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Abstract 

Objective: In recent years, besides the analysis of pesticide residues in fresh fruit and vegetables, researches 

have also been carried out on residue removal or reduction rates on different agricultural commodities. Farmers 

prefer various food-processing methods when they experience problems in marketing or when they wish to 

have value-added. In this sense, it is important to know the fate of pesticides after processing. Washing, 

peeling, drying and processing into fruit juice are the most common processing methods applied to fruits. In 

this study, it is aimed to compile information about the effects of various washing methods on pesticide residue 

removal or reduction rates and the factors (pesticide water solubility and mode of action, preharvest intervals, 

type, and duration of washing) affecting such removal or reduction rates. 

Conclusion: There are various washing processes for the removal of pesticides from agricultural commodities. 

Washing usually reduces pesticide residues. Washing with non-toxic acidic solutions, ozonated water, and 

ultrasonic cleaning have been found to be more effective than washing with tap water. The most important 

factors affecting washing processes were identified as pesticide water solubility and mode of action. Since 

field-spraying allows the pesticides to penetrate into biologically active plant parts, field-sprayed samples 

should be used in washing processes. In this review study, the necessity of washing fruits and vegetables before 

consumption was pointed out once again. 

Keywords: residue; washing process; processing factor (PF); pesticide mode of action 

Öz 

Amaç: Son yıllarda yaş meyve sebzelerde pestisit kalıntılarının analizine ilave olarak işlenmiş tarımsal 

ürünlerde de kalıntıların belirlenmesi üzerine araştırmalar yapılmaktadır. Üreticiler, ürünü pazarlamada 

problem olduğunda veya ürününe katma değer kazandırmak istediğinde, ürününü çeşitli şekillerde işlemeyi 

tercih etmektedir. Bu anlamda da işlemeden sonra ürünlerde pestisitlerin akıbetinin bilinmesi önemlidir. Bu 

ürün işlemelerinin en fazla kullanılanları, yıkama, kabuk soyma, kurutma ve meyve suyu işlemedir. Bu 

çalışmada, çeşitli yıkama tekniklerinin pestisit kalıntılarının giderilmesi üzerine etkisi ve buna etkili olan çeşitli 

faktörlerin (pestisitin suda çözünürlüğü, etki mekanizması, hasat ile son ilaçlama arasında geçen süre ve 

yıkamanın süresi) derlenmesi amaçlanmıştır. 

Sonuç: Pestisitlerin ürünlerden uzaklaştırılması için çeşitli yıkama işlemleri vardır. Yıkama genellikle pestisit 

kalıntılarını azaltır. Toksik olmayan asidik çözeltiler, ozonlu su, ultrasonik temizleme ile yıkamanın çoğu 

çalışmada musluk suyu ile yıkamaya göre daha etkili olduğu bulunmuştur. Yıkama işlemini etkileyen en 

önemli faktörler pestisitin suda çözünürlüğü ve etki şeklidir. Tarlada ilaçlama, pestisitlerin biyolojik olarak 

aktif bitki kısımlarına nüfuz etmesine izin verdiği için, yıkama işleminde tarlada ilaçlanmış numuneler 

kullanılmalıdır. Bu derleme çalışmasında meyve ve sebzelerin tüketilmeden önce yıkanması gerekliliği bir kez 

daha vurgulanmıştır. 

Anahtar kelimeler: kalıntı; yıkama işlemi; işleme faktörü (PF); pestisit etki mekanizması  
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1. Introduction 

Pesticides are essential components of agronomic 

practices in some cases to minimize pests and 

disease-induced yield and quality losses (Tiryaki & 

Temur, 2010). Despite several advantages of 

pesticide in the agricultural fields, limit-exceeding 

residues pose a serious risk to human health 

(Randhawa et al., 2014a). Pesticide residues are a 

major concern for consumers and create important 

problems also in international trade. Therefore, 

there is a great interest in the reduction of residues 

on agricultural products and decreasing human 

exposure to these chemicals (Ghani et al., 2010; 

Gonzalez-Rodriguez et al., 2011). Residues 

exceeding MRL (maximum residue levels) 

specified for each pesticide on raw or processed 

commodities can be an important source of 

exposure (Acoğlu et al., 2018; Lozowicka et al., 

2011; Lozowicka et al., 2013). 

