ Ug,(ρ,λ)

))∨( ∨
η=ξρ,ζρ

(
¬ opg (Sg) ⊆ Vg,(ρ,η)

))
,

where Ug,(ρ,λ) = opg (Ug,λ) and Vg,(ρ,η) = ¬ opg (Vg,η) for every pair (λ, η) ∈
{(ξρ, ζρ) , (ζρ, ξρ)}. With no loss of generality, let it be supposed that[

opg (Sg) ⊆ Ug,(ρ,λ)

]
∨
[
¬ opg (Sg) ⊆ Vg,(ρ,η)

]
holds for a (λ, η) ∈ {(ξρ, ζρ) , (ζρ, ξρ)}. Then, since the relations Rg =

⊔
σ=λ,η Ug,σ ⊆⊔

σ=λ,η Ug,(ρ,σ) and ∅ =
⋂

σ=λ,η Vg,σ ⊇
⋂

σ=λ,η Vg,(ρ,σ) hold, it follows that,

opg (Sg) ∩ Ug,η ⊆ Ug,(ρ,λ) ∩ Ug,η ⊆
⋂

σ=λ,η

Ug,(ρ,σ) = ∅;

¬ opg (Sg) ∩ Vg,λ ⊆ Vg,(ρ,η) ∩ Vg,λ ⊆
⋂

σ=λ,η

Vg,σ = ∅.

Therefore, opg (Sg)∩Ug,η, ¬ opg (Sg)∩Vg,λ = ∅. On the other hand, since Rg ⊂ Tg

satisfies
[
Rg ⊆ opg (Sg)

]
∨
[
Rg ⊆ ¬ opg (Sg)

]
, it results that,

Ug,η = Rg ∩ Ug,η = opg (Sg) ∩ Ug,η,

Vg,λ = Rg ∩ Vg,λ = ¬ opg (Sg) ∩ Ug,λ.

From these and opg (Sg) ∩ Ug,η, ¬ opg (Sg) ∩ Vg,λ = ∅, it follows that, Ug,η,

Vg,λ = ∅, which contradict the hypothesis that Rg ∈ g-D
[
Tg

]
. □

The following proposition states that, if it be given a collection of g-Tg-connected
sets with non-void intersection, then g-Tg-connectedness is preserved under the
operation of union.

Proposition 2. Let {Sg,ν : ν ∈ I∗n} ⊆ g-Q
[
Tg

]
be a collection of n ≥ 1 g-Tg-

connected sets in a Tg-space Tg = (Ω,Tg). If
⋂

ν∈I∗
n

Sg,ν ̸= ∅, then
⋃

ν∈I∗
n

Sg,ν ∈
g-Q

[
Tg

]
in Tg:⋂

ν∈I∗
n

(
Sg,ν ∈ g-Q

[
Tg

])
̸= ∅ =⇒

⋃
ν∈I∗

n

Sg,ν ∈ g-Q
[
Tg

]
.(3.10)

Proof. Let {Sg,ν : ν ∈ I∗n} ⊆ g-Q
[
Tg

]
be a collection of n ≥ 1 g-Tg-connected

sets in a Tg-space Tg = (Ω,Tg), and suppose, by hypothesis, that
⋃

ν∈I∗
n

Sg,ν ∈
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g-D
[
Tg

]
, where

⋂
ν∈I∗

n
Sg,ν ̸= ∅. Since

⋃
ν∈I∗

n
Sg,ν ∈ g-D

[
Tg

]
, there exists, then,(

Ug,λ,Vg,λ

)
λ=ξ,ζ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξ,ζ

Ug,λ =
⋃

ν∈I∗
n
Sg,ν

)∨( ⊔
λ=ξ,ζ

Vg,λ =
⋃

ν∈I∗
n
Sg,ν

)
.

Since
⋂

ν∈I∗
n

Sg,ν ̸= ∅, there exists a unit Tg-set {η} ⊂ Tg satisfying {η} ⊆⋂
ν∈I∗

n
Sg,ν ̸= ∅. But, by hypothesis,

⋃
ν∈I∗

n
Sg,ν ∈ g-D

[
Tg

]
. Consequently,( ∨

λ=ξ,ζ

(
{η} ⊆ Ug,λ ∩

( ⋂
ν∈I∗

n

Sg,ν

)))
∨( ∨

λ=ξ,ζ

(
{η} ⊆ Vg,λ ∩

( ⋂
ν∈I∗

n

Sg,ν

)))
.

Clearly, for every ν ∈ I∗n,( ∨
λ=ξ,ζ

(
Sg,ν ∩ Ug,λ ̸= ∅

))∨( ∨
λ=ξ,ζ

(
Sg,ν ∩ Vg,λ ̸= ∅

))

⇒
( ∨

λ=ξ,ζ

(
Sg,ν ⊆ Ug,λ

))∨( ∨
λ=ξ,ζ

(
Sg,ν ⊆ Vg,λ

))
.

Therefore,( ∨
λ=ξ,ζ

( ⋃
ν∈I∗

n

Sg,ν ⊆ Ug,λ

))∨( ∨
λ=ξ,ζ

( ⋃
ν∈I∗

n

Sg,ν ⊆ Vg,λ

))
,

which contradicts the hypothesis that
⋃

ν∈I∗
n

Sg,ν ∈ g-D
[
Tg

]
. □

Stated differently, the following proposition states that, if every two-point Tg-set
of a Tg-set is a Tg-subset of some g-Tg-connected subset of the Tg-set, then the
Tg-set is also a g-Tg-connected set.

Proposition 3. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg). If every two-
point Tg-set Qg ⊆ Sg satisfies the relation Qg ⊆ Rg ⊆ Sg, where Rg ∈ g-Q

[
Tg

]
,

then Sg ∈ g-Q
[
Tg

]
:

Qg ∩ Sg ⊇ Qg ∩ Rg ∈ g-Q
[
Tg

]
=⇒ Sg ∈ g-Q

[
Tg

]
.(3.11)

Proof. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg) and suppose that
every two-point Tg-set Qg ⊆ Sg satisfies the relation Qg ⊆ Rg ⊆ Sg, where
Rg ∈ g-Q

[
Tg

]
, and by hypothesis, Sg ∈ g-D

[
Tg

]
. Then, there exists a pair(

Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξσ,ζσ

Ug,λ = Sg

)∨( ⊔
λ=ξσ,ζσ

Vg,λ = Sg

)
.

Since Ug,λ, Vg,λ ̸= ∅ for every λ ∈ {ξσ, ζσ}, assume that

{ξ} = Qg ∩ Ug,ξσ = Qg ∩ Vg,ξσ ,

{ζ} = Qg ∩ Ug,ζσ = Qg ∩ Vg,ζσ , Qg = {ξ} ∪ {ζ} .
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In other words, Qg ⊂×λ=ξσ,ζσ
Ug,λ or Qg ⊂×λ=ξσ,ζσ

Vg,λ. Since Rg ∈ g-Q
[
Tg

]
,

for all
(
Ug,λ,Vg,λ

)
λ=ξρ,ζρ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
,

¬
( ⊔

λ=ξρ,ζρ

Ug,λ = Rg

)∧
¬
( ⊔

λ=ξρ,ζρ

Vg,λ = Rg

)

⇒ ¬
( ⊔

λ=ξρ,ζρ

(
Qg ∩ Ug,λ

)
= Qg

)∧
¬
( ⊔

λ=ξρ,ζρ

(
Qg ∩ Vg,λ

)
= Qg

)
⇒ ¬

(
Qg = Qg

)
∧ ¬

(
Qg = Qg

)
,

which contradicts the hypothesis that Sg ∈ g-D
[
Tg

]
. □

A Tg-space is g-Tg-connected if any two-point Tg-set can be enclosed in some
g-Tg-connected set, and hence the following proposition.

Proposition 4. If any two-point Tg-set Qg ⊂ Tg can be enclosed in some g-Tg-

connected set Sg ∈ g-Q [Tg], then the Tg-space Tg = (Ω,Tg) is a g-T ⟨C⟩
g -space

g-T⟨C⟩
g =

(
Ω, g-T ⟨C⟩

g

)
:(

∀Qg ⊂ Tg

)(
∃Sg = Sg ∪ Qg ∈ g-Q [Tg]

)
=⇒ g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
.

(3.12)

Proof. Let ξ ∈ Tg be fixed and, for every ζ ∈ Tg, let Qg(ξ,ζ) ⊂ Tg be a two-
point g-Tg-connected set in a Tg-space Tg = (Ω,Tg) containing ξ, ζ ∈ Tg. Then,⋃

ζ∈Tg
Qg(ξ,ζ) ∈ g-Q [Tg] and, by hypothesis, it is the entire Tg-space Tg. Hence

Tg is a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
. □

The theorem given below states that, any pair of nonempty g-Tg-sets which is
contained in some pair of g-Tg-separated sets is also g-Tg-connected.

Theorem 3.11. Let Tg = (Ω,Tg) be a Tg-space. If (Sg,α,Sg,β) ∈ g-D [Tg] ×
g-D [Tg] be a pair of g-Tg-separated sets and (Rg,α,Rg,β) ∈ g-S [Tg] × g-S [Tg] be
a pair of nonempty g-Tg-sets satisfying the statement (Rg,α,Rg,β) ⊆ (Sg,α,Sg,β),
then (Rg,α,Rg,β) ∈ g-D [Tg]× g-D [Tg]:

(Sg,λ = Rg,λ ∪ Sg,λ)λ=α,β ∈ g-D [Tg] =⇒ (Rg,λ)λ=α,β ∈ g-D [Tg] .

(3.13)

Proof. Let (Sg,α,Sg,β) ∈ g-D [Tg] × g-D [Tg] be a pair of g-Tg-separated sets
and let (Rg,α,Rg,β) ∈ g-S [Tg] × g-S [Tg] be a pair of nonempty g-Tg-sets satis-
fying (Rg,α,Rg,β) ⊆ (Sg,α,Sg,β) in a Tg-space Tg = (Ω,Tg). Then, there exists(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξσ,ζσ

Ug,λ =
⊔

η=α,β

Sg,η

)∨( ⊔
λ=ξσ,ζσ

Vg,λ =
⊔

η=α,β

Sg,η

)

⇔
( ⋂

λ=ξσ,ζσ

Ug,λ = ∅
)∨( ⋂

λ=ξσ,ζσ

Vg,λ = ∅
)
.

Since (Rg,α,Rg,β) ⊆ (Sg,α,Sg,β),
⋂

η=α,β Rg,η ⊆
⋂

η=α,β Sg,η. If the relation⊔
η=α,β Sg,η =

⊔
λ=ξσ,ζσ

Ug,λ is satisfied, then
⋂

η=α,β Rg,η ⊆
⋂

λ=ξσ,ζσ
Ug,λ = ∅; if
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η=α,β Sg,η =

⊔
λ=ξσ,ζσ

Vg,λ, then
⋂

η=α,β Rg,η ⊆
⋂

λ=ξσ,ζσ
Vg,λ = ∅ holds. Hence,

there exists
(
Ug,λ,Vg,λ

)
λ=ξρ,ζρ

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=ξρ,ζρ

Ug,λ =
⊔

η=α,β

Rg,η

)∨( ⊔
λ=ξρ,ζρ

Vg,λ =
⊔

η=α,β

Rg,η

)
.

This proves the theorem. □

The basic relation between g-Tg-connectedness and g-Tg-separateness follows:

Theorem 3.12. In order that a Tg-set Sg ⊂ Tg of a Tg-space Tg = (Ω,Tg) be
g-Tg-connected it is necessary and sufficient that there exists no (Rg,α,Rg,β) ∈
g-O

[
Tg

]
×g-O

[
Tg

]
or (Sg,α,Sg,β) ∈ g-K

[
Tg

]
×g-K

[
Tg

]
such that it be expressible

as ( ⊔
σ=α,β

Rg,σ = Sg

)∨( ⊔
σ=α,β

Sg,σ = Sg

)
.(3.14)

Proof. – Necessity. Let Sg ⊂ Tg be a Tg-set in the Tg-space Tg = (Ω,Tg) and let
there exists (Rg,λ,Sg,λ)λ=α,β ∈ g-O

[
Tg

]
× g-K

[
Tg

]
such that( ⊔

σ=α,β

Rg,σ = Sg

)∨( ⊔
σ=α,β

Sg,σ = Sg

)
.

Since (Rg,λ,Sg,λ)λ=α,β ∈ g-O
[
Tg

]
× g-K

[
Tg

]
, there exists

(
Ug,λ,Vg,λ

)
λ=α,β

∈
g-O

[
Tg

]
×g-K

[
Tg

]
such that

(
Rg,λ,Sg,λ

)
λ=α,β

=
(
Ug,λ,Vg,λ

)
λ=α,β

. Consequently,( ⊔
λ=α,β

Ug,λ = Sg

)∨( ⊔
λ=α,β

Vg,λ = Sg

)
.

This shows that (Rg,λ,Sg,λ)λ=α,β ∈ g-D
[
Tg

]
× g-D

[
Tg

]
. Hence, Sg ∈ g-D

[
Tg

]
.

The condition of the theorem is, therefore, necessary.

– Sufficiency. Conversely, suppose that Sg ∈ g-D
[
Tg

]
, there exists, then, a pair(

Ug,λ,Vg,λ

)
λ=α,β

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that( ⊔

λ=α,β

Ug,λ = Sg

)∨( ⊔
λ=α,β

Vg,λ = Sg

)
.

But,
(
Ug,λ,Vg,λ

)
λ=α,β

∈ g-O
[
Tg

]
× g-K

[
Tg

]
. Therefore, it follows that there ex-

ists
(
Rg,λ,Sg,λ

)
λ=α,β

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that the relations expressible by(

Rg,λ,Sg,λ

)
λ=α,β

=
(
Ug,λ,Vg,λ

)
λ=α,β

hold. Hence, the Tg-set Sg ⊂ Tg is express-

ible as ( ⊔
σ=α,β

Rg,σ = Sg

)∨( ⊔
σ=α,β

Sg,σ = Sg

)
.

The condition of the theorem is, therefore, sufficient. □

If Sg ∈ g-O
[
Tg

]
, then g-Tg-open sets in Sg are clearly also in g-O

[
Tg

]
, and

conversely. Likewise, if Sg ∈ g-K
[
Tg

]
, then g-Tg-closed sets in Sg are clearly

also in ∈ g-K
[
Tg

]
, and conversely. Hence, an immediate consequence of the above

theorem is the following corollary:
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Corollary 3.13. Let Sg ∈ g-S
[
Tg

]
be a g-Tg-set in a Tg-space Tg = (Ω,Tg).

