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AN EXACT PENALTY FUNCTION APPROACH FOR
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Abstract. Exact penalty methods are one of the effective tools to solve non-
linear programming problems with inequality constraints. In this study, a

new class of exact penalty functions is defined and a new family of smooth-
ing techniques to exact penalty functions is introduced. Error estimations are

presented among the original, non-smooth exact penalty and smoothed exact

penalty problems. It is proved that an optimal solution of smoothed penalty
problem is an optimal solution of original problem. A smoothing penalty

algorithm based on the the new smoothing technique is proposed and the con-

vergence of the algorithm is discussed. Finally, the efficiency of the algorithm
on some numerical examples is illustrated.

1. Introduction

We consider the following continuous constrained optimization problem

(P )
min
x∈Rn

f(x)

s.t. cj(x) ≤ 0, j = 1, 2, . . . ,m,

where f : Rn → R and cj(x) : Rn → R, j ∈ J = {1, 2, ...,m} are continu-
ously differentiable functions. The set of feasible solutions is defined by C0 :=
{x ∈ Rn : cj(x) ≤ 0, j = 1, 2, . . . ,m} and we assume that C0 is not empty.

One of the most important methods in solving this problem is the penalty func-
tion approach. The penalty function approach is based on transforming the con-
strained optimization problem into an unconstrained problem. When the penalty
function approach is applied to problem (P ), it turns into the following uncon-
strained optimization problem:
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min
x∈Rn

F (x, ρ), (1)

where F (x, ρ) = f(x) + ρ
∑

j G (cj(x)) and ρ > 0 parameter. The most common G

functions are G(t) = max{0, t}2, G(t) = max{0, t}, G(t) = max{0, t}p (0 < p ≤ 1),
G(t) = log(1 + max{0, t}) etc [4, 24]. Moreover, as the parameter ρ increases, the
solution of the problem (1) gets closer to the solution of the problem (P ). One of
the desirable properties of penalty functions is precision. F (x, ρ) is called as exact
penalty function for problem (P ) if there is appropriate parameter choice such that
the optimal solution to the penalty problem is an optimal solution to the original
problem [17,26,27]. We refer the following studies for more details [25, 28].

One of the well-known penalty function is called as l2-penalty function and it is
defined as

F2(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0}2.

When f and cj (j = 1, 2, . . . ,m) are continuously differentiable, the l2 penalty
function is smooth, but it is not exact [17]. One of the most popular exact penalty
function is called as l1 penalty function which is defined as

F1(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0},

by Eremin [1] and Zangwill [2]. l1 penalty function is exact but not differentiable.
This is the main disadvantage of the l1 exact penalty function, because it prevents
some efficient algorithms (Steepest Descent, Newton, Quasi-Newton, etc.) from
being used to solve the penalty problem. On the other hand, in order to increase
the effectiveness of the exact penalty function, lower-order exact penalty functions
have come to the fore in the literature [3, 4]. The lower order lp-exact penalty
function is defined as

Fp(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0}p,

where 0 < p < 1 in [5, 6]. Similar to l1, lp penalty function is also exact but not
differentiable and lp penalty function is non-Lipschitz when 0 < p < 1. Moreover,
non-smooth penalty function can cause numerical instability in the solution process
when the penalty parameter is large. For this reason the smoothing approaches
for the penalty function have been emerged [7]. The smoothing approach can be
expressed as the representation of the non-differentiable function with a family of
smooth functions. A smoothing function is defined as follows:

Definition 1. [8] A function f̃ : Rn × R+ → R is called a smoothing function

of a non-smooth function f : Rn → Rm if, for any ε > 0, f̃(x, ε) is continuously
differentiable and

lim
z→x,ε↓0

f̃(z, ε) = f(x)
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for any x ∈ Rn.

R+ represents the non-negative real numbers. Smoothing functions are often
used to solve non-smooth optimization problems [9–12]. In addition, there is quite
a lot of work in the literature on smoothed penalty functions l1 and lp [13–20]. A
comprehensive review is presented in [23].