There is a limited number of food processing 

methods to reduce pesticide residues in fruits and 

vegetables. Effective methods include washing, 

cooking, ozone treatment, refrigeration, and 

ultrasonic cleaning (Lozowicka et al., 2016). 

Method efficiencies are largely dependent on 

physicochemical characteristics of the pesticide, 

type of processing, process duration, climate 

parameters throughout the growing season, and 

agricultural commodity produced (Holland et al., 

1994; Kong et al., 2012; Polat & Tiryaki, 2020; 

Zhao et al., 2020). 

Washing is the first process used to reduce 

pesticide residues over the surface of commodity 

(Hassan et al., 2019). Effectiveness of washing 

process depends on chemical characteristics, mode 

of action, pesticide water solubility, and harvest 

times. Contact pesticides do not penetrate into the 

commodities (Heshmati et al., 2020; Gonzalez-

Rodriguez et al., 2011; Lozowicka et al., 2016; 

Polat, 2021). Therefore, these residues could easily 

be reduced through washing process. On the other 

hand, systemic pesticides may penetrate into the 

other sections of the plant, thus it is highly difficult 

to remove systemic pesticides from different 

sections of the plants (Acoğlu et al., 2018; 

Lozowicka et al., 2013). Water solubility plays an 

important role in reducing pesticide residues on 

fruits and vegetables. With the exceptions of some 

pesticides, removal of higher soluble pesticides is 

readily possible (Krol et al., 2000; Lozowicka et 

al., 2016; Randhawa et al., 2014b). 

Field-sprayed samples should be used in washing 

processes. The “field-sprayed" method differs from 

laboratory fortification. In field-spraying pesticides 

may penetrate into different sections of the plants. 

Absorption and translocation of the pesticide and 

weathering may affect the washing process. 

Spraying pesticides on any fruits and vegetables in 

laboratory and then processing them does not 

reflect real processing effects (Krol et al., 2000; 

Polat & Tiryaki, 2018). 

In this review article, the effects of washing 

process on pesticide residue levels were reviewed. 

Factors affecting washing treatments, such as 

action mode of pesticide, residue age, types of 

washing and solubility in water were assessed one 

by one. 

2. Reduction rate of pesticides and 

processing factor 

Reduction rate (Eq. 1) and processing factors (Eq. 

2) are calculated to assess the effects of washing 

process on pesticide residue concentrations (Bian 

et al., 2020; González-Rodríguez et al., 2011; Kong 

et al., 2012; OECD, 2008).  

 

Reduction rate, % =
Residue in the raw product−Residue in the processed product

Residue  in the raw product
𝑥100   (1) 

Processing factor, PF =
Residue level  in the processed product,   mg/kg

Residue level in the raw product,   mg/kg
     (2) 

 

A PF of less than 1 represents a decrease in 

pesticide residues on the processed product; a PF 

of bigger than 1 represents an increase in pesticide 

residues on the processed product. If PF equal to 1, 

there was no change in pesticide residues on the 

processed product. 

3. Factors affecting washing treatments  

Washing treatments usually reduce pesticide 

residue levels on commodity. Pesticide residue 

levels may be reduced by 9-99% through washing 

treatments. However, reduction levels achieved by 

washing treatments differs depending on residue 

location, mode of action, residue age, water 

solubility of pesticide, washing type (method and 

solutions), PHI (preharvest interval, the time 

between the harvest and pesticide application), 

temperature and duration of washing. Removal of 

pesticide on commodity by washing is also 

influenced by food type, physicochemical 
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characteristics of pesticide, vapour pressure and 

octanol/water partition coefficient (Kow/log Kow). 

In previous studies, pesticide residue reductions of 

between 22-60% were reported with various 

washing processes (Acoglu & Yolci Omeroğlu, 

2021; Chen et al., 2020; Dong, 2012; Gonzalez-

Rodriguez et al., 2011; Rodrigues et al., 2017;). 

Pesticide residue reduction rates achieved through 

different washing process are provided in Table 1 

for several pesticides and various commodities. 

 

Table 1. Effects of different washing treatments on pesticide residues. 