Then:

– i. If Sg ∈ g-O
[
Tg

]
, then in order that Sg ∈ g-Q

[
Tg

]
, it is necessary and

sufficient that there exists no (Rg,α,Rg,β) ∈ g-O
[
Tg

]
× g-O

[
Tg

]
such that

it be expressible as Sg =
⊔

λ=α,β Rg,λ.

– ii. If Sg ∈ g-K
[
Tg

]
, then in order that Sg ∈ g-Q

[
Tg

]
, it is necessary and

sufficient that there exists no (Rg,α,Rg,β) ∈ g-K
[
Tg

]
× g-K

[
Tg

]
such that

it be expressible as Sg =
⊔

λ=α,β Rg,λ.

The following remark contains classifications of g-Tg-connectedness with respect
to openness and closedness.

Remark 3.14. Suppose
⊔

σ=α,β Rg,σ = Sg hold, then it is no error to call Sg a

g-Tg-connected open set if (Rg,α,Rg,β) ∈ g-O
[
Tg

]
×g-O

[
Tg

]
, and a g-Tg-connected

closed set if (Rg,α,Rg,β) ∈ g-K
[
Tg

]
× g-K

[
Tg

]
.

From the above corollary, it would appear that g-Tg-connectedness depends on
the existence of certain g-Tg-separated sets or, equivalently, on the existence of
certain disjoint g-Tg-open, closed sets. As another simple ways of characterizing
g-Tg-connectedness, the proposition follows.

Proposition 5. A Tg-space Tg = (Ω,Tg) is a g-T ⟨D⟩
g -space g-T⟨D⟩

g =
(
Ω, g-T ⟨D⟩

g

)
if and only if any one of the following statements holds:

– i. ∃ (Sg,α,Sg,β) ∈
(
g-D

[
Tg

]
\ {∅}

)2
:

⊔
λ=α,β Sg,λ = Ω;

– ii. ∃ (Sg,α,Sg,β) ∈
(
g-O

[
Tg

]
\ {∅}

)2
:

⊔
λ=α,β Sg,λ = Ω;

– iii. ∃ (Sg,α,Sg,β) ∈
(
g-K

[
Tg

]
\ {∅}

)2
:

⊔
λ=α,β Sg,λ = Ω.

Proof. – Necessity. Let g-T⟨D⟩
g =

(
Ω, g-T ⟨D⟩

g

)
be a g-T ⟨D⟩

g -space. Then, there

exists Sg ∈
(
g-O

[
Tg

]
∩ g-K

[
Tg

])
\ {∅,Ω}. Consequently, there exists

(
Ug,Vg

)
∈

g-O
[
Tg

]
× g-K

[
Tg

]
such that

Ug ⊇ Sg ⊇ Vg ⇒ ∁ (Ug) ⊆ ∁ (Sg) ⊆ ∁ (Vg) .

Therefore, ∁ (Sg) ∈
(
g-O

[
Tg

]
∩ g-K

[
Tg

])
\ {∅,Ω}. Hence,(

Sg, ∁ (Sg)
)
∈
(
g-D

[
Tg

]
\ {∅}

)2 ∪ (
g-O

[
Tg

]
\ {∅}

)2 ∪ (
g-K

[
Tg

]
\ {∅}

)2
.

– Sufficiency. Conversely, suppose that

∃ (Sg,α,Sg,β) ∈
(
g-D

[
Tg

]
\ {∅}

)2 ∪ (
g-O

[
Tg

]
\ {∅}

)2 ∪ (
g-K

[
Tg

]
\ {∅}

)2
,

such that Ω =
⊔

λ=α,β Sg,λ. Then if (Sg,α,Sg,β) ∈
(
g-D

[
Tg

]
\ {∅}

)2
, there exists(

Ug,λ,Vg,λ

)
λ=α,β

∈ g-O
[
Tg

]
× g-K

[
Tg

]
such that,( ⊔

λ=α,β

Ug,λ =
⊔

λ=α,β

Sg,λ

)∨( ⊔
λ=α,β

Vg,λ =
⊔

λ=α,β

Sg,λ

)

⇒
( ⊔

λ=α,β

Ug,λ = Ω

)∨( ⊔
λ=α,β

Vg,λ = Ω

)
.
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If (Sg,α,Sg,β) ∈
(
g-O

[
Tg

]
\ {∅}

)2
, there exists

(
Ug,α,Ug,β

)
∈ g-O

[
Tg

]
× g-O

[
Tg

]
such that the statement

(
Sg,α,Sg,β

)
⊆

(
Ug,α,Ug,β

)
holds. Consequently, it follows

that Ω =
⊔

λ=α,β Sg,λ ⊆
⊔

λ=α,β Ug,λ. Hence,
⊔

λ=α,β Ug,λ = Ω.

If (Sg,α,Sg,β) ∈
(
g-K

[
Tg

]
\ {∅}

)2
, then there exists

(
Vg,α,Vg,β

)
∈ g-K

[
Tg

]
×

g-K
[
Tg

]
such that the statement

(
Sg,α,Sg,β

)
⊇

(
Vg,α,Vg,β

)
holds. Thus, it results

that ∅ =
⋂

λ=α,β Sg,λ ⊇
⋂

λ=α,β Vg,λ. Hence,
⊔

λ=α,β Vg,λ = Ω. These complete
the proof of the proposition. □

The following lemma is a useful tool for the proof of the theorem following it.

Lemma 3.15. Let Tg = (Ω,Tg) be a Tg-space, and let (Sg,α,Sg,β) ∈ g-Q
[
Tg

]
×

g-Q
[
Tg

]
be a pair of g-Tg-connected sets in Tg. If there exists a unit Tg-set {ξ} ⊂

Tg such that
⋂

σ=α,β Sg,σ = {ξ}, then
⋃

σ=α,β Sg,σ ∈ g-Q
[
Tg

]
in Tg:

∃ {ξ} =
⋂

σ=α,β

(
Sg,σ ∈ g-Q

[
Tg

])
⇒

⋃
σ=α,β

Sg,σ ∈ g-Q
[
Tg

]
.(3.15)

Proof. Let Tg = (Ω,Tg) be a Tg-space, let Sg =
⋃

σ=α,β Sg,σ, and suppose

that there exists a unit Tg-set {ξ} ⊂ Tg such that {ξ} =
⋂

σ=α,β Sg,σ, where

(Sg,α,Sg,β) ∈ g-Q
[
Tg

]
× g-Q

[
Tg

]
, and assume that( ⊔

σ=α,β

Ug,σ = Sg

)∨( ⊔
σ=α,β

Vg,σ = Sg

)
,

for some
(
Ug,λ,Vg,λ

)
λ=α,β

∈ g-O
[
Tg

]
× g-K

[
Tg

]
. Since {ξ} ⊆ Sg,( ∨

σ=α,β

(
{ξ} ⊆ Ug,σ

))∨( ∨
σ=α,β

(
{ξ} ⊆ Vg,σ

))
,

meaning that, with respect to
(
Ug,α,Ug,β

)
∈ g-O

[
Tg

]
× g-O

[
Tg

]
, either ξ ∈ Ug,α

or ξ ∈ Ug,β ; with respect to
(
Vg,α,Vg,β

)
∈ g-K

[
Tg

]
× g-K

[
Tg

]
, either ξ ∈ Vg,α or

ξ ∈ Vg,β . Therefore, set (
{ξ} ⊆ Ug,α

)
∨
(
{ξ} ⊆ Vg,α

)
.

Clearly, Ug,β , Vg,β ̸= ∅; Ug,β ⊆
⊔

σ=α,β Ug,σ = Sg and, Vg,β ⊆
⊔

σ=α,β Vg,σ = Sg.

Therefore, for at least a σ ∈ {α, β},(
Ug,β ∩ Sg,σ ̸= ∅

)
∨
(
Vg,β ∩ Sg,σ ̸= ∅

)
.

Choose a η ∈ {α, β}. Then, for every σ ∈ {α, β},(
Ug,σ ∩ Sg,η ⊆ Ug,σ

)
∨
(
Vg,σ ∩ Sg,η ⊆ Vg,σ

)
.

Therefore, with respect to
(
Ug,α,Ug,β

)
∈ g-O

[
Tg

]
× g-O

[
Tg

]
, Ug,α ∩ Sg,η and

Ug,β ∩ Sg,η are g-Tg-separated sets; with respect to
(
Vg,α,Vg,β

)
∈ g-K

[
Tg

]
×

g-K
[
Tg

]
, Vg,α ∩ Sg,η and Vg,β ∩ Sg,η are also g-Tg-separated sets. Consequently,(

Sg,η ∩
( ⊔

σ=α,β

Ug,σ

)
= Sg,η

)∨(
Sg,η ∩

( ⊔
σ=α,β

Vg,σ

)
= Sg,η

)

⇒
( ⊔

σ=α,β

(
Ug,σ ∩ Sg,η

)
= Sg,η

)∨( ⊔
σ=α,β

(
Vg,σ ∩ Sg,η

)
= Sg,η

)
.
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Therefore, (Sg,α,Sg,β) /∈ g-Q
[
Tg

]
× g-Q

[
Tg

]
, contrary to hypothesis. Hence, it

follows that
⋃

σ=α,β Sg,σ must be g-Tg-connected in Tg, that is
⋃

σ=α,β Sg,σ ∈
g-Q

[
Tg

]
. □

For the case of n ≥ 1 g-Tg-connected sets, the theorem follows.

Theorem 3.16. Let Sg,1, Sg,2, . . ., Sg,n ∈ g-Q
[
Tg

]
be n ≥ 1 g-Tg-connected sets

in Tg-space Tg = (Ω,Tg). If, for every (α, β) ∈ I∗n × I∗n, there exists a unit Tg-set
{ξ} ⊂ Tg such that

⋂
σ=α,β Sg,σ = {ξ}, then

⋃
σ∈I∗

n
Sg,σ ∈ g-Q

[
Tg

]
in Tg:

∃ {ξ} =
⋂

σ∈{α,β}⊆I∗
n×I∗

n

(
Sg,σ ∈ g-Q

[
Tg

])
=⇒

⋃
σ∈I∗

n

Sg,σ ∈ g-Q
[
Tg

]
.

(3.16)

Proof. Let Tg = (Ω,Tg) be a Tg-space, let Sg =
⋃

σ∈I∗
n

Sg,σ, and suppose that, for

every (α, β) ∈ I∗n×I∗n, there exists a unit Tg-set {ξ} ⊂ Tg such that
⋂

σ=α,β Sg,σ =

{ξ}, where Sg,1, Sg,2, . . ., Sg,n ∈ g-Q
[
Tg

]
are n ≥ 1 g-Tg-connected sets in Tg. If

(ξα, ξβ) ∈ Sg×Sg be any pair of elements of Sg, then there is a pair (Sg,α,Sg,β) ∈
g-Q

[
Tg

]
× g-Q

[
Tg

]
of g-Tg-connected sets such that (ξα, ξβ) ∈ (Sg,α,Sg,β). Set

Qg,(α,β) = {ξα, ξβ} and Rg,(α,β) =
⋃

σ=α,β Sg,σ; clearly,
⋃

σ=α,β Sg,σ ̸= ∅ by

hypothesis. Then, for every (α, β) ∈ I∗n × I∗n, the relation Qg,(α,β) ⊆ Rg,(α,β) ⊆ Sg

holds. Since, for every (α, β) ∈ I∗n × I∗n, there exists a unit Tg-set {ξ} ⊂ Tg such
that

⋂
σ=α,β Sg,σ = {ξ}, it follows that Rg,(α,β) =

⋃
σ=α,β Sg,σ ∈ g-Q

[
Tg

]
in Tg.

Since, for every (α, β) ∈ I∗n × I∗n, Qg,(α,β) ⊆ Sg is a two-point Tg-set satisfying the

relation Qg,(α,β) ⊆ Rg,(α,β) ⊆ Sg, where Rg,(α,β) ∈ g-Q
[
Tg

]
in Tg, it follows that

Sg =
⋃

σ∈I∗
n

Sg,σ ∈ g-Q
[
Tg

]
in Tg. This proves the theorem. □

When a Tg-space Tg = (Ω,Tg) is g-Tg-separated, it is natural that we should
attempt to obtain some information about the various g-Tg-connected sets into
which it can be g-Tg-separated. The maximal g-Tg-connected sets of the Tg-space
Tg = (Ω,Tg) are particularly interesting.

Definition 3.17. If ζ ∈ Sg ⊂ Tg is a point of a Tg-set in a Tg-space Tg = (Ω,Tg),
then

g-CSg
[ζ]

def
=

{
ξ ∈ Sg :

(
∃Rg ∈ g-Q

[
Tg

])[
(ξ, ζ) ∈ R2

g ⊆ S 2
g

]}
(3.17)

is called the ”g-Tg-component of Sg corresponding to ζ.”

According to this definition, a g-Tg-component is nonempty, g-Tg-connected,
and is not a proper g-Tg-set of any g-Tg-connected set of a Tg-space. The theorem
follows.

Theorem 3.18. For each point ζ ∈ Tg in a Tg-space Tg = (Ω,Tg), the g-Tg-
component g-CSg

[ζ] of Sg corresponding to ζ is the largest g-Tg-connected set in
Tg which contains the point ζ:(

∀ζ ∈ Tg

)(
∄Rg ∈ g-Q

[
Tg

])[
Rg ⊃ g-CSg

[ζ]
]
.(3.18)

Proof. Let (ξ, ζ) ∈
(
Rg,ζ \ {ζ}

)
× Rg,ζ in a Tg-space Tg = (Ω,Tg), where Rg,ζ ∈

g-Q [Tg] is any g-Tg-connected set which contains ζ ∈ Tg, and ξ ∈ Rg,ζ . Clearly,
Qg,(ξ,ζ) = {ξ, ζ} ⊆ Rg,ζ and, therefore, ξ ∈ g-CSg

[ζ], implying Rg,ζ ⊆ g-CSg
[ζ].