As it is well-known that gradient based methods (e. g. Newtonian methods)
which are powerful tools in nonlinear programming usually needs second-order
continuously differentiability of an objective function. Therefore, it is essential
to develop smoothing techniques which makes l1 and lp exact penalty functions the
second order continuously differentiable. Although there are different smoothing
studies for l1, lp and other penalty functions in the literature, there is no smoothing
approach that includes all of them.

The aim of this study is to re-define the class of exact penalty functions for
problem (P ) and propose a new second-order continuously differentiable smooth-
ing technique for a new exact penalty functions in general form. By applying the
proposed smoothing technique to exact penalty functions, a smoothed penalty func-
tion and a smoothed penalty problem are obtained. The relationships among the
solutions which are obtained for original constrained optimization problem, exact
penalty problem and the smoothed penalty problem is investigated. Based on the
smoothed penalty problem, it is aimed to create an algorithm to solve the prob-
lem (P ). Numerical experiments are presented by applying this algorithm to test
problems.

2. Main Results

2.1. A New Exact Penalty Function. In this part of the study, we first re-define
a class of exact penalty functions as follows:

h(t) =

{
0, t < 0,
g(t), t ≥ 0,

where g : R+ → R+ second-order continuously differentiable function with (a)
g(0) = 0 and (b) g′(t) > 0 and g′′(t) ≤ 0 for t > 0. Based on the above definition,
the exact penalty function for problem (P ) is defined by

Fg(x, ρ) = f(x) + ρ
∑
j

h(cj(x))

and the penalty problem is given by

(Pg) min
x∈Rn

Fg(x, ρ).

Moreover we have the following properties based on the function g(t):

(i) if g(t) = t then Fg(x, ρ) become l1-exact penalty function ( [2]),
(ii) if g(t) = tp for 0 < p < 1 is then Fg(x, ρ) become lp-lower order exact

penalty function ( [4, 5]),
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(iii) if g(t) = log(1 + t) is then Fg(x, ρ) become logarithmic exact penalty func-
tion is obtained ( [24]).

We need the following assumptions to state the exactness of our penalty function.
Assumption 1. f(x) is a coercive function, i.e., lim||x||→∞ f(x) = ∞.

Assumption 1 implies that there exist a compact set Y ⊂ Rn such that all local
minimizer of problem (P ) are included in intY .
Assumption 2. The number of local minimizer of the problem (P ) is finite.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, there exist a threshold
value ρ̄ such that ρ ∈ [ρ̄,∞), every solution of (Pg) is a solution of (P ).

Proof. The proof is obtained by following the way at the proof of the Corollary 2.3
in [5]. □

2.2. Smoothing Techniques. As it is known that, the differentiability of the
penalty functions established with the functions given by (i), (ii) and (iii) cannot
always be guaranteed. Especially, when g(t) = 0, the function h is non differen-
tiable. Therefore, we offer the following smoothing functions for the function h
inspiring from the studies [21,22].

The smoothing function of h is defined as

h1,γ(t) =


0, t < 0,
γg′(γ)−2g(γ)

γ3 t3 − γg′(γ)−3g(γ)
γ2 t2, 0 ≤ t ≤ γ,

g(t), t > γ,

(2)

where γ > 0 is the smoothing parameter.

Lemma 1. For any t ∈ R, the smoothing function h1,γ(t) satisfies that

i. h1,γ(t) is continuously differentiable,
ii. limγ→0 h1,γ(t) = h(t).