Commodity Washing treatments Pesticides 
Range of reduction 

rate, % 
Reference 

Apple 
Water, sodium hypochlorite, peroxyacetic acid, tween 

20 

Thiabendazole 50.97 

Al-Taher et al. 2013 

Diphenylamine 88.8 

Pyrimethanil 40.36 

Thiabendazole 49.04 

Diphenylamine 46.9 

Beans 

Tap water, acetic acid, sodium bicarbonate, 

potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 39-63 

Satpathy et al. 2012 

Formothion 27-90.7 

Chlorpyriphos 31-87.6 

Malathion 43-88.9 
Methyl parathion 35-92.6 

Parathion 33-88.1 

Brinjal  Endosulfan 15.42 Randhawa et al. 2014b 

Capsicum 

Tap water, acetic acid, sodium bicarbonate, 

potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 34-65 

 

Satpathy et al. 2012 

Formothion 27-97.6 

Chlorpyriphos 31-87.7 

Malathion 40-95.3 

Methyl parathion 36-92.6 

Parathion 37-88.1 

Cabbage Tap water, detergent solution, sodium hypochlorite  Chlorpyrifos 0.23-56.6 Ling et al. 2011 

Cauliflower 

Tap water Endosulfan 27.27 Randhawa et al. 2014b 

Tap water, acetic acid, sodium bicarbonate, 

potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 36-86.8 

Satpathy et al. 2012 

Formothion 29-90.7 
Chlorpyriphos 35-87.7 

Malathion 39-95.3 

Methyl parathion 34-92.6 

Parathion 32-88.1 

Carrots Tap water 

Chlorpyrifos 49-60 

Bonnechère et al. 2012b 
Difenoconazole 86-89 

Dimethoate 27-33 

Tebuconazole 58-68 

Cucumber 
Tap water, detergent solution, sodium hypochlorite  Chlorpyrifos 2.04-11 Ling et al. 2011 

Tap water, acetic acid, citric acid Imidacloprid 48.43-93.75 Randhawa et al. 2014a 

Garlic Tap water, acidic solution, alkaline solution Iprodione 4-90 Bian et al. 2020 

Garlic sprouts Tap water, detergent solution, sodium hypochlorite  Chlorpyrifos 3.65-25.6 Ling et al. 2011 

Grape Tap water, acetic acid, citric acid, ultrasonic cleaning 

Chlorpyrifos-methyl 13.9-71.1 
Polat, 2021 

Lambda-cyhalothrin 15.3-68 
Tebuconazole 22.11-74.45 Duman et al. 2020 

Eggplant 

Tap water, detergent solution, sodium hypochlorite  Chlorpyrifos 36.2-50.7 Ling et al. 2011 

Tap water, acetic acid, sodium bicarbonate, 

potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 37-89 

Satpathy et al. 2012 

Formothion 34-90.3 

Chlorpyriphos 42-84.8 

Malathion 38-95.3 

Methyl parathion 22-83.8 

Parathion 23-88.1 

Kumquat Tap water, electrolysed water 

Chlorpyrifos, 

Bifenthrin, 
Tebuconazole, 

Pyridaben, 

Buprofezin, 

Spirotetramat, 

Azoxystrobin, 

Imidacloprid, 

Difenoconazole, 

Nitenpyram 

16.1-91.7 Yang et al. 2020 

Lemon 
Tap water, sodium hypochlorite, peroxyacetic acid, 
tween 20 

Imazalil 41.68 Al-Taher et al. 2013 

Mushroom Glacial acetic acid, tap water, sodium bicarbonate 

Diazinon 65.90-77.32 

Heshmati et al. 2019 

Fenpropathrin 17.11-36.03 

Malathion 72.77-72.77 

Permethrin 38.76-66.46 

Propargite 27.56-68.27 

Okra Tap water Endosulfan 22.27 Randhawa et al. 2014b 

 
Tap water, acetic acid, sodium bicarbonate, 

potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 35-66 

Satpathy et al. 2012 

Formothion 20-90.7 

Chlorpyriphos 31-87.7 

Malathion 36-42 
Methyl parathion 29-92.6 

Parathion 29-78.7 
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Table 1. Effects of different washing treatments on pesticide residues (continued). 