To prove the g-Tg-connectedness of g-CSg
[ζ], consider an arbitrary point η ∈
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g-CSg
[ζ]. Since Qg,(η,ζ) = {η, ζ} ⊆ g-CSg

[ζ], there exists a g-Tg-connected Rg,η ∈
g-Q [Tg] such that Qg,(η,ζ) = {η, ζ} ⊆ Rg,η. Therefore, Rg,η ⊆ g-CSg

[ζ] and,

consequently, g-CSg
[ζ] =

⋃
η∈g-CSg

[ζ] Rg,η. But, this is the union of the collection{
Rg,η : η ∈ g-CSg

[ζ]
}
⊆ g-Q

[
Tg

]
of g-Tg-connected sets with a common point

ζ ∈ Tg. Hence, g-CSg
[ζ] ∈ g-Q

[
Tg

]
. □

In a Tg-space, g-Tg-components are g-T-closed sets, as demonstrated in the
following theorem.

Theorem 3.19. For each point ζ ∈ Tg in a Tg-space Tg = (Ω,Tg), the g-Tg-
component g-CSg

[ζ] ⊂ Tg of Sg corresponding to ζ is a g-T-closed set of Tg:(
∀ζ ∈ Tg

)[
g-CSg

[ζ] ∈ g-K
[
Tg

]]
.(3.19)

Proof. Let g-CSg
[ζ] ⊂ Tg be the g-Tg-component of Sg corresponding to ζ ∈ Tg.

Then, g-CSg
[ζ] ∈ g-Q [Tg] is the largest g-Tg-connected set in Tg containing the

point ζ. Suppose that ξ ∈ ¬ opg
(
g-CSg

[ζ]
)
. Since ¬ opg

(
g-CSg

[ζ]
)
∈ g-Q [Tg]

is a g-Tg-connected set, and g-CSg
[ζ] is the largest g-Tg-connected set in Tg

which contains the point ζ, Qg,(ξ,ζ) = {ξ, ζ} ⊆ g-CSg
[ζ]. Hence, g-CSg

[ζ] ⊇
¬ opg

(
g-CSg

[ζ]
)
, meaning that g-CSg

[ζ] must be a g-Tg-closed set in Tg. This
proves the theorem. □

A central fact about the g-Tg-components of a Tg-space is that, to each point
ζ ∈ Tg in a Tg-space Tg = (Ω,Tg) there corresponds a unique g-Tg-component
g-CSg

[ζ] of Sg. This fact is contained in the following theorem.

Theorem 3.20. The class
{
g-CSg

[ζ] : ζ ∈ Tg

}
of g-Tg-components of a Tg-space

Tg = (Ω,Tg) forms a partition of Tg:{
g-CSg

[ζ] : ζ ∈ Tg

}
=⇒

⊔
ζ∈Tg

g-CSg
[ζ] = Ω.(3.20)

Proof. Let
{
g-CSg

[ζ] : ζ ∈ Tg

}
be the class of g-Tg-components of a Tg-space

Tg = (Ω,Tg). Clearly, Ω =
⋃

ζ∈Tg
g-CSg

[ζ]. Let η ∈ g-CSg
[ζ] ∩ g-CSg

[ξ]. Then,

since g-CSg
[ζ], g-CSg

[ξ] ∈ g-Q
[
Tg

]
and contain the point η ∈ Tg, it follows that,

g-CSg
[η] ⊇ g-CSg

[ζ] and g-CSg
[η] ⊇ g-CSg

[ξ]. But g-CSg
[ζ], g-CSg

[ξ] are

g-Tg-components and, hence, g-CSg
[ζ] = g-CSg

[η] = g-CSg
[ξ]. This shows that

distinct g-Tg-components are disjoint or, equivalently, g-CSg
[ζ] ∩ g-CSg

[ξ] ̸= ∅
implies g-CSg

[ζ] = g-CSg
[ξ]. □

By virtue of this theorem, it thus follows that, each ζ ∈ Tg belongs to a unique
g-Tg-component g-CSg

[ζ] of Sg. The corollary follows.

Corollary 3.21. For each point ζ ∈ Tg in a Tg-space Tg = (Ω,Tg), there corre-
sponds a unique g-Tg-component g-CSg

[ζ] of Sg containing it:(
∀ζ ∈ Tg

)(
∃! g-CSg

[ζ] ∈ g-Q
[
Tg

])[
ζ ∈ g-CSg

[ζ]
]
.(3.21)

A Tg-space that is g-Tg-connected has at most one g-Tg-component, as demon-
strated in the following proposition.
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Proposition 6. If Tg = (Ω,Tg) be a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
, then it

has at most one g-Tg-component g-CΩ [ζ] = Ω:

g-T⟨C⟩
g =

(
Ω, g-T ⟨C⟩

g

)
⇐⇒ ∃! g-CΩ [ζ] = Ω.(3.22)

Proof. Let Tg = (Ω,Tg) be a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
, and let it be sup-

posed that it has α ∈ I∗∞ g-Tg-components g-CΩ [ζ1], g-CΩ [ζ2], . . ., g-CΩ [ζα]. Then,⊔
µ∈I∗

α
g-CΩ [ζµ] = Ω because

⋂
µ∈I∗

α
g-CΩ [ζµ] = ∅. Hence, Tg is g-Tg-separated,

which contradicts the fact that Tg is a g-T ⟨C⟩
g -space g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
. □

The combination of an additional concept called path with the notion of g-Tg-
connectedness will bring forth a further refinement of g-Tg-connectedness called
pathwise g-Tg-connectedness.

Definition 3.22. A path from an initial point ξ ∈ Tg to a terminal point ζ ∈ Tg

in a Tg-space Tg = (Ω,Tg) is a ([0, 1] ,Tg)-continuous map φg,ζ : [0, 1] −→ Tg with(
φg,ζ (0) , φg,ζ (1)

)
= (ξ, ζ). A Tg-set Sg ⊂ Tg of a Tg-space Tg = (Ω,Tg) is said

to be pathwise g-Tg-connected if and only if, for every (ξ, ζ) ∈ Sg × Sg,(
∃Qg ∈ g-Q

[
Tg

])(
∃φg,ζ : [0, 1] −→ Tg

)[
Sg ⊇ Qg ⊇ im

(
φg,ζ |[0,1]

)]
.(3.23)

Evidently, im
(
φg,ζ |[0,1]

)
signifies the image of the ([0, 1] ,Tg)-continuous map

φg,ζ : [0, 1] −→ Tg from the initial point ξ = φg,ζ (0) to the terminal point ζ =
φg,ζ (1). The following theorem is an immediate consequence of the above definition.

Theorem 3.23. A subset Γ ⊆ Ω of Ω of a Tg-space Tg,Ω = (Ω,Tg,Ω), with the
absolute g-topology Tg,Ω : P (Ω) −→ P (Ω), is said to be pathwise g-Tg-connected

if and only if, with the relative g-topology Tg,Γ : P (Γ) 7−→ Tg,Γ =
{
Og ∩ Γ : Og ∈

Tg,Ω

}
, the Tg-subspace Tg,Γ = (Γ,Tg,Γ) is pathwise g-Tg-connected.

Proof. – Necessity. Let Tg,Ω = (Ω,Tg,Ω) be a Tg-space, and suppose that a subset
Γ ⊆ Ω of Ω, with the absolute g-topology Tg,Ω : P (Ω) −→ P (Ω), is pathwise
g-Tg-connected in Tg,Ω. Then, for every (ξ, ζ) ∈ Γ× Γ ⊆ Ω× Ω,(

∃Qg,ω ∈ g-Q
[
Tg,Ω

])(
∃φg,ζ : [0, 1] −→ Tg,Ω

)[
Γ ⊇ Qg,ω ⊇ im

(
φg,ζ |[0,1]

)]
.

Since Qg,ω ∈ g-Q
[
Tg,Ω

]
and g-Q

[
Tg,Ω

]
⊇ g-Q

[
Tg,Γ

]
, it follows that Qg,γ = Qg,ω∩Γ

for every Qg,γ ∈ g-Q
[
Tg,Γ

]
. Since

{
φg,ζ (0) , φg,ζ (1)

}
⊂ Γ× Γ, it also follows that

Γ ⊇ Qg,γ ⊇ im
(
φg,ζ |[0,1]

)
. Therefore, for every (ξ, ζ) ∈ Γ× Γ,(

∃Qg,γ ∈ g-Q
[
Tg,Γ

])(
∃φg,ζ : [0, 1] −→ Tg,Γ

)[
Γ ⊇ Qg,γ ⊇ im

(
φg,ζ |[0,1]

)]
.

Hence, with the relative g-topology Tg,Γ : P (Γ) 7−→ Tg,Γ =
{
Og∩Γ : Og ∈ Tg,Ω

}
,

the Tg-subspace Tg,Γ = (Γ,Tg,Γ) is pathwise g-Tg-connected.
– Sufficiency. Conversely, suppose that, with the relative g-topology given by

Tg,Γ : P (Γ) 7−→ Tg,Γ =
{
Og ∩ Γ : Og ∈ Tg,Ω

}
, the Tg-subspace Tg,Γ = (Γ,Tg,Γ)

is pathwise g-Tg-connected. Then, for every (ξ, ζ) ∈ Γ× Γ,(
∃Qg,γ ∈ g-Q

[
Tg,Γ

])(
∃φg,ζ : [0, 1] −→ Tg,Γ

)[
Γ ⊇ Qg,γ ⊇ im

(
φg,ζ |[0,1]

)]
.

Since Qg,γ ∈ g-Q
[
Tg,Γ

]
and g-Q

[
Tg,Γ

]
⊆ g-Q

[
Tg,Ω

]
, it follows that a Qg,ω ∈

g-Q
[
Tg,Ω

]
exists such that Qg,ω ∩ Γ = Qg,γ . Furthermore, since Qg,ω ⊆ Γ and
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Qg,ω ⊇ Qg,γ , it follows that Γ ⊇ Qg,ω ⊇ im
(
φg,ζ |[0,1]

)
. Therefore, for every

(ξ, ζ) ∈ Γ× Γ ⊆ Ω× Ω,(
∃Qg,ω ∈ g-Q

[
Tg,Ω

])(
∃φg,ζ : [0, 1] −→ Tg,Ω

)[
Γ ⊇ Qg,ω ⊇ im

(
φg,ζ |[0,1]

)]
.

Hence, the subset Γ ⊆ Ω, with the absolute g-topology Tg,Ω : P (Ω) → P (Ω), is
pathwise g-Tg-connected. □

The relationship between the notions of g-Tg-connectedness and pathwise g-Tg-
connectedness follows.

Theorem 3.24. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg). If Sg is
pathwise g-Tg-connected, then Sg ∈ g-Q

[
Tg

]
.

Proof. Let Sg ⊂ Tg be an arbitrary pathwise g-Tg-connected set in a Tg-space

Tg = (Ω,Tg). If Sg = ∅, then Sg /∈ g-D
[
Tg

]
and, therefore, Sg ∈ g-Q

[
Tg

]
.

Suppose Sg ̸= ∅, consider any point ξ ∈ Sg. Since Sg is pathwise g-Tg-connected,
for every ζ ∈ Sg, there is a path φg,ζ : [0, 1] → Sg from the initial point ξ ∈ Sg to
the terminal point ζ ∈ Sg, and a g-Tg-connected set Qg,(ξ,ζ) ∈ g-Q

[
Tg

]
, containing

ξ, ζ ∈ Sg, such that Qg,(ξ,ζ) ⊇ im
(
φg,ζ |[0,1]

)
. Clearly, im

(
φg,ζ |[0,1]

)
∈ C

[
[0, 1] ;Tg

]
.

Moreover, Sg ⊇ Qg,(ξ,ζ) ⊇ im
(
φg,ζ |[0,1]

)
and, consequently, Sg ⊇

⋃
ζ∈Sg

Qg,(ξ,ζ) ⊇⋃
ζ∈Sg

im
(
φg,ζ |[0,1]

)
= Sg, since ξ ∈ Sg. But, ξ ∈ im

(
φg,ζ |[0,1]

)
for every ζ ∈ Sg

and, hence,
⋂

ζ∈Sg
im

(
φg,ζ |[0,1]

)
̸= ∅. Furthermore, im

(
φg,ζ |[0,1]

)
∈ g-Q

[
Tg

]
for

every ζ ∈ Sg, and by the relation Sg =
⋃

ζ∈Sg
im

(
φg,ζ |[0,1]

)
, it follows, then, that

Sg ∈ g-Q
[
Tg

]
. This proves the theorem. □

Thus, pathwise g-Tg-connectedness is a stronger form of g-Tg-connectedness.
For this reason, we stated that pathwise g-Tg-connectedness is a further refinement
of g-Tg-connected. An immediate consequence of such a statement is the following
proposition.

Proposition 7. If Tg = (Ω,Tg) be a pathwise g-Tg-connected Tg-space, then it is
also g-Tg-connected:

g-T⟨PC⟩
g =

(
Ω, g-T ⟨PC⟩

g

)
=⇒ g-T⟨C⟩

g =
(
Ω, g-T ⟨C⟩

g

)
.(3.24)

Proof. Let Tg = (Ω,Tg) be a Tg-space, and suppose it be g-Tg-separated. Then, Tg

has a nonempty proper g-Tg-open-closed set Sg ∈ g-O [Tg,Ω] ∩ g-K [Tg,Ω]. There

exists, then, (ξ, ζ) ∈ Sg × ∁ (Sg). Let φg,ζ : [0, 1] −→ Tg be a path from ξ to

ζ. Clearly, [0, 1] ⊃ im
(
φ−1
g,ζ |Sg

)
for 0 ∈ im

(
φ−1
g,ζ |Sg

)
and 1 /∈ im

(
φ−1
g,ζ |Sg

)
, or for

0 /∈ im
(
φ−1
g,ζ |Sg

)
and 1 ∈ im

(
φ−1
g,ζ |Sg

)
. Since φg,ζ ∈ C

[
[0, 1] ;Tg

]
, it follows that

im
(
φ−1
g,ζ |Sg

)
is both open and closed. But, this contradicts the fact that [0, 1] is

connected. Hence, the Tg-space Tg = (Ω,Tg) is g-Tg-connected. □

Definition 3.25. Let ϕg,ζ , φg,ζ : [0, 1] −→ Tg be two paths in a Tg-space Tg =
(Ω,Tg) satisfying

(
ϕg,ζ (0) , ϕg,ζ (1)

)
=

(
φg,ζ (0) , φg,ζ (1)

)
= (ξ, ζ). Then, ϕg,ζ is

said to be ”homotopic” to φg,ζ , written ϕg,ζ ≃ φg,ζ , if there exists a
(
[0, 1]

2
,Tg

)
-

continuous map hg : [0, 1]
2 −→ Tg, called a ”homotopy” from ϕg,ζ to φg,ζ , written
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hg : ϕg,ζ ≃ φg,ζ , satisfying,

hg (λ, µ) = (1− µ)ϕg,ζ (λ) + µφg,ζ (λ) ∀µ ∈ {0, 1} ,

hg (λ, µ) = (1− λ) ξ + λζ ∀λ ∈ {0, 1} .(3.25)

The homotopy hg : ϕg,ζ ≃ φg,ζ is said to establish a g-Tg-homotopy from ϕg,ζ to
φg,ζ in a g-Tg-connected set Rg ∈ g-Q [Tg] if it belongs to the class:

g-H
[
[0, 1]

2
;Rg

] def
=

{
hg :

(
∃ϕg,ζ , φg,ζ : [0, 1] −→ Rg

)[
hg : ϕg,ζ ≃ φg,ζ

]}
.

