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Abstract

In this research, we propose and study an online social network mathematical model with delay based on
two innovative assumptions: (1) newcomers are entering community as either potential online network users
or that who are never interested in online network at constant rates, respectively; and (2) it takes a certain
time for the active online network users to start abandoning the network. The basic reproduction R0, the
user-free equilibrium(UFE) P0, and the user-prevailing equilibrium(UPE) P ∗ are identified. The analysis of
local and global stability for those equilibria is carried out. For the UPE P ∗, using the delay τ as the Hopf
bifurcation parameter, the occurrence of Hopf bifurcation is investigated. The conditions are established that
guarantee the Hopf bifurcation occurs as τ crosses the critical values. Numerical simulations are provided
to illustrate the theoretical results.
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1. Introduction

Online Social Networks (OSNs) have become increasingly important and imperative for people to receive
and spread information in the most recent two decades. The creation of Facebook, Twitter, Instagram,
and other online social media networks has made information exchanging and spreading easy and it has
changed people’s daily life dramatically. OSNs allow people to present, interact, and connect themselves
virtually with others. The popularity of OSNs, especially in the new high technology-oriented generations,
has radically changed so many things such as education, election, information sharing, etc. It has become
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evidently urgent that a better understanding of how OSNs can influence a society’s political and economical
environments, even just people’s daily life, will benefit all interested parties involved. Mathematical models
have been developed to serve to better understand the OSN dynamics and have provided a deep insight on
how people’s opinion/behaviour is affected by social networks, see, for example [2, 3, 5, 6, 7, 4, 8, 11, 9, 10, 1].
Many efforts have been made in the development of models for studying OSN dynamics leveraging SIR/SEIR
disease type models. Readers are referred to [12, 13, 14, 15, 16] and references therein for some classic results
and advances on SIR/SEIR mathematical models. In this spirit, the total population, denoted by N(t) at
time t, is divided into three sub-classes representing three major populations in the OSN dynamics. They
are potential OSN users, active OSN users, and people who are opposed to OSNs, with sizes denoted by
x(t), y(t), and z(t) at time t, respectively. Cannarella and Spechler [2] proposed the infectious recovery SIR
type model 

x′ = −αxy/N,
y′ = αxy/N − ηyz/N,
z′ = ηyz/N,

to analyze user adoption and abandonment of OSNs. This model was further extended to ordinary, fractional,
and stochastic differential equation models in [3, 5, 6] respectively. The optimal control problem for an
ordinary differential equation model was also studied in [7]. The reader is referred to [2, 3, 5, 6, 7] for the
details of the model development and meanings of the parameters. Particularly, Graef et al. [5] studied the
following OSN model with demography

x′ = Λ− αxy − µx,
y′ = αxy − ηyz − (µ+ δ)y,

z′ = ηyz + δy − µz,

(1)

to examine the user adoption and abandonment dynamics of OSNs. Both local and global stability analyses
were carried out. Motivated by the research mentioned above and some unique characteristics and the
complexity of OSNs such as the fact that there are people who are never interested in online social networks
and active online network users may lose their interest after some time, the investigators propose a new
dynamic mathematical model to incorporate these characteristics to study the OSN dynamics. Potential
users become active after contacting with active users. Active users become opposed to OSNs either after
contacting with those people who are opposed to OSNs or lose their interest after a period of time. The
interaction and dynamics between these three compartments can be described by the following system of
differential equations

x′ = A− αxy − µx,
y′ = αxy − ηyz − δy(t− τ)− µy,
z′ = B + ηyz + δy(t− τ)− µz,

(2)

where the parameters A > 0 and B ≥ 0 represent the rates that newcomers come into the community as
either potential users or as people who are never interested in OSNs. α > 0 denotes the contact rate between
the potential and active OSN users; µ > 0 is the death rate for all people; η > 0 is the contact rate between
active users and people who are opposed to OSNs; δ > 0 is the transferring rate describing the rate the
active users lose their interest and become opposing to OSNs, and τ ≥ 0 is the time delay that represents
the time for active users to starting abandoning the network. It is notable that when B = τ = 0, System
(2) covers System (1) as a special case.