Proof. i. For any γ > 0, we have

h′
1,γ(t) =


0, t < 0,

3γg′(γ)−2g(γ)
γ3 t2 − 2γg′(γ)−3g(γ)

γ2 t, 0 ≤ t ≤ γ,

g′(t), t > γ,

and it is easy to see that the function h′
1,γ(t) is continuous at the transition

points t = 0 and t = γ.
ii. The difference between h(t) and h1,γ(t) is stated by

h(t)− h1,γ(t) =


0, t < 0,

g(t)−
[
γg′(γ)−2g(γ)

γ3 t3 − γg′(γ)−3g(γ)
γ2 t2

]
, 0 ≤ t ≤ γ,

0, t > γ,
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for any γ > 0. Therefore the maximum difference between h(t) and h1,γ(t)
arises when 0 ≤ t ≤ γ. Let us define the following

l1,γ(t) =
γg′(γ)− 2g(γ)

γ3
t3 − γg′(γ)− 3g(γ)

γ2
t2,

then for 0 ≤ t ≤ γ we have

l′1,γ(t) =
1

γ3

[
γg′(γ)

(
3t2 − 2γt

)
+ g(γ)

(
6γt− 6t2

)]
≥ g(γ)

γ3

[
4γt− 3t2

]
≥ 0.

Since l1,γ(t) ≥ 0 and it is non-decreasing we obtain

h(t)− h1,γ(t) = g(t)− l1,γ(t) ≤ g(γ). (3)

By taking the limit as γ → 0, the proof is obtained.
□

For different exact penalty function, the error estimation between h1,γ(t) and
h(t) can be calculated. For example, if we take g(t) = t, then by considering (3)
we obtain

0 ≤ h(t)− h1,γ(t) ≤ γ.

With a similar approach, a second order differentiable smoothing function of h(t)
can be generated as:

h2,γ(t) =

 0, t < 0,
l2,γ(t), 0 ≤ t ≤ γ,
g(t), t > γ,

(4)

form is obtained. Here

l2,γ(t) =
γ2g′′(γ)− 6γg′(γ) + 12g(γ)

2γ5
t5 − γ2g′′(γ)− 7γg′(γ) + 15g(γ)

γ4
t4

+
γ2g′′(γ)− 8γg′(γ) + 20g(γ)

2γ3
t3,

for γ > 0.

Lemma 2. For any t ∈ R, the smoothing function h2,γ(t) satisfies that

i. h2,γ(t) is second-order continuously differentiable,
ii. limγ→0 h2,γ(t) = h(t).

Proof. The proof is obtained similarly to the proof of Lemma 1. □

Example 1. Let us consider the function y = h(t). The graph of h(t), h1,γ and
h2,γ are illustrated in Figs. 1, 2 and 3, when g(t) = t, g(t) = tp with p = 1

2 and
g(t) = log(1+ t), respectively. It is observed that the smoothing functions approach
the original function when γ → 0.
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(a) For γ = 3. (b) For γ = 1.

Figure 1. The blue graph represents h(t) for g(t) = t, the green
graph is h1,γ(t) and the red graph is h2,γ(t).

(a) For γ = 3. (b) For γ = 1.

Figure 2. The blue graph represents h(t) for g(t) = tp, p = 0.5,
the green graph is h1,γ(t) and the red graph is h2,γ(t).

Remark 1. It should be pointed out that the applied smoothing functions are non-
convex.

By using one of the smoothing functions given in (2) and (4), the smoothing
exact penalty function is obtained as

F̃g(x, ρ, γ) = f(x) + ρ
∑
j∈J

hi,γ (cj(x)) ,

i = 1, 2. Therefore the smoothed penalty function problem is stated as

(PSg) min
x∈Rn

F̃g(x, ρ, γ).
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(a) For γ = 3. (b) For γ = 1.

Figure 3. The blue graph represents h(t) for log(1+ t), the green
graph is h1,γ(t) and the red graph is h2,γ(t).

Now let us investigate the relationship between the exact penalty problem and
the smoothed exact penalty problem.

Theorem 2. For any x ∈ Rn, we have

0 ≤ Fg(x, ρ)− F̃g(x, ρ, γ) ≤ ρmg(γ)

and
lim
γ→0

F̃g(x, ρ, γ) = Fg(x, ρ),

for γ > 0.

Proof. For any ρ, γ > 0, we have

Fg(x, ρ)− F̃g(x, ρ, γ) = f(x) + ρ
∑
j∈J

h(cj(x))−

f(x) + ρ
∑
j∈J

hi,γ(cj(x))


= ρ

∑
j∈J

[h(cj(x))− hi,γ(cj(x))] ,

for i = 1, 2. Therefore, we obtain

Fg(x, ρ)− F̃g(x, ρ, γ) ≤ ρ
∑
j∈J

g(γ)

≤ ρmg(γ).