(3.26)

For any ϕg,ζ , φg,ζ , ψg,ζ : [0, 1] −→ Rg ∈ g-Q [Tg], the statements hg : ϕg,ζ ≃ ϕg,ζ ,
hg : ϕg,ζ ≃ φg,ζ implies hg : φg,ζ ≃ ϕg,ζ and, hg : ϕg,ζ ≃ φg,ζ and hg : φg,ζ ≃ ψg,ζ

implies hg : ϕg,ζ ≃ ψg,ζ hold, as shown in the following theorem.

Theorem 3.26. The g-Tg-homotopy relation is an equivalence relation in the
collection of all paths in any g-Tg-connected set Rg ∈ g-Q [Tg] of a Tg-space
Tg = (Ω,Tg).

Proof. – Reflexivity. Let ϕg,ζ : [0, 1] −→ Rg be any path, where Rg ∈ g-Q [Tg]

is any g-Tg-connected set in a Tg-space Tg = (Ω,Tg). Then the
(
[0, 1]

2
,Rg

)
-

continuous map hg : [0, 1]
2 −→ Rg defined, for every (λ, µ) ∈ [0, 1]

2
, by hg (λ, µ) =

ϕg,ζ (λ) is a g-Tg-homotopy from ϕg,ζ to ϕg,ζ , and that defined, for every (λ, µ) ∈
[0, 1]

2
, by hg (λ, µ) = φg,ζ (µ) is a g-Tg-homotopy from φg,ζ to φg,ζ . Hence, hg ∈

g-H
[
[0, 1]

2
;Rg

]
, and ≃ is reflexive.

– Symmetry. Let hg ∈ g-H
[
[0, 1]

2
;Rg

]
be a g-Tg-homotopy hg : ϕg,ζ ≃ φg,ζ .

Then the
(
[0, 1]

2
,Rg

)
-continuous map ĥg : [0, 1]

2 −→ Rg defined, for every (λ, µ) ∈
[0, 1]

2
, by ĥg (λ, µ) = hg (λ, 1− µ) is a g-Tg-homotopy ĥg : φg,ζ ≃ ϕg,ζ . Hence,

ĥg ∈ g-H
[
[0, 1]

2
;Rg

]
, and ≃ is symmetric.

– Transitivity. Let hg,α, hg,β ∈ g-H
[
[0, 1]

2
;Rg

]
be g-Tg-homotopies hg,α : ϕg,ζ ≃

φg,ζ and hg,β : φg,ζ ≃ ψg,ζ , respectively. Consider the
(
[0, 1]

2
,Rg

)
-continuous map

hg : [0, 1]
2 −→ Rg defined, for every (λ, µ) ∈ [0, 1]

2
, by hg (λ, µ) = hg,α (λ, ηµ)

if µ ∈
[
0,

1

η

]
and hg (λ, µ) = hg,β (λ, ηµ− 1) if µ ∈

[
1

η
, 1

]
, where η ∈ (1,∞).

Clearly, hg : ϕg,ζ ≃ ψg,ζ . Hence, it follows that, hg ∈ g-H
[
[0, 1]

2
;Rg

]
, and ≃ is

transitive. □

The concept of simply g-Tg-connected Tg-space is defined below.

Definition 3.27. Let φg,ζ : [0, 1] −→ Tg be a path from ξ ∈ Tg to ζ ∈ Tg in a
Tg-space Tg = (Ω,Tg) with

(
φg,ζ (0) , φg,ζ (1)

)
= (ξ, ζ). Then:

– i. If φg,ζ : [0, 1] −→ {ζ}, then φg,ζ is called a ”constant path” at ζ ∈ Tg:

φg,ζ (λ)
def
= cg (λ) for all λ ∈ [0, 1].

– ii. If φg,ζ : {0, 1} −→ {ζ}, then φg,ζ is called a ”closed path” at ζ ∈ Tg:

φg,ζ (λ)
def
= kg (λ) for all λ ∈ [0, 1]

– iii. If, for every λ ∈ [0, 1], φg,ζ (λ) = kg (λ) and φg,ζ (λ) ≃ cg (λ), then φg,ζ is
said to be ”contractable to the point ζ ∈ Tg.”

A Tg-space Tg = (Ω,Tg) is ”simply g-Tg-connected” if and only if, at each point
ζ ∈ Tg, any closed path kg : [0, 1] −→ Tg is contractable to ζ.
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The necessary and sufficient conditions for a pathwise g-Tg-connected Tg-space
to be simply g-Tg-connected are contained in the following theorem.

Theorem 3.28. Let Tg = (Ω,Tg) be a pathwise g-Tg-connected Tg-space. Then,
Tg is simply g-Tg-connected if and only if, at each ζ ∈ Tg, any closed path kg :
[0, 1] −→ Tg at ζ is g-Tg-homotopic to the constant path cg : [0, 1] −→ Tg at
ζ ∈ Tg: hg : kg ≃ cg for each ζ ∈ Tg.

Proof. – Necessity. Let Tg = (Ω,Tg) be a pathwise g-Tg-connected Tg-space, and
suppose it be simply g-Tg-connected. Since Tg is pathwise g-Tg-connected, for
every (ξ, ζ) ∈ Ω× Ω,(

∃Qg ∈ g-Q
[
Tg

])(
∃φg,ζ : [0, 1] −→ Tg

)[
Ω ⊇ Qg ⊇ im

(
φg,ζ |[0,1]

)]
.

If φg,ζ : {0, 1} −→ {ζ}, then φg,ζ is a closed path at ζ ∈ Tg: φg,ζ (λ) = kg (λ) for all
λ ∈ [0, 1]. Since Tg is simply g-Tg-connected, it follows that, at each point ζ ∈ Tg,
the closed path kg : [0, 1] → Tg is contractable to ζ. Thus, at each ζ ∈ Tg, the closed
path kg : [0, 1] −→ Tg at ζ is g-Tg-homotopic to the constant path cg : [0, 1] → Tg

at ζ ∈ Tg: hg : kg ≃ cg for each ζ ∈ Tg. The condition of the theorem is, therefore,
necessary.

– Sufficiency. Conversely, suppose that, at every point ζ ∈ Tg in a pathwise g-Tg-
connected Tg-space Tg = (Ω,Tg), any closed path kg : [0, 1] −→ Tg at ζ is g-Tg-
homotopic to the constant path cg : [0, 1] → Tg at ζ ∈ Tg: hg : kg ≃ cg for every
ζ ∈ Tg. Then, there exists a path φg,ζ : [0, 1] −→ Tg satisfying φg,ζ : {0, 1} −→ {ζ}
and, therefore, contractable to ζ ∈ Tg. Thus, at each point ζ ∈ Tg, any closed path
kg : [0, 1] −→ Tg is contractable to ζ. The Tg-space Tg = (Ω,Tg) is, then, simply
g-Tg-connected. The condition of the theorem is, therefore, sufficient. □

The definition of local g-T-connectedness at a point ξ ∈ Tg in a Tg-space Tg =
(Ω,Tg) is now given.

Definition 3.29. Let Tg = (Ω,Tg) be a Tg-space. Then:

– i. Tg is said to be ”locally g-Tg-connected at a point ξ ∈ Tg” if and only if,(
∀Ug ∈ g-O [Tg]

)(
∃Qg ∈ g-Q [Tg]

)[
ξ ∈ Qg ⊆ Ug

]
.(3.27)

– ii. Tg is said to be ”locally pathwise g-Tg-connected” if and only if, given any
(ξ,Ug,ξ) ∈ Tg × g-O [Tg], there exists (ξ,Qg,ξ) ∈ Tg × g-Q [Tg] such that
(ζ, η) ∈ Qg × Qg, with ζ ̸= η, implies that,(
∃φg,ζ : [0, 1] −→ Tg

)[
{ζ, η} ⊆ im

(
φg,ζ |[0,1]

)
⊆ Qg,ξ ⊆ Ug,ξ

]
.(3.28)

The Tg-space Tg = (Ω,Tg) is said to be ”locally g-Tg-connected” if and only if it
is locally g-Tg-connected at every point ξ ∈ Tg.

As an immediate consequence of the above definition, it is shown below that
local pathwise g-Tg-connectedness implies locally g-Tg-connected.

Theorem 3.30. If Tg = (Ω,Tg) be a locally pathwise g-Tg-connected Tg-space,
then it is locally g-Tg-connected:

g-T⟨LPC⟩
g =

(
Ω, g-T ⟨LPC⟩

g

)
=⇒ g-T⟨LC⟩

g =
(
Ω, g-T ⟨LC⟩

g

)
.(3.29)
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Proof. Let Tg = (Ω,Tg) be a locally pathwise g-Tg-connected Tg-space. Then, for
any given (ξ,Ug,ξ) ∈ Tg × g-O [Tg], there exists (ξ,Qg,ξ) ∈ Tg × g-Q [Tg] such that
(ζ, ξ) ∈ Qg × Qg, with ζ ̸= ξ, implies that,(

∃φg,ζ : [0, 1] → Tg

)[
{ζ, ξ} ⊆ im

(
φg,ζ |[0,1]

)
⊆ Qg,ξ ⊆ Ug,ξ

]
.

Consequently, ξ ∈ im
(
φg,ζ |[0,1]

)
⊆ Qg,ξ ⊆ Ug,ξ and, therefore, ξ ∈ Qg,ξ ⊆ Ug,ξ.

Hence, it follows that(
∀Ug, ∈ g-O [Tg]

)(
∃Qg, ∈ g-Q [Tg]

)[
ξ ∈ Qg,ξ ⊆ Ug,ξ

]
.

The Tg-space Tg = (Ω,Tg) is therefore locally g-Tg-connected. □

In a locally g-Tg-connected Tg-space, a g-Tg-component is a g-Tg-set, as demon-
strated in the following theorem.

Theorem 3.31. If g-CSg
[ζ] be the g-Tg-component of Sg corresponding to ζ in a

locally g-Tg-connected Tg-space Tg = (Ω,Tg), then g-CSg
[ζ] ∈ g-O [Tg]:

g-CSg
[ζ] ⊆ g-T⟨LC⟩

g =
(
Ω, g-T ⟨LC⟩

g

)
=⇒ g-CSg

[ζ] ∈ g-O
[
g-T⟨LC⟩

g

]
.

(3.30)

Proof. Let g-CSg
[ζ] be the g-Tg-component of Sg corresponding to ζ in a locally

g-Tg-connected Tg-space Tg = (Ω,Tg). Then, local g-Tg-connectedness at ζ ∈ Tg

implies (
∀Ug ∈ g-O [Tg]

)(
∃Qg ∈ g-Q [Tg]

)[
ζ ∈ Qg ⊆ Ug

]
.

Consequently, g-CSg
[ζ] =

⋃
Qg⊆Sg

Qg ⊆
⋃

Ug⊆Sg
Ug. But, since every Ug ∈

g-O [Tg] satisfies Ug ⊆ opg
(
Og

)
for some Og ∈ Tg, it follows that the rela-

tion g-CSg
[ζ] ⊆

⋃
Og⊆Sg

opg
(
Og

)
= opg

(⋃
Og⊆Sg

Og

)
holds. Thus, g-CSg

[ζ] ∈
g-O [Tg]. □

The necessary and sufficient conditions for a Tg-space Tg = (Ω,Tg) to be locally
g-T-connected at a point ξ ∈ Tg is contained in the following theorem.

Theorem 3.32. A Tg-space Tg = (Ω,Tg) is locally g-Tg-connected at a point
ξ ∈ Tg if and only if,(

∀Og,ξ ∈ Tg

)(
∃Qg,ξ ∈ g-Q [Tg]

)[
ξ ∈ Qg,ξ ⊆ opg

(
Og,ξ

)]
.(3.31)

Proof. – Necessity. Let it be assumed that the Tg-space Tg = (Ω,Tg) is locally
g-Tg-connected at ξ ∈ Tg, and let Og,ξ ∈ Tg be an arbitrary Tg-open neighbour-

hood of ξ. There exists, then, a Tg-open neighbourhood Ôg,ξ ∈ Tg of ξ such that

ξ ∈ opg
(
Ôg,ξ

)
⊆ opg

(
Og,ξ

)
and, for every {ζ, η} ⊆ Ôg,ξ,(

∃Qg,(ζ,η) ∈ g-Q [Tg]
)[
{ζ, η} ⊆ Qg,(ζ,η) ⊆ opg

(
Og,ξ

)]
.

Suppose η ∈ Ôg,ξ be the arbitrary point. Then, there exists a g-Tg-connected
set Qg,(ξ,η) ∈ g-Q [Tg] satisfying {ξ, η} ⊆ Qg,(ξ,η) ⊆ opg

(
Og,ξ

)
. Let Qg,ξ =⋃

η∈Ôg,ξ
Qg,(ξ,η) ⊆ opg

(
Og,ξ

)
. Since Qg,ξ ⊇ Ôg,ξ and

⋃
η∈Ôg,ξ

Qg,(ξ,η) ∈ g-Q [Tg], it

follows that Qg,ξ is a g-Tg-connected neighbourhood of ξ contained in opg
(
Og,ξ

)
.

The condition of the theorem is, therefore, necessary.
– Sufficiency. Conversely, suppose the following condition holds:(

∀Og,ξ ∈ Tg

)(
∃Qg,ξ ∈ g-Q [Tg]

)[
ξ ∈ Qg,ξ ⊆ opg

(
Og,ξ

)]
.
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Let Og,ξ ∈ Tg be an arbitrary Tg-open neighbourhood of ξ. Then, opg
(
Og,ξ

)
contains a g-Tg-connected neighbourhood Qg,ξ of ξ. Since Qg,ξ ∈ g-Q [Tg], for
any {ζ, η} ⊆ Qg,ξ, there exists Qg,(ξ,η) ∈ g-Q [Tg] such that {ζ, η} ⊆ Qg,(ζ,η).