In this article, we will perform a detailed analysis for System (2). First, after a basic reproduction number
is identified, the existence of equilibrium points is established based on the basic reproduction number. Then
the local and global stability when τ = 0 is studied and we show that when the basic reproduction number
R0 ≤ 1, the unique user-free equilibrium P0 is globally asymptotically stable, whereas R0 > 1, P0 becomes
unstable and the unique user-prevailing equilibrium P ∗ is globally asymptotically stable. Next, using τ as
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the bifurcation parameter, we investigate the Hopf bifurcations at the unique user-prevailing equilibrium
point when R0 > 1. Conditions and critical values are obtained so that the Hopf bifurcation will occur as τ
passes through the critical values under some given conditions.

We need the following result due to Ruan and Wei [17].

Lemma 1.1. Consider the exponential polynomial

P (λ, e−λτ ) = p(λ) + q(λ)e−λτ

where p and q are real polynomials such that deg(q) < deg(p) and τ ≥ 0. As τ varies, the total number of
zeros of P (λ, e−λτ ) on the open right half-plane can change only if a zero appears on or crosses the imaginary
axis.

The rest of this article is organized as follows. In Section 2, the reproduction number R0 is identified
and the existence of equilibrium points are established based on the reproduction number. Local and global
stability of equilibrium points when τ = 0 is studied in Sections 3 and 4. The conditions for occurrence
of Hopf bifurcation at UPE as the delay τ passes through critical numbers are investigated in Section 5.
Numerical simulations are provided to demonstrate our theoretical results in Section 6. The manuscript
ends up with a brief discussion in Section 7.

2. Equilibrium points and basic reproduction number

In this section, we derive a basic reproduction number R0 for System (2). Then equilibrium points are
determined based on R0. To find the equilibrium points of System (2), we need to solve the following system
of equations 

A− αxy − µx = 0,
αxy − ηyz − δy − µy = 0,
B + ηyz + δy − µz = 0.

(3)

It’s easy to show that the system has a unique user-free equilibrium P0 = (A/µ, 0, B/µ) and it exists for
all parameter values. Now we will try to find user-prevailing equilibrium(UPE) point(s) P ∗ = (x∗, y∗, z∗),
where y∗ > 0.

From the second and third equations of System (3), we can express x and y in terms of z as

x =
µ+ δ

α
+
η

α
z, (4)

and

y =
µz −B
δ + ηz

. (5)

Rewrite the first equation of (3) as
A = x(αy + µ)

and plug x and y given in (4) and (5) into this equation, we arrive at the equation

A =

(
µ+ δ

α
+
η

α
z

)(
µ+

α(µz −B)

δ + ηz

)
,

which is equivalent to

Aα(δ + ηz) = µη(α+ η)z2 + [µ(µ+ δ)(α+ η) + η(µδ −Bα)]z + (µ+ δ)(µδ −Bα).

Define

f(z) = Aα(δ + ηz) (6)
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and

g(z) = µη(α+ η)z2 + [µ(µ+ δ)(α+ η) + η(µδ −Bα)]z + (µ+ δ)(µδ −Bα). (7)

Obviously, z∗ is a positive root of the equation

f(z) = g(z)

and x∗ and y∗ can be found using expressions (4) and (5). From (5), it’s easy to see that for y∗ to be
positive, it requires that z∗ > B/µ.

Let R0 be the basic reproduction defined by

R0 =
Aα

Bη + µ(µ+ δ)
(8)

which gives the expected number of active users directly generated by one active user in a population where
all individuals are potential users to network. The derivation of R0 can be performed by the next generation
matrix method given by van den Driessche and Watmough [18]. If we rewrite System (2) as y′

z′

x′

 =

 αxy
0
0

−
 ηyz + δy + µy
−B − ηyz − δy + µz
−A+ αxy + µx

 = F − V.

At the user-free equilibrium P0, we have

DF(P0) =

(
F 0
0 0

)
, DV(P0) =

(
V 0
J3 J4

)
,

where

F =

( Aα
µ 0

0 0

)
, V =

(
Bη
µ + δ + µ 0

−Bη
µ − δ µ

)
and

J3 = (µ,Aα/µ), J4 = 0.

It follows that

FV −1 =
1

Bη + µ(µ+ δ)

(
Aα 0
0 0

)
and R0 is the leading eigenvalue of FV −1, which is the R0 given in (8). We then have the following results
regarding z∗ in terms of R0.

Lemma 2.1. Let z̄ = B/µ, f , g, and R0 be defined by (6) – (8) respectively. Then

(1) z∗ = z̄ if and only if f(z̄) = g(z̄) if and only if R0 = 1.

(2) z∗ > z̄ if and only if f(z̄) > g(z̄) if and only if R0 > 1.