□

It is easy to see that we have the following error estimates:

F1(x, ρ)− F̃1(x, ρ, γ) ≤ ρmγ,

for g(t) = t,
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Fp(x, ρ)− F̃p(x, ρ, γ) ≤ ρmγp,

for g(t) = tp, 0 < p < 1 and

Flog(x, ρ)− F̃log(x, ρ, γ) ≤ ρm log(1 + γ),

for g(t) = log(1 + t).

The following corollary indicates that the distance between Fg(x, ρ) and F̃g(x, ρ, γ)
decreases when the smoothing parameter decreases.

Corollary 1. Let {γk} → 0 and {xk} is an optimal solution of the problem

minx∈Rn F̃g(x, ρk, γk). If x̄ is limit point of {xk}, then x̄ is the optimal solution to
the problem (Pg).

Definition 2. [17] Let f∗ be the optimal objective function value of the problem
(P ) and x be a feasible solution. If the condition

f(x)− f∗ ≤ γ

holds, then x is called γ−approximate solution.

Definition 3. [17] If cj(xγ) ≤ γ for any j ∈ J and for γ > 0, then the xγ is called
as γ−feasible solution of the problem (P ).

Lemma 3. [17, 24] Let x∗ be the optimal solution to the problem (Pg). If x∗ is a
feasible solution to the problem (P ), then x∗ is the optimal solution for (P ).

Thus, we can give the following theorem on the relations of optimal solutions of
the problems (P ), (Pg) and (PSg) .

Theorem 3. Let ρ > 0, x∗ be an optimal solution to the problem (Pg) and xγ be
and optimal solution to the problem (PSg). Then the following holds:

lim
γ→0

F̃g(xγ , ρ, γ) = Fg(x
∗, ρ). (5)

Moreover, if x∗ is the optimal solution to the problem (P ) and xγ is the γ-feasible
solution for the problem (P ) , then xγ is the approximate solution to the problem
(P ).

Proof. Let x∗ be an optimal solution of (Pg) and xγ be an optimal solution of
(PSg). By considering Theorem 2 and following inequalities

Fg(x
∗, ρ) ≤ Fg(xγ , ρ),

F̃g(xγ , ρ, γ) ≤ F̃g(x
∗, ρ, γ), (6)

we obtain

0 ≤ Fg(x
∗, ρ)− F̃g(x

∗, ρ, γ)

≤ Fg(x
∗, ρ)− F̃g(xγ , ρ, γ)

≤ Fg(xγ , ρ)− F̃g(xγ , ρ, γ)
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≤ mρg(γ).

Therefore, (5) is hold. Let x∗ be an optimal solution of (P ) and xγ be γ−feasible
solution (P ). Since we have

0 ≤

f(x∗) + ρ
∑
j

h(cj(x
∗))

−

f(xγ) + ρ
∑
j

hi,γ(cj(xγ))

 ≤ mρg(γ),

cj(x
∗) ≤ 0 and cj(xγ) ≤ γ, then we have

ρ
∑
j

h(cj(x
∗)) = 0, 0 ≤ ρ

∑
j

hi,γ(cj(xγ)) ≤ mργ

and we obtain

|f(xγ)− f(x∗)| < mρ (γ + g(γ)) .

□

2.3. Algorithm. In this section, the following algorithm is proposed to solve the
penalty problem (P ) by considering the surrogate problem (PSg).

Algorithm A

Step 1 Select initial point x0, and parameters γ0 > 0, ρ0 > 0. Determine the
auxiliary parameters ε > 0, N > 1, 0 < δ < 1. Let k = 0 and go to Step 2.

Step 2 By using xk as an initial point, solve the problem minx∈Rn F̃g(x, ρk, γk)
with any local search methods. Let xk+1 be an optimal solution.