But Qg,ξ ⊇ Qg,(ζ,η) and, consequently, {ζ, η} ⊆ Qg,(ζ,η) ⊆ opg
(
Og,ξ

)
. Hence, the

Tg-space Tg = (Ω,Tg) is locally g-Tg-connected at ξ ∈ Tg. The condition of the
theorem is, therefore, sufficient. □

The notion of g-Tg-connectedness between any Tg-spaces Tg,Ω = (Ω,Tg,Ω) and
Tg,Σ = (Σ,Tg,Σ) and the relevant basic theorems are now discussed.

Theorem 3.33. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces, let
Sg,1, Sg,2, . . ., Sg,n ∈ g-S

[
Tg,Λ

]
be n ≥ 1 mutually disjoint g-Tg-sets in Tg,Λ,

where Λ ∈ {Ω,Σ}, and let πg ∈ g-B [Tg,Ω;Tg,Σ] be a g- (Tg,Ω,Tg,Σ)-bijective map
πg : Tg,Ω −→ Tg,Σ. Then

– i. πg
(⊔

α∈I∗
n

Sg,α

)
=

⊔
α∈I∗

n
πg

(
Sg,α

)
,

– ii. π−1
g

(⊔
α∈I∗

n
Sg,α

)
=

⊔
α∈I∗

n
π−1
g

(
Sg,α

)
.

Proof. – i. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces, let Sg,1, Sg,2,
. . ., Sg,n ∈ g-S

[
Tg,Ω

]
, and let πg ∈ g-B [Tg,Ω;Tg,Σ]. If ζ ∈ πg

(⊔
α∈I∗

n
Sg,α

)
, then,

since πg ∈ g-B [Tg,Ω;Tg,Σ], there exists ξ ∈
⊔

α∈I∗
n

Sg,α such that, π−1
g (ζ) = ξ ∈⊔

α∈I∗
n

Sg,α. Consequently,

π−1
g (ζ) ∈

⊔
α∈I∗

n

Sg,α ⇒
∨

α∈I∗
n

(
π−1
g (ζ) ∈ Sg,α

)
⇒

∨
α∈I∗

n

(
ζ ∈ πg (Sg,α)

)
⇒ ζ ∈

⊔
α∈I∗

n

πg (Sg,α) .

Hence, πg
(⊔

α∈I∗
n

Sg,α

)
⊆

⊔
α∈I∗

n
πg

(
Sg,α

)
. Conversely, if it be assumed that ζ ∈⊔

α∈I∗
n
πg

(
Sg,α

)
then,

∨
α∈I∗

n

(
ζ ∈ πg (Sg,α)

)
⇒

∨
α∈I∗

n

(
π−1
g (ζ) ∈ Sg,α

)
⇒ π−1

g (ζ) ∈
⊔

α∈I∗
n

Sg,α ⇒ ζ ∈ πg
(⊔

α∈I∗
n
Sg,α

)
.

Hence, πg
(⊔

α∈I∗
n

Sg,α

)
⊇

⊔
α∈I∗

n
πg

(
Sg,α

)
.

– ii. If ξ ∈ π−1
g

(⊔
α∈I∗

n
Sg,α

)
, where Sg,1, Sg,2, . . ., Sg,n ∈ g-S

[
Tg,Σ

]
, then,

πg (ξ) ∈
⊔

α∈I∗
n

Sg,α ⇒
∨

α∈I∗
n

(
πg (ξ) ∈ Sg,α

)
⇒

∨
α∈I∗

n

(
ξ ∈ π−1

g (Sg,α)
)

⇒ ξ ∈
⊔

α∈I∗
n

π−1
g (Sg,α) .



24 M. I. KHODABOCUS AND N. -UL. -H. SOOKIA

Hence, π−1
g

(⊔
α∈I∗

n
Sg,α

)
⊆

⊔
α∈I∗

n
π−1
g

(
Sg,α

)
. Conversely, if it be supposed that

ξ ∈
⊔

α∈I∗
n
π−1
g

(
Sg,α

)
then,∨

α∈I∗
n

(
ξ ∈ π−1

g (Sg,α)
)

⇒
∨

α∈I∗
n

(
πg (ξ) ∈ Sg,α

)
⇒ πg (ξ) ∈

⊔
α∈I∗

n

Sg,α ⇒ ξ ∈ π−1
g

(⊔
α∈I∗

n
Sg,α

)
.

Hence, π−1
g

(⊔
α∈I∗

n
Sg,α

)
⊇

⊔
α∈I∗

n
π−1
g

(
Sg,α

)
. □

The following theorem shows, among others, that g-Tg-connectedness is a Tg-
property.

Theorem 3.34. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map and
let Sg,ω ⊂ Tg,Ω be a Tg-set. If dom

(
πg|Sg,ω

)
is g-Tg-connected in Tg,Ω, then

im
(
πg|Sg,ω

)
is g-Tg-connected in Tg,Σ:

dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] =⇒ im

(
πg|Sg,ω

)
∈ g-Q [Tg,Σ] .(3.32)

Proof. Let πg ∈ g-C [Tg,Ω;Tg,Σ], Sg,ω = dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω], and suppose

that im
(
πg|Sg,ω

)
∈ g-D [Tg,Σ], that is, im

(
πg|Sg,ω

)
/∈ g-Q [Tg,Σ]. There exists,

therefore,
(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg,Σ

]
× g-K

[
Tg,Σ

]
such that,( ⊔

λ=ξσ,ζσ

Ug,λ = im
(
πg|Sg,ω

))∨( ⊔
λ=ξσ,ζσ

Vg,λ = im
(
πg|Sg,ω

))
.

Set im
(
πg|Sg,ω

)
=

⊔
λ=ξω,ζω

im
(
πg|Sg,(ω,λ)

)
, where Sg,ω ⊇

⋃
λ=ξω,ζω

Sg,(ω,λ) and,

for every (λ, µ) ∈ {(ξσ, ξω) , (ζσ, ζω)}, set[
Ug,λ = im

(
πg|Sg,(ω,µ)

)]
∨
[
Vg,λ = im

(
πg|Sg,(ω,µ)

)]
.

In other words, Sg,(ω,ξω) ⊆ dom
(
πg|Sg,ω

)
denotes the Tg-set of all ξ ∈ dom

(
πg|Sg,ω

)
for which πg (ξ) ∈ im

(
πg|Sg,(ω,ξω)

)
, and Sg,(ω,ζω) ⊆ dom

(
πg|Sg,ω

)
denotes the

Tg-set of all ζ ∈ dom
(
πg|Sg,ω

)
for which πg (ζ) ∈ im

(
πg|Sg,(ω,ζω)

)
. Since the in-

equality im
(
πg|Sg,(ω,λ)

)
̸= ∅ holds for every λ ∈ {ξω, ζω}, and both the relations⊔

λ=ξω,ζω
im

(
πg|Sg,(ω,λ)

)
= im

(
πg|Sg,ω

)
and

⋂
λ=ξω,ζω

im
(
πg|Sg,(ω,λ)

)
= ∅ hold, it

follows that, Sg,(ω,λ) ̸= ∅ for every λ ∈ {ξω, ζω},
⋃

λ=ξω,ζω
Sg,(ω,λ) = Sg,ω and⋂

λ=ξω,ζω
Sg,(ω,λ) = ∅. Since πg ∈ g-C [Tg,Ω;Tg,Σ], for any λ ∈ {ξω, ζω}, there

exists, for every
(
Og,(σ,λ),Kg,(σ,λ)

)
∈ Tg,Σ × ¬Tg,Σ,

(
Og,(ω,λ),Kg,(ω,λ)

)
∈ Tg,Ω ×

¬Tg,Ω, with Og,(ω,λ), Kg,(ω,λ) ⊂ Sg,(ω,λ) and Og,(σ,λ), Kg,(σ,λ) ⊂ im
(
πg|Sg,(ω,λ)

)
,

such that,[
π−1
g

(
Og,(σ,λ)

)
⊆ opg

(
Og,(ω,λ)

)]
∨
[
π−1
g

(
Kg,(σ,λ)

)
⊇ ¬ opg

(
Kg,(ω,λ)

)]
.

Since
⋂

λ=ξω,ζω
im

(
πg|Sg,(ω,λ)

)
= ∅ implies

⋂
λ=ξω,ζω

Sg,(ω,λ) = ∅, it follows, evi-

dently, that,( ⋂
λ=ξω,ζω

π−1
g

(
Og,(σ,λ)

)
= ∅

)∧( ⋂
λ=ξω,ζω

π−1
g

(
Kg,(σ,λ)

)
= ∅

)
.
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Therefore, the setting dom
(
πg|Sg,ω

)
=

⊔
λ=ξω,ζω

dom
(
πg|Sg,(ω,λ)

)
holds. It now

remains to prove that it is the case and the supposition that dom
(
πg|Sg,ω

)
∈

g-Q [Tg,Ω] is a contradiction. Since dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] it follows that, for

all pair
(
Ug,λ,Vg,λ

)
λ=ξω,ζω

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
,

¬
( ⊔

λ=ξω,ζω

Ug,λ = dom
(
πg|Sg,ω

))∧
¬
( ⊔

λ=ξω,ζω

Vg,λ = dom
(
πg|Sg,ω

))

⇔ ¬
( ⋂

λ=ξω,ζω

Ug,λ = ∅
)∧

¬
( ⋂

λ=ξω,ζω

Vg,λ = ∅
)

⇒
( ⋂

λ=ξω,ζω

Ug,λ ̸= ∅
)∧( ⋂

λ=ξω,ζω

Vg,λ ̸= ∅
)
.

There exists, then, a unit Tg-set {ηω} ⊂ dom
(
πg|Sg,ω

)
such that,( ⋂

λ=ξω,ζω

Ug,λ ⊇ {ηω}
)∧( ⋂

λ=ξω,ζω

Vg,λ ⊇ {ηω}
)
.

Since {ηω} ⊂
⋃

λ=ξω,ζω
Sg,(ω,λ) = Sg,ω and

⋂
λ=ξω,ζω

Sg,(ω,λ) = ∅, it results that,[
dom

(
πg|Sg,ω

)
⊃ Sg,(ω,ξω) ⊃ {ηω}

]
∨
[
dom

(
πg|Sg,ω

)
⊃ Sg,(ω,ζω) ⊃ {ηω}

]
.

On the other hand, since πg ∈ g-C [Tg,Ω;Tg,Σ], it follows that, for every unit Tg-set
{ησ} ⊂

⊔
λ=ξω,ζω

im
(
πg|Sg,(ω,λ)

)
= im

(
πg|Sg,ω

)
,∨

λ=ξω,ζω

[
dom

(
πg|Sg,ω

)
⊃ Sg,(ω,λ) ⊃ π−1

g ({ησ})
]
.

In particular, if π−1
g ({ησ}) = {ηω}, then {ησ} = πg ({ηω}), leading to a contra-

diction. There exists, therefore,
(
Ug,λ,Vg,λ

)
λ=ξω,ζω

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
such

that, ( ⊔
λ=ξω,ζω

Ug,λ = dom
(
πg|Sg,ω

))∨( ⊔
λ=ξω,ζω

Vg,λ = dom
(
πg|Sg,ω

))
.

This proves that the supposition dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] is a contradiction and,

hence, dom
(
πg|Sg,ω

)
∈ g-D [Tg,Ω]. □

The following corollary is another way of saying that the g-Tg-connectivity of
Tg,Ω implies the g-Tg-connectivity of Tg,Σ.

Corollary 3.35. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map
and let Sg,ω ⊂ Tg,Ω be a Tg-set. If im

(
πg|Sg,ω

)
is g-Tg-separated in Tg,Σ, then

dom
(
πg|Sg,ω

)
is g-Tg-separated in Tg,Ω:

im
(
πg|Sg,ω

)
∈ g-D [Tg,Σ] =⇒ dom

(
πg|Sg,ω

)
∈ g-D [Tg,Ω] .(3.33)

If the image of a g- (Tg,Ω,Tg,Σ)-continuous map is g-Tg-connected, then it is also
Tg-connected, as proved in the following proposition.



26 M. I. KHODABOCUS AND N. -UL. -H. SOOKIA

Proposition 8. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map and let
Sg,ω ⊂ Tg,Ω be a Tg-set. If im

(
πg|Sg,ω

)
is g-Tg-connected in Tg,Σ, then im

(
πg|Sg,ω

)
is Tg-connected in Tg,Σ:

im
(
πg|Sg,ω

)
∈ g-Q [Tg,Σ] =⇒ im

(
πg|Sg,ω

)
∈ Q [Tg,Σ] .(3.34)

Proof. Let πg ∈ g-C [Tg,Ω;Tg,Σ], Sg,ω = dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] and, suppose

that im
(
πg|Sg,ω

)
∈ D [Tg,Σ], that is, im

(
πg|Sg,ω

)
/∈ Q [Tg,Σ]. There exists, then,(

Rg,λ,Sg,λ

)
λ=ξσ,ζσ

∈ O
[
Tg,Σ

]
×K

[
Tg,Σ

]
such that,( ⊔

λ=ξσ,ζσ

Rg,λ = im
(
πg|Sg,ω

))∨( ⊔
λ=ξσ,ζσ

Sg,λ = im
(
πg|Sg,ω

))
.

Since im
(
πg|Sg,ω

)
∈ D [Tg,Σ], set im

(
πg|Sg,ω

)
=

⊔
λ=ξσ,ζσ

im
(
πg|Sg,(ω,λ)

)
and, for

every λ ∈ {ξσ, ζσ}, let[
Rg,λ = im

(
πg|Sg,(ω,λ)

)]
∨
[
Sg,λ = im

(
πg|Sg,(ω,λ)

)]
.