Commodity Washing treatments Pesticides 
Range of reduction 

rate, % 
Reference 

Orange 

Tap water, sodium hypochlorite, peroxyacetic acid, 

tween 20 

Imazalil 64.71 
Al-Taher et al. 2013 

Thiabendazole 78.05 

Tap water, sodium carbonate, sodium chloride, acetic 

acid, apple vinegar-water, grape vinegar-water 

Abamectin 2.-38 
Acoglu & Yolci 

Omeroglu, 2021 
Buprofezin 24-59 

Acoglu & Yolci 

Omeroglu, 2021 

Etoxazole 5-46 

Imazalil 5-61 

Thiophanate-methyl 39-82 

Potato 

Tap water Endosulfan 22.22 Randhawa et al. 2014b 

Tap water, acetic acid, sodium chloride 

Hexachlorobenzene 23.7-59.7 

Soliman, 2001 

Lindane 18.8-65.3 

p,p'-DDT 18.1-63.4 

Dimethoate 12.4-95.6 
Primiphos-methyl 18.1-96.5 

Malathion 11.2-97.8 

Peach 
Water, sodium hypochlorite, peroxyacetic acid, tween 

20 
Fludioxonil 71.63 Al-Taher et al. 2013 

Pepper 

Tap water, acetic acid, citric acid, ultrasonic cleaning 

Acetamiprid 3.21-77.16 

Polat & Tiryaki, 2020 Chlorpyrifos 8.43-82.30 

Formetanate hydrochloride 30.44-88.50 

Pirimiphos-methyl 4.57-87.16 Çatak et al. 2020 

Tap water, sodium carbonate, sodium hypochlorite, 

glycerol, 
acetic acid 

Boscalid 45.44-65.47 

Ghani et al. 2010 Fenhexamid 19.87-53.76 
Myclobutanil 17.30-35.75 

Tap water, acetic acid, citric acid Imidacloprid 48.43-93.75 Randhawa et al. 2014a 

Water, sodium hypochlorite, peroxyacetic acid, tween 

20 

Imidacloprid 71.2 
Al-Taher et al. 2013 

Chlorpyrifos 43.14 

Rape  Tap water, ozonated water 

Diazinon 10.9-53.4 

Wu et al. 2007 
Cypermethrin 25.5-61.1 

Methyl parathion 16.4-47.9 

Parathion 19.2-55.3 

Spinach 

Tap water, acetic acid, citric acid, sodium chloride, 

sodium carbonate, ginger extract, garlic extract, 
radish extract, lemon extract 

Chlorpyrifos 22.95-94.21 

Amir et al. 2019 
Cypermethrin 22.60-89.99 
Deltamethrin 10.21-79.68 

Endosulfan 11.24-70.32 

Tap water 

Iprodione 43-48 

Bonnechère et al. 2012a 
Mancozeb 43-48 

Boscalid 29-57 

Propamocarb 11.0-13 

Endosulfan 27.1 Randhawa et al. 2014b 

Boscalid 33-68 Lozowicka et al. 2016 

Strawberries 
Tap water, ozone eater, ultrasonic cleaning 

 

Bupirimate 6-57 

Lozowicka et al. 2016 

Cyprodinil 15-54 

Fenhexamid 16-57 

Fludioxonil 12-60 

Folpet 10-66 

Iprodione 19-65 

Pyraclostrobin 20-89 

Tetraconazole 2-85 

Trifloxystrobin 11-52 
Acetamiprid 24-63 

Alpha-cypermethrin 35-81 

Chlorpyrifos 42-79 

Deltamethrin 14-72 

Lambda-cyhalothrin 6-58 

Pirimicarb 14-65 

Soybeans 

Tap water 

Clomazone 18-95 

Zhang et al. 2020 Fomesafen 16-90 

Quizalofop-p-ethyl 38-87 
Tap water, sodium carbonate, sodium hypochlorite, 

glycerol, acetic acid 
Boscalid 41.25-52.43 Ghani et al.2010 

Tomato 

Tap water, sodium carbonate, sodium hypochlorite, 

glycerol, acetic acid, detergent solution 

Fenhexamid 28.10-53.44 
Ghani et al. 2010 

Myclobutanil 13.33-30.04 

tap water, detergent solution, sodium hypochlorite Chlorpyrifos 37.2-51.0 Liang et al. 2011 

Tap water Endosulfan 26.92 Randhawa et al. 2014b 

Tap water, acetic acid, sodium bicarbonate, 
potassium permanganate, malic acid, oxalic acid, 

aqueous solution 

Fenitrothion 34-81 

Satpathy et al. 2012 

Formothion 27-90.7 

Chlorpyriphos 39-89.7 
Malathion 41-88.9 

Methyl parathion 32-92.6 

Parathion 37-88.1 

     
 

3.1. Location of the residue 

With washing treatments, it is too easy to remove 

surface residues, but it is not for systemic residues. 