Step 3 If xk+1 is the ε-feasible solution to the problem (P ), then stop. Otherwise,
take ρk+1 =Nρk, γk+1 = δγk and k = k + 1, and go back to Step 2 .

Remark 2. In Step 2 of Algorithm A, any gradient based local search method (e.g.
Steepest Descent, Newton, Quasi-Newton and etc.) can be used according to degree
of smoothing approximation.

Remark 3. From the 3rd step of Algorithm A and Theorem 2, an approximate
optimal solution of the problem P can be obtained.

We denote the following index sets

J−
γ (x) = {j|cj(x) < γ, j ∈ J}, J+

γ (x) = {j|cj(x) ≥ γ, j ∈ J}.

With these notations; the following theorem is given related to the convergence of
Algorithm A.

Theorem 4. Let the Assumption 1 is hold. Then the sequence {xk} generated by
Algorithm A is bounded and the limit point x̄ is the optimal solution to the problem
(P ).
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Proof. Let us first prove that {xk} is bounded. Since the sequence {F (xk, ρk, γk)}
is a bounded sequence, then there exist a number L such that

F̃g(x
k, ρk, γk) ≤ L, k = 0, 1, 2, . . . . (7)

Assume to contrary that
{
xk

}
is unbounded. Without loss of generality, let k → ∞,

∥xk∥ → ∞. The equation (7) is re-stated as

L ≥ F̃g(x
k, ρk, γk) ≥ f(xk), k = 0, 1, 2, . . .

and it is a contradiction with the Assumption 1. The boundedness of {xk} is
obtained.

Let us now show that the limit point x̄ of {xk} is the optimal solution to the
problem (P ). Let us first show that the point x̄ is a feasible solution to the problem
(P ). Let limk→∞ xk = x̄. On the contrary, suppose the point x̄ is not a feasible
solution to (P ). Then there exists j ∈ J for cj(x̄) ≥ α > 0 such that

F̃g(x
k, ρk, γk) = f(xk) + ρk

∑
j∈J

hi,γk
(cj(x

k))

= f(xk) + ρk
∑

j∈J+
γk

(xk)

hi,γk
(cj(x

k)) (8)

+ρk
∑

j∈J−
γk

(xk)

hi,γk
(cj(x

k)).

where cj(x̄) ≥ α > 0, the set {j : cj(x̄) ≥ α} is non-empty. There is j0 ∈ J with
cj0(x̄) ≥ α. Since ρk → ∞ as k → ∞, from the equation (8) we obtain

F̃g(x
k, ρk, γk) → ∞.

This contradicts the boundedness of the sequence {F̃g(x
k, ρk, γk)}. Thus x̄ would

be a feasible solution to the (P ) problem.
Let us show that the x̄ is an optimal solution for (P ). Assume x∗ is an optimal so-

lution for (PSg) and xk is an optimal solution for the problem minx∈Rn F̃g(x
k, ρk, γk)

then we have
F̃g(x

k, ρk, γk) ≤ F̃g(x
∗, ρk, γk), k = 1, 2, . . . .

Similarly, we have

f(xk) + ρk
∑
j∈J

hi,γk
(cj(x

k)) ≤ f(x∗) + ρk
∑
j∈J

hi,γk
(cj(x

∗)), k = 1, 2, . . .

and
f(xk) ≤ f(x∗).

So while k → ∞,
f(x̄) ≤ f(x∗). (9)

Since x∗ is the optimal solution for (P ), we have

f(x̄) ≥ f(x∗). (10)
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(a) (b)

Figure 4. (A) The graph of f (B)The graph of feasible region.