On the other hand, since πg ∈ g-C [Tg,Ω;Tg,Σ], there exists, for any λ ∈ {ξσ, ζσ},(
Og,(ω,λ),Kg,(ω,λ)

)
∈ Tg,Ω × ¬Tg,Ω, satisfying Og,(ω,λ), Kg,(ω,λ) ⊂ dom

(
πg|Sg,ω

)
,

such that, [
π−1
g (Rg,λ) ⊆ opg

(
Og,(ω,λ)

)]
∨
[
π−1
g (Sg,λ) ⊇ ¬ opg

(
Kg,(ω,λ)

)]
⇒

[
im

(
πg|Sg,(ω,λ)

)
⊆ πg

(
opg

(
Og,(ω,λ)

))]
∨
[
im

(
πg|Sg,(ω,λ)

)
⊇ πg

(
¬ opg

(
Kg,(ω,λ)

))]
.

Since im
(
πg|Sg,ω

)
=

⊔
λ=ξσ,ζσ

im
(
πg|Sg,(ω,λ)

)
, it is plain that πg

(
opg (Og,ω)

)
=⊔

λ=ξσ,ζσ
πg

(
opg

(
Og,(ω,λ)

))
, and also ∅ =

⋂
λ=ξσ,ζσ

πg
(
¬ opg

(
Kg,(ω,λ)

))
, implying

πg
(
¬ opg (Kg,ω)

)
=

⊔
λ=ξσ,ζσ

πg
(
¬ opg

(
Kg,(ω,λ)

))
, for some

(
Og,ω,Kg,ω

)
∈ Tg,Ω ×

¬Tg,Ω. But, clearly the relation
(
πg

(
opg (Og,ω)

)
, πg

(
¬ opg (Kg,ω)

))
∈ g-O

[
Tg,Σ

]
×

g-K
[
Tg,Σ

]
holds. Thus, im

(
πg|Sg,ω

)
∈ D [Tg,Σ] implies im

(
πg|Sg,ω

)
∈ g-D [Tg,Σ], or

equivalently, im
(
πg|Sg,ω

)
∈ g-Q [Tg,Σ] implies im

(
πg|Sg,ω

)
∈ Q [Tg,Σ]. This proves

the proposition. □

The following corollary is another way of saying that the g-Tg-connectivity of
Tg,Ω implies the Tg-connectivity of Tg,Σ.

Corollary 3.36. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map and let
Sg,ω ⊂ Tg,Ω be a Tg-set. If im

(
πg|Sg,ω

)
is Tg-separated in Tg,Σ, then im

(
πg|Sg,ω

)
is g-Tg-separated in Tg,Σ, then:

im
(
πg|Sg,ω

)
∈ D [Tg,Σ] =⇒ im

(
πg|Sg,ω

)
∈ g-D [Tg,Ω] .(3.35)

Theorem 3.37. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-irresolute map and
let Sg,ω ⊂ Tg,Ω be a Tg-set. If dom

(
πg|Sg,ω

)
is g-Tg-connected in Tg,Ω, then

im
(
πg|Sg,ω

)
is g-Tg-connected in Tg,Σ:

dom
(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] =⇒ im

(
πg|Sg,ω

)
∈ g-Q [Tg,Σ] .(3.36)
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Proof. Let πg ∈ g-I [Tg,Ω;Tg,Σ] be a g- (Tg,Ω,Tg,Σ)-irresolute map πg : Tg,Ω −→
Tg,Σ, let Sg,ω ⊂ Tg,Ω be a Tg-set, and suppose im

(
πg|Sg,ω

)
be g-Tg-separated in

Tg,Σ. Since im
(
πg|Sg,ω

)
/∈ g-Q [Tg,Σ], or equivalently im

(
πg|Sg,ω

)
∈ g-D [Tg,Σ], by

hypothesis, there exists
(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg,Σ

]
× g-K

[
Tg,Σ

]
such that,( ⊔

λ=ξσ,ζσ

Ug,λ = im
(
πg|Sg,ω

))∨( ⊔
λ=ξσ,ζσ

Vg,λ = im
(
πg|Sg,ω

))
.

On the other hand, since πg ∈ g-I [Tg,Ω;Tg,Σ], there exists, for any λ ∈ {ξσ, ζσ},(
Og,(ω,λ),Kg,(ω,λ)

)
∈ Tg,Ω × ¬Tg,Ω, satisfying Og,(ω,λ), Kg,(ω,λ) ⊂ dom

(
πg|Sg,ω

)
,

such that,[
π−1
g

(
Ug,λ

)
⊆ opg

(
Og,(ω,λ)

)]
∨
[
π−1
g

(
Vg,λ

)
⊇ ¬ opg

(
Kg,(ω,λ)

)]
.

Since both the relation π−1
g

(⊔
λ=ξσ,ζσ

Ug,λ

)
=

⊔
λ=ξσ,ζσ

π−1
g

(
Ug,λ

)
and the rela-

tion π−1
g

(⊔
λ=ξσ,ζσ

Vg,λ

)
=

⊔
λ=ξσ,ζσ

π−1
g

(
Vg,λ

)
. Evidently,

⊔
λ=ξσ,ζσ

π−1
g

(
Ug,λ

)
⊂

dom
(
πg|Sg,ω

)
, and also

⊔
λ=ξσ,ζσ

π−1
g

(
Vg,λ

)
⊂ dom

(
πg|Sg,ω

)
, and from which it fol-

lows that a g-Tg-separation dom
(
πg|Sg,ω

)
=

⊔
λ=ξσ,ζσ

dom
(
πg|Sg,(ω,λ)

)
is realised in

Tg,Ω. Consequently, dom
(
πg|Sg,ω

)
∈ g-D [Tg,Ω]. Therefore, im

(
πg|Sg,ω

)
∈ D [Tg,Σ]

implies dom
(
πg|Sg,ω

)
∈ g-D [Tg,Ω], or equivalently, dom

(
πg|Sg,ω

)
∈ g-Q [Tg,Ω] im-

plies im
(
πg|Sg,ω

)
∈ Q [Tg,Σ]. This proves proves the proposition. □

In actual fact, between any two such Tg-spaces Tg,Ω = (Ω,Tg,Ω) and Tg,Σ =
(Σ,Tg,Σ), g-Tg-connectedness, being a Tg-property, is preserved by a g- (Tg,Ω,Tg,Σ)-
homeomorphism πg : Tg,Ω

∼= Tg,Σ.

Theorem 3.38. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces, and
let πg : Tg,Ω

∼= Tg,Σ be a g- (Tg,Ω,Tg,Σ)-homeomorphism. If Tg,Ω = (Ω,Tg,Ω) is
g-Tg-connected, then Tg,Σ = (Σ,Tg,Σ) is also g-Tg-connected:

Tg,Ω
∼= Tg,Σ : g-T

⟨C⟩
g,Ω =

(
Ω, g-T

⟨C⟩
g,Ω

)
=⇒ g-T

⟨C⟩
g,Σ =

(
Σ, g-T

⟨C⟩
g,Σ

)
.

(3.37)

Proof. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces, let πg : Tg,Ω
∼=

Tg,Σ be a g- (Tg,Ω,Tg,Σ)-homeomorphism, and suppose that Tg,Σ is g-Tg-separated.

There exists, then,
(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈ g-O
[
Tg,Σ

]
× g-K

[
Tg,Σ

]
such that,( ⊔

λ=ξσ,ζσ

Ug,λ = dom
(
π−1
g |Σ

))∨( ⊔
λ=ξσ,ζσ

Vg,λ = dom
(
π−1
g |Σ

))
.

Clearly, dom
(
π−1
g |Σ

)
∈ g-D [Tg,Σ] and, with no loss of generality, consider the

setting dom
(
π−1
g |Σ

)
=

⊔
λ=ξσ,ζσ

dom
(
π−1
g |Σλ

)
so that, for every λ ∈ {ξσ, ζσ}, either

Ug,λ = dom
(
π−1
g |Σλ

)
or Vg,λ = dom

(
π−1
g |Σλ

)
. Since πg ∈ g-Hom [Tg,Ω;Tg,Σ], π

−1
g :

Tg,Σ
∼= Tg,Ω and, for any (Sg,α,Sg,β) ∈ g-S [Tg,Λ]×g-S [Tg,Λ], π

−1
g

(⊔
λ=α,β Sg,λ

)
=
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λ=α,β π

−1
g (Sg,λ), where Λ ∈ {Ω,Σ}, it results that,( ⊔

λ=ξσ,ζσ

π−1
g

(
Ug,λ

)
=

⊔
λ=ξσ,ζσ

im
(
π−1
g |Σλ

))
∨( ⊔

λ=ξσ,ζσ

π−1
g

(
Vg,λ

)
=

⊔
λ=ξσ,ζσ

im
(
π−1
g |Σλ

))
,

where im
(
π−1
g |Σ

)
=

⊔
λ=ξσ,ζσ

im
(
π−1
g |Σλ

)
. On the other hand, since π−1

g

(
Ug,λ

)
∈

g-O [Tg,Ω] and π−1
g

(
Vg,λ

)
∈ g-K [Tg,Ω] hold for every λ ∈ {ξσ, ζσ}, there exist,

therefore,
(
Ug,η,Vg,η

)
η=ξω,ζω

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
such that,⊔

λ=ξσ,ζσ

π−1
g

(
Ug,λ

)
=

⊔
η=ξω,ζω

Ug,η,

⊔
λ=ξσ,ζσ

π−1
g

(
Vg,λ

)
=

⊔
η=ξω,ζω

Vg,η.

By substitution, then, it follows that,( ⊔
η=ξω,ζω

Ug,η =
⊔

λ=ξσ,ζσ

im
(
π−1
g |Σλ

))
∨( ⊔

η=ξω,ζω

Vg,η =
⊔

λ=ξσ,ζσ

im
(
π−1
g |Σλ

))
.

Since πg ∈ g-Hom [Tg,Ω;Tg,Σ] and π
−1
g ∈ g-Hom [Tg,Σ;Tg,Ω], for each im

(
π−1
g |Σλ

)
,

there exists a unique dom
(
πg|Ωη

)
, with dom

(
πg|Ω

)
=

⊔
η=ξω,ζω

dom
(
πg|Ωη

)
. Thus,

there exists
(
Ug,η,Vg,η

)
η=ξω,ζω

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
such that,( ⊔

η=ξω,ζω

Ug,η = dom
(
πg|Ω

))∨( ⊔
η=ξω,ζω

Vg,η = dom
(
πg|Ω

))
.

Hence, Tg,Ω = (Ω,Tg,Ω) is g-Tg-separated. □

An immediate consequence of the above theorem is the following corollary.

Corollary 3.39. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces, and
let πg : Tg,Ω

∼= Tg,Σ be a g- (Tg,Ω,Tg,Σ)-homeomorphism. If Tg,Σ = (Σ,Tg,Σ) is
g-Tg-separated, then Tg,Ω = (Ω,Tg,Ω) is also g-Tg-separated:

Tg,Ω
∼= Tg,Σ : g-T

⟨D⟩
g,Ω =

(
Ω, g-T

⟨D⟩
g,Ω

)
⇐ g-T

⟨D⟩
g,Σ =

(
Σ, g-T

⟨D⟩
g,Σ

)
.(3.38)

For every µ ∈ I∗n, let g-T⟨C⟩
g,µ =

(
Ωµ, g-T

⟨C⟩
g,µ

)
stand for the shortened form of

g-T⟨C⟩
g (Ωµ) =

(
Ωµ, g-T

⟨C⟩
g (Ωµ)

)
. In the following lemma, it is proved that the

Cartesian product of two g-T ⟨C⟩
g -spaces is also a g-T ⟨C⟩

g -space.

Lemma 3.40. If g-T⟨C⟩
g,µ =

(
Ωµ, g-T

⟨C⟩
g,µ

)
, µ ∈ {α, β}, be two g-T ⟨C⟩

g -spaces, then

×µ=α,β g-T
⟨C⟩
g,µ is also a g-T ⟨C⟩

g -space.
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Proof. Let g-T⟨C⟩
g,µ =

(
Ωµ, g-T

⟨C⟩
g,µ

)
, µ ∈ {α, β}, be two g-T ⟨C⟩

g -spaces, and suppose

ξ = (ξα, ξβ) ∈×µ=α,β g-T
⟨C⟩
g,µ and ζ = (ζα, ζβ) ∈×µ=α,β g-T

⟨C⟩
g,µ be any two pairs of

points in×µ=α,β g-T
⟨C⟩
g,µ . Then,[

{ξα} × g-T
⟨C⟩
g,β

∼= g-T
⟨C⟩
g,β

]
∧
[
g-T⟨C⟩

g,α ×{ζβ} ∼= g-T⟨C⟩
g,α

]
.

Consequently, {ξα} × g-T
⟨C⟩
g,β and g-T⟨C⟩

g,α ×{ζβ} are both g-Tg-connected. But,(
{ξα} × g-T

⟨C⟩
g,β

)
∩
(
g-T⟨C⟩

g,α ×{ζβ}
)
= {(ξα, ζβ)} ≠ ∅.

Hence,
(
{ξα} × g-T

⟨C⟩
g,β

)
∪
(
g-T⟨C⟩

g,α ×{ζβ}
)
is g-Tg-connected. Accordingly, ξ, ζ ∈

×µ=α,β g-T
⟨C⟩
g,µ belong to the same g-Tg-component. That is, ξ, ζ ∈ g-CΩ [η] ⊆

×µ=α,β g-T
⟨C⟩
g,µ , the g-Tg-component of Ω =×µ=α,β Ωµ corresponding to the point

η ∈×µ=α,β g-T
⟨C⟩
g,µ . But ξ, ζ ∈×µ=α,β g-T

⟨C⟩
g,µ were arbitrary. Hence the Carte-

sian product×µ=α,β g-T
⟨C⟩
g,µ has one g-Tg-component g-CΩ [η] =×µ=α,β Ωµ, and is

therefore a g-T ⟨C⟩
g -space. □

More generally, the Cartesian product of g-T ⟨C⟩
g -spaces is also a g-T ⟨C⟩

g -space;
that is, g-Tg-connectedness is a product invariant Tg-property. The theorem fol-
lows.

Theorem 3.41. If
{
g-T⟨C⟩

g,µ =
(
Ωµ, g-T

⟨C⟩
g,µ

)
: µ ∈ I∗n

}
be a collection of n ≥ 1

g-T ⟨C⟩
g -spaces, then×µ∈I∗

n
g-T⟨C⟩

g,µ is also a g-T ⟨C⟩
g -space:{

g-T⟨C⟩
g,µ =

(
Ωµ, g-T

⟨C⟩
g,µ

)
: µ ∈ I∗n

}
⇒ g-T⟨C⟩

g = ×
µ∈I∗

n

g-T⟨C⟩
g,µ .(3.39)

Proof. Let
{
g-T⟨C⟩

g,µ =
(
Ωµ, g-T

⟨C⟩
g,µ

)
: µ ∈ I∗n

}
be a collection of n ≥ 1 g-T ⟨C⟩

g -

spaces, and let ×µ∈I∗
n
g-T⟨C⟩

g,µ be the Cartesian product of these g-T ⟨C⟩
g -spaces.