Washing was reported to reduce pesticide residues 

loosely attached to commodity surfaces 

(Bonnechère et al., 2012a). Location of pesticide 

residues on product surfaces depends on pesticide 



Gıda ve Yem Bilimi - Teknolojisi Dergisi / Journal of Food and Feed Science - Technology 29:1-11 (2023/1) 5 

 

 

Effects of washing treatments on pesticide residues in agricultural products 

Osman Tiryaki;Burak Polat 

 

molecules, environmental parameters, type, and 

sections of the commodities (Bajwa & Sandhu, 

2014). 

3.2. Pesticide mode of action  

Mode of action describes how a pesticide kills the 

pests. It plays an important role in residue removal 

from the products through washing processes. 

Pesticides are classified into two categories based 

on mode of action: contact and systemic. Contact 

pesticides are usually applied to commodity 

surfaces, and they usually do not penetrate into the 

product, thus easily be removed through washing 

processes. On the other hand, systemic pesticides 

penetrate into the commodity. Pesticide sprays are 

absorbed by leaves and stems, then translocated 

into different sections of the plant through vascular 

system. Therefore, it is highly difficult, even 

impossible to remove systemic pesticides through 

washing processes (Acoğlu et al., 2018; Çatak et 

al., 2020; Lozowicka et al., 2013; Polat & Tiryaki, 

2020; Polat, 2021). It was reported that reduction 

rate of contact pesticides like diazinon was greater 

than that of systemic ones (Heshmati et al., 2020). 

In a previous study, Polat & Tiryaki (2020) 

indicated that contact pesticides were more 

efficiently removed or reduced through washing 

processes. Researchers reported almost twice as 

much reduction for contact insecticides 

(chlorpyrifos, formetanate hydrochloride) as 

compared to systemic insecticides (acetamiprid). 

Rather than washing, ultrasonic cleaning 

treatments were found to be more effective in 

removal or reduction of systemic pesticides. 

Pesticide residue removals or reductions are thus 

largely designated by mode of actions (contact or 

systemic) of pesticides (Acoglu & Yolci 

Omeroğlu, 2021; Bonnechère et al., 2012c; Çatak 

et al., 2020). 

3.3. Residue age 

Residue age is defined as duration of stay of 

pesticide on commodity. It is an important factor 

affecting residue removals through washing 

processes. In washing treatments, pesticide residue 

removal or reduction rates generally decrease with 

the increasing age of residues (Dong, 2012; 

Holland et al., 1994; Levya et al., 1998) 

3.4. Water solubility of pesticides and Kow 

(octanol–water partition coefficient) 

Water solubility and Kow values significantly 

affects residue removal rates through washing 

processes. It was indicated in previous washing 

studies that higher pesticide removal efficiencies 

were achieved with higher water solubility and 

lower partition coefficients. It was also indicated 

that highly polar water-soluble pesticides were 

better removed that low-polarity materials 

(Holland, 1994; Lozowicka et al., 2016; Randhawa 

et al., 2014a; Saranjampour at al., 2017). However, 

several studies concluded that water solubility did 

not play a significant role in reduction of pesticide 

residues from agricultural commodities. Majority 

of pesticide residues appeared to reside on product 

surfaces and could be reduced by mechanical 

rinsing (Cabras et al., 1997 & 1998; Krol et al., 

2000). Water solubility was reported as 3.4 mg/L 

for vinclozolin and as 3.3 mg/L for captan. 

Although vinclozolin was not removed with 

rinsing, captan was readily removed with rinsing. 

Water solubility of methoxychlor and bifenthrin 

was reported as 0.1 mg/L, yet bifenthrin was not 

removed through rinsing and methoxychlor was 

removed easily with rinsing. Although chlorpyrifos 

had greater water solubility than endosulfan and 

permethrin, it was not easily removed through 

rinsing (Krol et al., 2000). 

A larger removal is expected with highly water-

soluble pesticides. Since deltamethrin has low 

water solubility (0.0002 mg/L at 20oC) and log-

Kow (4.6), the reduction of residues was very low 

in washing trials of spinach. Whereas iprodione has 

an average 56% reduction with a high-water 

solubility (12.2 mg/L) and low log- Kow (3.1) 

(Bonnechère et al., 2012a). 

3.5. Temperature and duration of washing 

Hot washing is usually more effective than cold 

one. Pesticide cleaning efficiency of ultrasonic 

cleaning treatments depends on temperature of 

water (Saeedi Saravi & Shokrzadeh, 2016). 