From (9) and (10), we obtain f(x̄) = f(x∗). It means that x̄ is the optimal solution
for (P ). □

3. Numerical Results

In order to analyze the numerical performance of Algorithm A, we apply it on
some test problems in the literature. The results are presented in the tables with
details and the evaluations on these results are given. Firstly, the abbreviations
used in the tables are listed below.

k : Number of iterations

xk : the result of k−th iteration

ρk : penalty function parameter in the k−th iteration

γk : smoothing parameter of the k−th iteration

cj(x
k) : constraint function value at xk

F̃g(x
k, ρk, γk) : value of function F̃g at point xk.

f(xk) : The value of the objective function at xk

Problem 1. [14] Consider the following problem

min f(x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0,

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

We select x0 = (1, 1) as starting point ρ0 = 10, γ0 = 0.1, η0 = 0.1 and N = 3. The
obtained numerical results are illustrated in Table 1 and 2.
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(a) For g(t) = t. (b) For g(t) = tp, p = 1
2
.

(c) For g(t) = log(1 + t)

Figure 5. The graph of F̃g(x, ρ, γ) with ρ = 10, γ = 0.25.

Table 1. Numerical results for the Problem 1

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k)) F̃g(x
k, ρk, γk) f(xk)

g(t) = t 0 (0.7256, 0.3985) 10 0.1 (−0.7770, 0.0044) 1.8338 1.8301
1 (0.7254, 0.3992) 30 0.01 (−0.7759, 0.0001) 1.8374 1.8373
2 (0.7254, 0.3993) 90 0.001 (−0.7759, 0.0000) 1.8376 1.8376

g(t) = tp 0 (0.72540.3991) 10 0.1 (−0.7762, 0.0011) 1.8366 1.8356
1 (0.7254, 0.3993) 30 0.01 (−0.7759, 0.0000) 1.8376 1.8376

g(t) = log(1 + t) 0 (0.72560.3985) 10 0.1 (−0.77700.0045) 1.8337 1.8299
1 (0.7254, 0.3992) 30 0.01 (−0.7759, 0.0001) 1.8374 1.8373
2 (0.7254, 0.3993) 90 0.001 (−0.7759, 0.0000) 1.8376 1.8376

For different penalty types, the global minimizer is found as x∗ = (0.7254, 0.3993)
with corresponding function value 1.8376. In [14,17], the resulting global minimizer
is found as x∗ = (0.72540669, 0.3992805) and the corresponding function value
1.837623, and combining all three approaches our algorithm found the right point
as in [14,17].
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Table 2. Numerical results for the Problem 1

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 3 180 1.1094 1.8376 1.8376
g(t) = tp 2 123 0.8125 1.8376 1.8376

g(t) = log(1 + t) 3 177 1.1875 1.8376 1.8376

Problem 2. [14] Consider the following problem which is called as Rosen-Suzuki
problem:

min f(x) = x2
1 + x2

2 + 2x3 + x2
4 − 5x1 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

We select the starting point as x0 = (0, 0, 0, 0), ρ0 = 10, γ0 = 0.1, η0 = 0.1 and
N = 3. The obtained numerical results are illustrated as in Table 3 and 4.

Applying Algorithm A, the minimizer is found as x∗ = (0.1697, 0.8358, 2.0084,−0.9651)
with the corresponding function value −44.2338. In [14], the resulting global min-
imizer is found as x∗ = (0.1684621, 0.8539065, 2.000167,−0.9755604) with the cor-
responding function value −44.23040. In [17], the global minimizer is obtained as
x∗ = (0.170189, 0.835628, 2.008242,−0.95245) with corresponding function value
−44.2338. It can be observed that our algorithms provide numerically better results
than [14] and find approximate solutions with lower iteration numbers compared
to [17].

Table 3. Numerical results for Problem 2.

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k), c3(x
k)) F̃g(x

k, ρk, γk) f(xk)
g(t) = t 0 (0.1697, 0.8355, 2.0092,−0.9656) 10 0.1 (0.0019, 0.0052,−1.8773) −44.2396 −44.2455