Moreover, let ζ = (ζ1, ζ2, . . . , ζn) ∈×µ∈I∗
n
g-T⟨C⟩

g,µ , and let g-CSg
[ζ] ⊆×µ∈I∗

n
g-T⟨C⟩

g,µ

be the g-Tg-component of Sg ⊆×µ∈I∗
n
g-T⟨C⟩

g,µ corresponding to ζ ∈×µ∈I∗
n
g-T⟨C⟩

g,µ .

By hypothesis, let it be claimed that, for every ξ = (ξ1, ξ2, . . . , ξn) ∈×µ∈I∗
n
g-T⟨C⟩

g,µ ,

ξ ∈ ¬ opg
(
g-CSg

[ζ]
)
and, thus, ξ ∈ g-CSg

[ζ] since g-CSg
[ζ] ⊇ ¬ opg

(
g-CSg

[ζ]
)
,

meaning that g-CSg
[ζ] must be a g-Tg-closed set in ×µ∈I∗

n
g-T⟨C⟩

g,µ . For every(
µ, σ (µ) ,Og,σ(µ)

)
∈
{
µ
}
×I∗∞×g-T ⟨C⟩

g,µ , there exists Iσ(µ) ⊆ I∗∞ such that Og,σ(µ) =⋃
ν∈I∗

σ(µ)
Og,σ(ν,µ). Thus, the class B

[
g-T ⟨C⟩

g,µ

] def
=

{
Og,σ(ν,µ) : (ν, µ, σ (ν, µ)) ∈

I∗∞ ×
{
µ
}
× I∗∞

}
is a Tg-basis for g-T

⟨C⟩
g,µ : P (Ωµ) → P (Ωµ). Therefore, for any

ξ ∈ Og,σ(µ) ∈ g-T ⟨C⟩
g,µ , there exists Og,σ(ν,µ) ∈ B

[
g-T ⟨C⟩

g,µ

]
with ξ ∈ Og,σ(ν,µ) ⊆

Og,σ(µ) ∈ g-T ⟨C⟩
g,µ . Now let

ξ = (ξ1, ξ2, . . . , ξn) ∈ Rg =

(
×

µ∈I∗
n\Jn

g-T⟨C⟩
g,µ

)
×
(

×
µ∈Jn⊂I∗

n

Og,σ(ν,µ)

)
.

Now the following relation holds,

Sg =

(
×

µ∈I∗
n\Jn

{ζµ}
)
×
(

×
µ∈Jn⊂I∗

n

g-T⟨C⟩
g,µ

)
∼= ×

µ∈Jn⊂I∗
n

g-T⟨C⟩
g,µ ,
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and, hence, g-Tg-connected. Furthermore, ζ ∈ Sg and, consequently, it follows that
g-CSg

[ζ] ⊇ Sg. But, by the property of the intersection of Cartesian products,

Rg ∩ Sg =

(
×

µ∈I∗
n\Jn

{ζµ}
)
×
(

×
µ∈Jn⊂I∗

n

Og,σ(ν,µ)

)
̸= ∅.

Therefore, Rg ⊂ ×µ∈I∗
n
g-T⟨C⟩

g,µ contains a point of g-CSg
[ζ]. Accordingly, ξ ∈

¬ opg
(
g-CSg

[ζ]
)
⊆ g-CSg

[ζ]. Hence the Cartesian product×µ∈I∗
n
g-T⟨C⟩

g,µ has one

g-Tg-component g-CΩ [ζ] =×µ∈I∗
n
Ωµ, and is therefore a g-T ⟨C⟩

g -space. □

The concept of (Tg,Ω;Tg,Σ)-surjective map between any such Tg-spaces Tg,Ω =
(Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) is now defined.

Definition 3.42 ((Tg,Ω;Tg,Σ)-Surjective Map). A (Tg,Ω,Tg,Σ)-map πg : Tg,Ω −→
Tg,Σ is said to be surjective if and only if it belongs the following class:

g-S [Tg,Ω;Tg,Σ]
def
=

{
πg : (∀ζ ∈ Tg,Σ) (∃ξ ∈ Tg,Ω)

[
πg (ξ) = ζ

]}
.(3.40)

If the domain of a g- (Tg,Ω,Tg,Σ)-irresolute surjective map is g-Tg-connected,
then its codomain is also g-Tg-connected, as demonstrated in the theorem below.

Theorem 3.43. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces. If
πg ∈ g-I [Tg,Ω;Tg,Σ] ∩ g-S [Tg,Ω;Tg,Σ] be a g- (Tg,Ω,Tg,Σ)-irresolute surjective map
πg : Tg,Ω → Tg,Σ and Tg,Ω is g-Tg-connected, then Tg,Σ is also g-Tg-connected.

Proof. Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg-spaces of which Tg,Σ is as-
sumed to be g-Tg-separated, and let πg : Tg,Ω → Tg,Σ be a g- (Tg,Ω,Tg,Σ)-irresolute
surjective map. Since dom

(
π−1
g |Σ

)
∈ g-D [Tg,Σ], there exists

(
Ug,λ,Vg,λ

)
λ=ξσ,ζσ

∈
g-O

[
Tg,Ω

]
× g-K

[
Tg,Ω

]
such that,( ⊔

λ=ξσ,ζσ

Ug,λ =
⊔

λ=ξσ,ζσ

dom
(
π−1
g |Σλ

))
∨( ⊔

λ=ξσ,ζσ

Vg,λ =
⊔

λ=ξσ,ζσ

dom
(
π−1
g |Σλ

))
,

where
⊔

λ=ξσ,ζσ
dom

(
π−1
g |Σλ

)
= dom

(
π−1
g |Σ

)
∈ g-D [Tg,Σ] so that, for every λ ∈

{ξσ, ζσ}, either Ug,λ = dom
(
π−1
g |Σλ

)
or Vg,λ = dom

(
π−1
g |Σλ

)
. Since the relation

πg ∈ g-I [Tg,Ω;Tg,Σ] holds, there exists (Og,η,Kg,η) ∈ Tg,Ω × ¬Tg,Ω, η ∈ {ξω, ζω}
with (λ, η) ∈ {(ξσ, ξω) , (ζσ, ζω)}, such that,[

π−1
g

(
Ug,λ

)
⊆ opg (Og,η)

]
∨
[
π−1
g

(
Vg,λ

)
⊇ ¬ opg (Kg,η)

]
.

Evidently, dom
(
πg|Ω

)
= im

(
π−1
g |Σ

)
and dom

(
π−1
g |Σ

)
= im

(
πg|Ω

)
. Since im

(
πg|Ω

)
,

dom
(
π−1
g |Σ

)
∈ g-D [Tg,Σ], set im

(
πg|Ω

)
=

⊔
η=ξω,ζω

im
(
πg|Ωη

)
and dom

(
π−1
g |Σ

)
=⊔

λ=ξσ,ζσ
dom

(
π−1
g |Σλ

)
, and for any (λ, η) ∈ {(ξσ, ξω) , (ζσ, ζω)} set[

im
(
πg|Ωη

)
= dom

(
π−1
g |Σλ

)
= Ug,λ

]
∨
[
im

(
πg|Ωη

)
= dom

(
π−1
g |Σλ

)
= Vg,λ

]
.
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Since πg ∈ g-S [Tg,Ω;Tg,Σ], for every (λ, η) ∈ {(ξσ, ξω) , (ζσ, ζω)},( ⋂
η=ξω,ζω

dom
(
πg|Ωη

)
=

⋂
λ=ξσ,ζσ

im
(
π−1
g |Σλ

)
=

⋂
λ=ξσ,ζσ

π−1
g

(
Ug,λ

)
= ∅

)
∨( ⋂

η=ξω,ζω

dom
(
πg|Ωη

)
=

⋂
λ=ξσ,ζσ

im
(
π−1
g |Σλ

)
=

⋂
λ=ξσ,ζσ

π−1
g

(
Vg,λ

)
= ∅

)
,

Thus, dom
(
πg|Ω

)
=

⊔
η=ξω,ζω

dom
(
πg|Ωη

)
. Since the relation πg ∈ g-I [Tg,Ω;Tg,Σ]∩

g-S [Tg,Ω;Tg,Σ] holds, it follows that⊔
η=ξω,ζω

dom
(
πg|Ωη

)
=

⊔
λ=ξσ,ζσ

im
(
π−1
g |Σλ

)
⊆

⊔
η=ξω,ζω

opg (Og,η) ,

⋂
η=ξω,ζω

dom
(
πg|Ωη

)
=

⋂
λ=ξσ,ζσ

im
(
π−1
g |Σλ

)
⊇

⋂
η=ξω,ζω

¬ opg (Kg,η) .

Thus,
⊔

η=ξω,ζω
opg (Og,η) = dom

(
πg|Ω

)
and

⋂
η=ξω,ζω

¬ opg (Kg,η) = ∅. There

exists, then,
(
Ug,λ,Vg,λ

)
λ=ξω,ζω

∈ g-O
[
Tg,Ω

]
× g-K

[
Tg,Ω

]
such that,( ⊔

η=ξω,ζω

Ug,η = dom
(
πg|Ω

))∨( ⊔
η=ξω,ζω

Vg,η = dom
(
πg|Ω

))
.

Thus, dom
(
πg|Ω

)
∈ g-D [Tg,Ω], or equivalently dom

(
πg|Ω

)
/∈ g-Q [Tg,Ω] which con-

tradicts the assumption that dom
(
πg|Ω

)
∈ g-Q [Tg,Ω]. Hence, Tg,Σ must be g-Tg-

connected. □

Pathwise g-Tg-connectedness is also preserved under a g- (Tg,Ω,Tg,Σ)-continuous
map, as proved below.

Theorem 3.44. Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map and
let Sg,ω ⊂ Tg,Ω be a Tg-set. If dom

(
πg|Sg,ω

)
is pathwise g-Tg-connected in Tg,Ω,

then im
(
πg|Sg,ω

)
is also pathwise g-Tg-connected in Tg,Σ.

Proof. Let πg ∈ g-C [Tg,Ω;Tg,Σ], Sg,ω = dom
(
πg|Sg,ω

)
⊂ Tg,Ω be pathwise g-Tg-

connected in Tg,Ω, and suppose ξσ, ζσ ∈ im
(
πg|Sg,ω

)
. Then, there exist ξω,

ζω ∈ Tg,Ω such that
(
πg (ξω) , πg (ζω)

)
= (ξσ, ζσ). But dom

(
πg|Sg,ω

)
is path-

wise g-Tg-connected in Tg,Ω and, therefore, there exists a path φg,ζ : [0, 1] →
Tg,Ω such that φg,ζ (0) = ξω, φg,ζ (1) = ζω, and im

(
φg,ζ |[0,1]

)
⊆ dom

(
πg|Sg,ω

)
.

Since πg ∈ g-C [Tg,Ω;Tg,Σ] and φg,ζ ∈ C
[
[0, 1] ;Tg,Ω

]
, it follows that πg ◦ φg,ζ ∈

g-C
[
[0, 1] ;Tg,Σ

]
. Moreover, πg◦φg,ζ (0) = πg (ξω) = ξσ, πg◦φg,ζ (1) = πg (ζω) = ζσ,

and im
(
πg ◦ φg,ζ

)
⊆ im

(
πg|Sg,ω

)
. Hence, im

(
πg|Sg,ω

)
is pathwise g-Tg-connected

in Tg,Σ. □

In the discussion section, categorical classifications of the concepts of g-Tg-
connectedness and g-Tg-disconnectedness are presented. Thereafter, a nice ap-
plication is given and, finally, the work is terminated with a concluding remarks
section.
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4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in the
classifications of the Tg-properties in Tg-spaces, called g-Tg-connectedness and
g-Tg-disconnectedness, the dual aims of the present section are, to establish the vari-

ous relations amongst the elements of the sequence
〈
g-ν-T⟨C⟩

g =
(
Ω, g-ν-T ⟨C⟩

g

)〉
ν∈ I0

3

of g-T ⟨C⟩
g -spaces and the elements of the sequence

〈
g-ν-T⟨C⟩ =

(
Ω, g-ν-T ⟨C⟩)〉

ν∈ I0
3

of g-T ⟨C⟩-spaces, and to illustrate them through diagrams.
If a Tg-space Tg = (Ω,Tg) is g-ν-Tg-separated, then Tg has a nonempty proper

g-ν-Tg-open-closed set Sg ∈ g-ν-O
[
Tg

]
∩ g-ν-K

[
Tg

]
, where ν ∈ I03 . But, for every

Tg-set Sg ⊂ Tg, the relation intg (Sg) ⊆ clg ◦ intg (Sg) ⊆ clg ◦ intg ◦ clg (Sg) ⊇
intg ◦ clg (Sg) holds; for every Tg-set Sg ⊂ Tg, the relation given by clg (Sg) ⊇
intg ◦ clg (Sg) ⊇ intg ◦ clg ◦ intg (Sg) ⊆ clg ◦ intg (Sg) holds. Consequently,

opg,0 (Sg) ⊆ opg,1 (Sg) ⊆ opg,3 (Sg) ⊇ opg,2 (Sg) ∀Sg ⊂ Tg;

¬ opg,0 (Sg) ⊇ ¬ opg,1 (Sg) ⊇ ¬ opg,3 (Sg) ⊆ ¬ opg,2 (Sg) ∀Sg ⊂ Tg.

Therefore, if Sg ⊂ Tg is a nonempty proper g-Tg-open-closed set then,

Sg ∈ g-0-O
[
Tg

]
∩ g-0-K

[
Tg

]
=⇒ Sg ∈ g-1-O

[
Tg

]
∩ g-1-K

[
Tg

]
⇓

Sg ∈ g-2-O
[
Tg

]
∩ g-2-K

[
Tg

]
=⇒ Sg ∈ g-3-O

[
Tg

]
∩ g-3-K

[
Tg

]
.