Ultrasonic cleaning at 25oC and 10 min washing 

duration was the most effective treatment for 

removal of pesticides (Buakham et al., 2012) 

Duration of washing treatments (the contact time 

with the washing solution) is also important. 

Longer washing durations generally yield greater 

pesticide removal efficiencies or reduction rates. It 

was reported in previous studies that increased 

washing durations increased efficiency of washing 

treatments (Acoglu & Yolci Omeroğlu, 2021; 

Buakham et al., 2012; Çatak et al., 2020; 

Lozowicka et al., 2016; Polat & Tiryaki, 2020; 

Polat, 2021). Similarly, 30 min washing duration 

was found to be more effective than 10 and 5 min 

for removal of both acephate and methamidophos 

residues in rice (Kong et al., 2012). Performance of 

washing process increased with prolonged washing 

durations. Washing duration of 5 min was the most 

effective one to reduce acetamiprid, chlorpyrifos-
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ethyl and formetanate hydrochloride residues on 

capia pepper (Polat & Tiryaki, 2020) and 

chlorpyrifos-ethyl, lambda cyhalothrin residues on 

Sultana grape (Polat, 2021). Similarly, pirimiphos-

methyl and tebuconazole residue levels decreased 

with increasing washing durations in grapes and 

peppers, respectively (Çatak et al., 2020; Duman et 

al., 2021). 

3.6. PHI (Preharvest interval) 

The time between the harvest and last pesticide 

application (PHI-Preharvest Interval) plays also an 

important role in pesticide residue removal from 

commodity surfaces (Hassanzadeh et al., 2010; 

Polat & Tiryaki, 2020). The rate of reductions 

decreased with prolonged PHI values (Duman et 

al., 2021). Since the pesticides penetrate into the 

commodity, the more the PHI, the less the removal 

of pesticide (Polat, 2021). Özel and Tiryaki (2019) 

reported increasing reduction rates with decreasing 

PHI values. PHI significantly influenced efficiency 

of washing processes in removal of pesticide 

residues (Hassanzadeh et al., 2010; Özel & Tiryaki, 

2019). Similarly, a gradual reduction of 

chlorpyrifos- ethyl, pirimiphos-methyl, 

acetamiprid and formetanate hydrochloride in 

pepper and tebuconazole, chlorpyrifos, lambda 

cyhalothrin in grape were determined with the 

increasing PHIs (Çatak et al., 2020; Duman et al., 

2021; Polat & Tiryaki, 2020; Polat, 2021). 

Romeh et al. (2009) applied tap-water washing 

treatments to tomato samples harvested 1, 3, 7 and 

14 days after spraying and reported reduction rates 

of penconazole as 15.00, 11.76, 7.69 and 6.25%, 

respectively. Harvests should be practiced in 

accordance with the recommended PHI ranges 

(Çatak et al., 2020; Polat & Tiryaki, 2020; Duman 

et al., 2021). 

4. Washing type (method and agents) 

Washing type and washing agents also affect 

performance of processes in pesticide removal 

from agricultural commodities. Tap-water washing 

process was experimented in previous studies to 

reduce residue levels on commodity surfaces 

(Duman et al., 2021; Lozowicka et al., 2016). In 

some other studies, acid-washing and ultrasonic 

cleaning treatments were experimented (Kentish, 

2014; Khadre et al., 2001; Polat & Tiryaki, 2020). 

Various chemical agents such as acetic acid, 

sodium carbonate and sodium chloride could be 

used in washing treatments. Performance of these 

washing solutions in removal of pesticide residues 

on different agricultural commodities were 

investigated in several works (Acoğlu & Yolci 

Omeroğlu, 2021; Kim et al., 2000; Randhawa et al., 

2014b; Polat & Tiryaki, 2020; Ruengprapavut et 

al., 2020). 

Concentration of non-toxic chemical solutions are 

also another factor affecting pesticide residue 

removal. Randhawa et al. (2014a) used tap-water, 

different concentrations (1.5%, 3%, 6% and 9%) of 

acetic and citric acid solutions and their 

combinations in washing processes of pepper and 

cucumber samples. The greatest reduction rates 

were obtained with 9% of acetic acid and citric acid 

treatments for both cucumber (82.29% and 

93.75%) and pepper (68.48% and 72.48%). 

Similarly, washing with 0.1% Na2CO3 was more 

effective than 0.9% NaCl and tap-water washing 

for removal of both acephate and methamidophos 

residues on rice (Kong et al., 2012). 