1 (0.1696, 0.8356, 2.0086,−0.9650) 30 0.01 (0.0001, 0.0002,−1.8826) −44.2340 −44.2342
2 (0.1696, 0.8356, 2.0086,−0.9650) 90 0.001 (−0.0001, 0.0000,−1.8827) −44.2338 −44.2338

g(t) = tp 0 (0.1696, 0.8356, 2.0088,−0.9651) 10 0.1 (0.0005, 0.0013,−1.8815) −44.2353 −44.2367
1 (0.1695, 0.8355, 2.0086,−0.9650) 30 0.01 (−0.0007, 0.0000,−1.8827) −44.2338 −44.2338

g(t) = log(1 + t) 0 (0.1697, 0.8355, 2.0092,−0.9656) 10 0.1 (0.0019, 0.0053,−1.8772) −44.2398 −44.2458
1 (0.1696, 0.8356, 2.0086,−0.9650) 30 0.01 (0.0001, 0.0002,−1.8826) −44.2340 −44.2342
2 (0.1696, 0.8356, 2.0086,−0.9650) 90 0.001 (−0.0001, 0.0000,−1.8827) −44.2338 −44.2338

Problem 3. [17] Consider the following problem

min f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) = x2
1 + x2

2 + x2
3 − 25 = 0,

g2(x) = (x1 − 5)2 + x2
2 + x2

3 − 25 = 0
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Table 4. Numerical results for Problem 2.

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 3 510 1.1406 −44.2338 −44.2338
g(t) = tp 2 475 0.79688 −44.2338 −44.2338

g(t) = log(1 + t) 3 460 0.98438 −44.2338 −44.2338

g3(x) = (x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0.

We select x0 = (2, 2, 1) as a starting point ρ0 = 100, γ0 = 0.1, η0 = 0.1 and N = 3.
The obtained numerical results are illustrated as in Table 5 and 6.

By considering Algorithm A the global minimizer is found as x∗ = (2.5001, 4.1754, 1.1474)
with corresponding function value 944.2157 by using g(t) = t, and x∗ = (2.5000, 4.2213, 0.9647)
and corresponding value as 944.2157 by using g(t) = tp and g(t) = log(1+t). In [17],
the obtained global minimizer is obtained as x∗ = (2.5000, 4.2213, 0.9647) with the
corresponding function value 944.2157. According to these results, we deduce that
by using Algorithm A the correct solutions is obtained with a lower number of
iterations than [17].

Table 5. Numerical results for Problem 3.

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k), c3(x
k)) F̃g(x

k, ρk, γk) f(xk)
g(t) = t 0 (2.5001, 4.1754, 1.1474) 100 0.1 (0.0012− 0.0001− 3.2283) 944.3897 944.2571

1 (2.5000, 4.1753, 1.1474) 300 0.01 (0.0000, 0.0000,−3.2274) 944.2652 944.2653
g(t) = tp 0 (2.5012, 4.2220, 0.9649) 100 0.1 (0.0123, 0.0007,−1.8682) 945.4946 944.1889

1 (2.5000, 4.2213, 0.9647) 300 0.01 (0.0000,−0.0000,−1.8599) 944.2156 944.2156
g(t) = log(1 + t) 0 (2.5000, 4.2213, 0.9648) 100 0.1 (0.0004, 0.0000,−1.8607) 944.3356 944.2148

1 (2.5000, 4.2213, 0.9648) 300 0.01 (0.0000, 0.0000,−1.8604) 944.2156 944.2156

Table 6. Numerical results for Problem 3.

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 2 328 0.8125 944.2652 944.2653
g(t) = tp 2 300 0.70313 944.2156 944.2156

g(t) = log(1 + t) 2 300 0.71875 944.2156 944.2156
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4. Conclusion

In this study, a new class of exact penalty function is given and smoothing
penalty function is proposed for this new exact penalty function. A new min-
imization algorithm is developed in order to solve the problem (P) by the help
of surrogate problem (PSg). The algorithm is applied to the test problems and
satisfactory results are obtained.

The proposed smoothing technique for the non-smooth exact penalty functions
has a flexible structure. It is available for both Lipschitz and non-Lipschitz penalty
functions. This is the most important feature of our smoothing technique and that
distinguishes our smoothing technique from other techniques.

Algorithm A is in all cases highly effective for small and medium scale optimiza-
tion problems. By applying this algorithm, the optimum value is found quickly and
the algorithm offers high accuracy in finding the optimal point.
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