In other words, g-3-Tg-separation implies g-1-Tg-separation and the latter in turn
implies g-0-Tg-separation. On the other hand, g-2-Tg-separation is implied by
g-3-Tg-separation. Similar implications also hold for g-T-separateness in a T -space
T = (Ω,T ). For, if S ⊂ T is a nonempty proper g-T-open-closed set then,

S ∈ g-0-O
[
T
]
∩ g-0-K

[
T
]

=⇒ S ∈ g-1-O
[
T
]
∩ g-1-K

[
T
]

⇓

S ∈ g-2-O
[
T
]
∩ g-2-K

[
T
]

=⇒ S ∈ g-3-O
[
T
]
∩ g-3-K

[
T
]
.

As above, g-3-Tg-separation implies g-1-Tg-separation and the latter in turn im-
plies g-0-Tg-separation. On the other hand, g-2-Tg-separation is implied by g-3-Tg-
separation.

For visualization, a so-called categorical connectedness diagram, expressing the
various relations amongst g-T-connected and g-Tg-connected spaces, is presented
in Fig. ?? and that, expressing the various relationships amongst g-T-connected
and g-Tg-connected spaces, so-called categorical disconnectedness diagram, is pre-

sented in Fig. ??. The categorical classifications of g-ν-T⟨LC⟩
g =

(
Ω, g-ν-T ⟨LC⟩

g

)
,

g-ν-T⟨PC⟩
g =

(
Ω, g-ν-T ⟨PC⟩

g

)
, g-ν-T⟨LPC⟩

g =
(
Ω, g-ν-T ⟨LPC⟩

g

)
, and g-ν-T⟨SC⟩

g =(
Ω, g-ν-T ⟨SC⟩

g

)
called, respectively, locally, pathwise, locally pathwise, and simply

g-ν-T ⟨C⟩
g -spaces can be diagrammed in an analogous manner. The following im-

plications concern the transformations of g-T-connected sets under some types of
g-T-maps.
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Figure 1. Relationships: g-T-connected and g-Tg-connected spaces.

Figure 2. Relationships: g-T-separated and g-Tg-separated spaces.

For every ν ∈ I03 , if πg ∈ g-ν-I [Tg,Ω;Tg,Σ] ∩ g-ν-S [Tg,Ω;Tg,Σ] holds, then
dom

(
πg|Sg

)
∈ g-ν-Q

[
Tg,Ω

]
implies im

(
πg|Sg

)
∈ g-ν-Q

[
Tg,Σ

]
, and hence the fol-

lowing implication:

(
dom

(
πg|Sg

)
∈ g-ν-Q

[
Tg,Ω

])
∧
(
πg ∈ g-ν-I [Tg,Ω;Tg,Σ] ∩ g-ν-S [Tg,Ω;Tg,Σ]

)
⇓

im
(
πg|Sg

)
∈ g-ν-Q

[
Tg,Σ

]
.(4.1)
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For every ν ∈ I03 , if πg ∈ g-ν-C [Tg,Ω;Tg,Σ] holds, then dom
(
πg|Sg

)
∈ g-ν-Q

[
Tg,Ω

]
implies im

(
πg|Sg

)
∈ g-ν-Q

[
Tg,Σ

]
, and hence the following implication:(

dom
(
πg|Sg

)
∈ g-ν-Q

[
Tg,Ω

])
∧
(
πg ∈ g-ν-C [Tg,Ω;Tg,Σ]

)
⇓

im
(
πg|Sg

)
∈ g-ν-Q

[
Tg,Σ

]
.(4.2)

In the following section a nice application comprising of some interesting cases is
discussed.

4.2. A Nice Application. Focusing on basic concepts from the point of view of
the theory of g-Tg-connectedness, we shall now present a nice application compris-
ing of some interesting cases. Let Ωσ =

{
ξν : ν ∈ I∗σ

}
denote the underlying set,

conditioned by the parameter σ ∈ I∗∞, and consider the Tg-space Tg,σ = (Ωσ,Tg,σ),
where Tg,σ : P (Ωσ) −→ P (Ωσ) will be defined in the following cases.

– Case i. Set σ = 1. Then, Ω1 = {ξ1}, Tg,1 =
{
∅,Ω1

}
=

{
Og,1,Og,2

}
,

¬Tg,1 =
{
Ω1, ∅

}
=

{
Kg,1,Kg,2

}
, and, for every (µ, ν) ∈ I∗2 × I03 it results that

opg,ν (Og,µ), ¬ opg,ν (Kg,µ) ∈
{
Og,1,Kg,1,Og,2,Kg,2

}
=

{
∅,Ω1

}
. Therefore, for

every ν ∈ I03 , g-ν-O
[
Tg,1

]
= g-ν-K

[
Tg,1

]
=

{
∅,Ω1

}
. Thus, for every ν ∈ I03 ,

there exists neither a pair (Ug,ξ,Ug,ζ) ∈ g-ν-O
[
Tg,1

]
× g-ν-O

[
Tg,1

]
of nonempty

g-Tg-open sets nor a pair (Vg,ξ,Vg,ζ) ∈ g-ν-K
[
Tg,1

]
× g-ν-K

[
Tg,1

]
of nonempty

g-Tg-closed sets such that:( ⊔
λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)
.

Evidently, the Tg-sets ∅, Ω1 ⊆ U are the only Tg-open-closed sets, and g-CΩ1
[ξ1] =

{ξ1} = Ω1 is the unique g-Tg-component in Tg,1. Thus, the Tg-space Tg,1 =

(Ω1,Tg,1) is a g-T ⟨C⟩
g -space g-T

⟨C⟩
g,1 =

(
Ω1, g-T

⟨C⟩
g,1

)
, and the latter in turn implies

that it is also a T
⟨C⟩
g -space T

⟨C⟩
g,1 =

(
Ω1,T

⟨C⟩
g,1

)
. Hence, every indiscrete Tg-space

which is g-Tg-connected is also Tg-connected. Furthermore, the underlying set
Ω1 = {ξ1} being a 1-point set, it also follows that, every discrete Tg-space that has
at most one point is both Tg-connected and g-Tg-connected.

– Case ii. Set σ = 2. Then, Ω2 =
{
ξ1, ξ2

}
. Choose Tg,2 =

{
∅,Ω2

}
={

Og,1,Og,2

}
so that, ¬Tg,2 =

{
Ω2, ∅

}
=

{
Kg,1,Kg,2

}
. Then, the collection of

Tg-open sets is O
[
Tg,2

]
=

{
∅,Ω2

}
, and K

[
Tg,2

]
= O

[
Tg,2

]
stands for the collection

of Tg-closed sets. On the other hand, for every ν ∈ I03 , g-ν-O
[
Tg,2

]
= O

[
Tg,2

]
∪{

{ξ1} , {ξ2}
}
= K

[
Tg,2

]
∪
{
{ξ1} , {ξ2}

}
= g-ν-K

[
Tg,2

]
. Clearly, there exists a pair

(Ug,ξ,Ug,ζ) ∈ g-ν-O
[
Tg,2

]
× g-ν-O

[
Tg,2

]
of nonempty g-Tg-open sets or a pair

(Vg,ξ,Vg,ζ) ∈ g-ν-K
[
Tg,2

]
× g-ν-K

[
Tg,2

]
of nonempty g-Tg-closed sets such that:( ⊔

λ=ξ,ζ

Ug,λ = Ω

)∨( ⊔
λ=ξ,ζ

Vg,λ = Ω

)
.

This description is realised when either (Ug,ξ,Ug,ζ) =
(
{ξ1} , {ξ2}

)
or (Vg,ξ,Vg,ζ) =(

{ξ2} , {ξ1}
)
. On the other hand, there exists neither a pair (Ug,ξ,Ug,ζ) ∈ O

[
Tg,2

]
×

O
[
Tg,2

]
of nonempty Tg-open sets nor a pair (Vg,ξ,Vg,ζ) ∈ K

[
Tg,2

]
× K

[
Tg,2

]
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of nonempty Tg-closed sets such that the above statement holds. Thus, the Tg-

space Tg,2 = (Ω2,Tg,2) is a g-T ⟨D⟩
g -space g-T

⟨D⟩
g,2 =

(
Ω2, g-T

⟨D⟩
g,2

)
but not a T

⟨D⟩
g -

space T
⟨D⟩
g,2 =

(
Ω2,T

⟨D⟩
g,2

)
. Alternatively said, every g-T ⟨C⟩

g -space is a T
⟨C⟩
g -

space but the converse need not be true in general. Moreover, the underlying
set Ω2 = {ξ1, ξ2} being a 2-point set, it follows that every discrete Tg-space
that has at least two points is g-Tg-separated. It is plain that every (Rg,Sg) ∈{(

{ξ1} , {ξ1, ξ2}
)
,
(
{ξ2} , {ξ1, ξ2}

)}
is a pair of nonempty Tg-sets which are not

g-Tg-separated, for, {ξ1} = {ξ1} ∩ {ξ1, ξ2} = ∁ ({ξ2}) = ∁ ({ξ2} ∩ {ξ1, ξ2}) ̸= ∅,
and Sg = {ξ1, ξ2} is the only Tg-set satisfying Sg = {ξ1} ⊔ {ξ2}. Accordingly,
g-Q [Tg,2] =

{
{ξ1} , {ξ2}

}
and g-D [Tg,2] =

{
{ξ1, ξ2}

}
. Observe in passing that,

Ω2 =
⊔

ζ=ξ1,ξ2
g-CΩ2

[ζ]. Thus, if a Tg-space has more than one g-Tg-component,

then it is a g-T ⟨D⟩
g -space.

– Case iii. Set σ > 2. Then, Ω>2 = {ξα : α ∈ I∗σ>2}. Let Tg,>2 : P (Ω>2) −→
P (Ω>2) generate the elements of Tg,>2 =

{
Og,(α,β) : (α, β) ∈ I0∞ × I0∞

}
and

¬Tg,>2 =
{
Kg,(α,β) = ∁

(
Og,(α,β)

)
: (α, β) ∈ I0∞ × I0∞

}
as thus:

(4.3) Og,(α,β) =


∅ ∀ (α, β) ∈ {0} × {0} ;{
ξα+µ : µ ∈ I0β

}
∀ (α, β) ∈ I∗∞ × I0∞;

Ω>2 ∀ (α, β) ∈ {1} × {∞} .

Clearly, Ω>2 ⊆ U is an ∞-point set. Furthermore, it is easily verified that,
Tg,>2 (∅) = ∅, Tg,>2

(
Og,(α,β)

)
⊆ Og,(α,β) for every (α, β) ∈ I0∞ × I0∞, and, finally,

Tg,>2

(⋃
(α,β)∈I0

∞×I0
∞

Og,(α,β)

)
=

⋃
(α,β)∈I0

∞×I0
∞

Tg,>2

(
Og,(α,β)

)
. Hence, it follows

that Tg,>2 : P (Ω>2) −→ P (Ω>2) is a g-topology on the ∞-point set Ω>2. On
the other hand, it can be shown that, for every (α, β, ν) ∈ I∗∞ × I0∞ × I03 ,

Og,(α,0) ∩ Og,(α,β) ⊆ opg,ν
(
Og,(α,0)

)
∩ opg,ν

(
Og,(α,β)

)
= {ξα} ∈ g-Q [Tg,>2] .

This implies that the Tg-space Tg,>2 = (Ω>2,Tg,>2) is a g-T ⟨LC⟩
g -space g-T

⟨LC⟩
g,>2 =(

Ω>2, g-T
⟨LC⟩
g,>2

)
, and hence, it is also a g-T ⟨C⟩

g -space g-T
⟨C⟩
g,>2 =

(
Ω>2, g-T

⟨C⟩
g,>2

)
.

Moreover, Tg-properties relative to such Tg-spaces g-ν-T
⟨LC⟩
g =

(
Ω, g-ν-T ⟨LC⟩

g

)
,

g-ν-T⟨PC⟩
g =

(
Ω, g-ν-T ⟨PC⟩

g

)
, g-ν-T⟨LPC⟩

g =
(
Ω, g-ν-T ⟨LPC⟩

g

)
, and, also, g-ν-T⟨SC⟩

g =(
Ω, g-ν-T ⟨SC⟩

g

)
called, respectively, locally, pathwise, locally pathwise, and simply

g-ν-T ⟨C⟩
g -spaces can be discussed in an analogous manner by slight modifications

of some Tg-properties found in those cases. The next section provides concluding
remarks and future directions of the theory of g-Tg-connectedness discussed in the
preceding sections.

5. Conclusion

In this paper, a new theory called Theory of g-Tg-Connectedness has been devel-
oped, the foundation of which was based on the theories of g-Tg-sets and g-Tg-maps.
A careful perusal of the Mathematical developments of the earlier sections will show
that the proposed theory has, in its own rights, several advantages. The very first
advantage is that the theory holds equally well when (Λ,Tg,Λ) = (Λ,TΛ), where
Λ ∈

{
Ω,Σ

}
, and other characteristics adapted on this basis, in which case it might

be called Theory of g-T-Connectedness.
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Hence, in a Tg-space the theoretical framework categorises such pairs of con-
cepts as g-Tg-connected open and g-Tg-connected closed, g-Tg-connected semi-
open and g-Tg-connected semi-closed, g-Tg-connected preopen and g-Tg-connected
preclosed, and g-Tg-connected semi-preopen and g-Tg-connected semi-preclosed as
g-Tg-connected of categories 0, 1, 2, and 3, respectively, and theorises the concepts
in a unified way; in a T -space it categorises such pairs of concepts as g-T-connected
open and g-T-connected closed, g-T-connected semi-open and g-T-connected semi-
closed, g-T-connected preopen and g-T-connected preclosed, and g-T-connected
semi-preopen and g-T-connected semi-preclosed as g-T-connected of categories 0,
1, 2, and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of g-Tg-
connectedness of mixed categories. More precisely, for some pair (ν, µ) ∈ I03 × I03
such that ν ̸= µ, to develop the theory of g-Tg-connectedness with respect to the
elements of the classes

{
(Ug,ν ,Ug,µ) : (Ug,ν ,Ug,µ) ∈ g-ν-O

[
Tg

]
× g-µ-O

[
Tg

]}
and{

(Vg,ν ,Vg,µ) : (Vg,ν ,Vg,µ) ∈ g-ν-K
[
Tg

]
× g-µ-K

[
Tg

]}
in a Tg-space Tg, as [31]

and [32] developed the theory of b-open and b-closed sets in a T -space T. Such a
theory is what we thought would certainly be worth considering, and the discussion
of this paper terminates here.
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