Washing type also affects reduction rate of residues 

(Lozowicka et al., 2016). Ozonated water washing 

treatments and ultrasonic cleaning treatments were 

reported as the most efficient processes to reduce 

pesticide residues on strawberries (Lozowicka et 

al., 2016). 

Ultrasonic cleaning is a new process applied to 

wash agricultural commodity. Ultrasonic waves 

cause cavitation reaction which can reduce the 

pesticide residue more than the other processes. 

Cavitation reactions result in formation and 

collapse of micron-sized bubbles in a liquid 

medium, then in tiny implosions that provide 

cleaning power. The cavitation bubbles produce 

several air bubbles, these bubbles then grow, 

expand and break out simultaneously and produce 

shockwaves and mechanical energy. These 

shockwaves and resultant mechanical energy 

improve heat and mass transfer within quite small 

pores of the solid surface and ultimately reduce 

pesticide residues on agricultural commodities 

(Buakham et al., 2012; Lozowicka et al., 2016; 

Polat & Tiryaki, 2020). 

In a few works, efficiency of different washing 

solutions on pesticide residue removal was 

compared and citric acid (9%) washing and 

ultrasonic cleaning were reported to be more 

efficient than the tap-water and acetic acid 

treatments (Polat & Tiryaki, 2020; Polat, 2021). 

Findings of these two studies were illustrated for 

sultana grapes and capia peppers in Figure 1 and 

Figure 2, respectively.  
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Figure 1. Pesticide residues in washed sultana grapes (Polat, 2021) 

 

 

Figure 2. Pesticide residues in washed capia peppers (Polat & Tiryaki, 2020) 

 

One of the other washing processes is ozonated 

washing. Ozone (O3) is a natural component of 

atmospheric air (Lozowicka et al., 2016). O3 is 

considered to be the most suitable process to 

remove pesticide residues from fruits and 

vegetables (Wu et al., 2007). With a 5-min 

ozonated washing, residues on strawberry were 

removed by between 75.1% (PF=0.25) for 

chlorpyrifos and 36.1% (PF=0.64) for 

tetraconazole (Lozowicka et al. ,2016). 

Aslansoy (2012) investigated the effects of ozone 

treatments on pesticide residues of lemons. 

Ozonated water (with 2, 4, 8 mg/l concentrations 

and 3, 6 and 9 min washing durations) reduced 

chlorothalonil residues at the range of 28-92% and 

70-89% in peeled and unpeeled lemons, 
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respectively. These reduction ranges were 15-82% 

and 7-89% for chlorpyriphos ethyl and 16-95% and 

14-100% for tetradifon. 

Baltacı (2015) sprayed imidacloprid, phenazaquin 

and lambda cyhalothrin pesticides to tomatoes 

grown under field conditions and investigated the 

effects of ozone treatments on pesticide removal of 

harvested tomatoes. Washing with ozonated water 

yielded 57.8% reduction in phenazaquin, 40.9% in 

imidacloprid and 20.4% in lambda cyhalothrin. 

5. Conclusion 

Effects of various washing treatments on pesticide 

residue removal or reduction rates vary based on 

several factors, such as pesticide physicochemical 

characteristics, type of washing, pesticide water 

solubility and mode of action and preharvest 

intervals. Tap-water washing is the easiest way to 

reduce pesticide residues on agricultural 

commodities. Pesticide residues can be reduced by 

22-60% with various washing processes. With 

washing processes, it is easier to reduce the 

residues of contact highly water-soluble pesticides 

below the MRL. However, systemic ones are 

difficult to remove because they penetrate into 

plant tissues. Field-sprayed samples should be used 

in washing processes. The “field-sprayed" method 

differs from laboratory fortification. Field-spraying 

allows the pesticides to penetrate into different 

sections of the plant. The longer the time after 

spraying (PHI), the more difficult to remove the 

residue. In addition, prolonged washing durations 

increase the efficiency of washing processes. 

Processing factor (PF) is another important 

criterion for food-processing. PF is expressed as 

the ratio of the residue on the processed product to 

the residue on the original product. A PF of less 

than 1 indicates a decrease in pesticide residues and 

a PF of more than 1 indicates an increase in 

pesticide residues on processed product. In this 

review article, the necessity of washing fruits and 

vegetables before consumption was pointed out 

once again. 
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