Proof. Note that f is a linear function with f(0) = Aαδ and g is a quadratic function with g(0) = (µ +
δ)(µδ − Bα). It can be shown that if R0 ≥ 1 then f(0) > g(0). Therefore, the equation f(z) = g(z) has a
unique positive root z∗ with f(z) > g(z) when 0 ≤ z < z∗ and f(z) < g(z) when z > z∗. Calculation shows

f(z̄)− g(z̄) =
(Bη + δµ)(Aα−Bη − µ(δ + µ))

µ
.

The lemma follows immediately from this equation. �
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Remark 2.2. Note that if R0 < 1, then either the equation f(z) = g(z) has a unique solution z∗ < z̄ or it
has no solutions.

The discussion above results in the following result.

Theorem 2.3. Let f , g, and R0 be defined by (6) – (8) respectively. If R0 ≤ 1, then System (2) has a
unique user-free equilibrium P0 = (A/µ, 0, B/µ) and it exists for all parameter values. If R0 > 1, then
System (2) has two equilibria: P0 and a unique user-prevailing equilibrium P ∗ = (x∗, y∗, z∗), where z∗ is the
unique positive root of the equation f(z) = g(z) such that z∗ > B/µ, and x∗ and y∗ are given by (4) and
(5).

3. Local stability of equilibrium points with no delay

In this section, we study local stability of P0 and P ∗ when delay τ = 0. The Jacobian matrix of System
(2) at an equilibrium P = (x, y, z) is

J =

 −αy − µ −αx 0
αy −δ − µ+ αx− ηz −ηy
0 δ + ηz ηy − µ

 ,

whose characteristic equation is
(λ+ µ)(λ2 + aλ+ b) = 0, (9)

where

a = 2µ+ αy + ηz − αx− ηy + δ,

b = µ(δ + αy + ηz − αx− ηy) + αηy(x+ z − y) + δαy.

It is clear that λ1 = −µ is a negative root of Equation (9). The other two roots of Equation (9) are
determined by the equation

λ2 + aλ+ b = 0. (10)

At P0, Equation (10) becomes

(λ+ µ)

(
λ+ µ+

Bη

µ
− Aα

µ
+ δ

)
= 0.

It follows that λ2 = −µ < 0 and λ3 = Aα
µ −

Bη
µ − µ − δ. It is straightforward to see that λ3 < 0 if R0 < 1,

λ3 = 0 if R0 = 1, and λ3 > 0 if R0 > 1.

At P ∗, a and b are given by, in terms of z∗, using (4) and (5)

a = α(µz∗−B)+Bη+µδ
δ+ηz∗ ,

b = (µz∗−B)(η(δ+ηz∗)2+α(δ2+(B+η(z∗)2)+δ(2ηz∗+µ)))
(δ+ηz∗)2 .

From the discussion above, we know that if R0 > 1, then z∗ > B/µ, or µz∗ − B > 0. Therefore, we have
a > 0, b > 0. The two roots of Equation (10) have negative real parts. We thus obtain the following local
stability results.

Theorem 3.1. Let R0 be defined in (8). If R0 < 1, P0 is locally asymptotically stable; if R0 = 1, P0 is
neutrally stable; and if R0 > 1, P0 becomes unstable, and P ∗ emerges and it is locally asymptotically stable.
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4. Global stability of equilibrium points with no delay

In this section, we study the global stability of P0 and P ∗ when delay τ = 0. Note that P0 = (A/µ, 0, B/µ)
and P ∗ = (x∗, y∗, z∗) where z∗ > 0 is the unique positive root of the equation f(z) = g(z), and x∗ and y∗

are given by (4) and (5).
A standard argument, see, for example [19, 20], can be used to show that the first octant R3

+ = {(x, y, z) :
x ≥ 0, y ≥ 0, z ≥ 0} of R3 is positively invariant with respect to System (2), and the system has a unique
solution with any initial value starting from inside R3

+. The first equation of System (2) clearly shows that
if x(0) ≤ A/µ, then x(t) ≤ A/µ for all t > 0. Furthermore, if we add the three equations of System (2)
together, we can get

(x+ y + z)′ = A+B − µ(x+ y + z).

We, therefore, proved that the set

Ω = {(x, y, z) ∈ R3
+ : x ≤ A/µ, x+ y + z ≤ (A+B)/µ}

is a global attractor and it’s positively invariant with respect to System (2). We will use
◦
Ω to denote the

interior of Ω. Now, we are ready to prove the global stability of P0 when R0 ≤ 1.

Theorem 4.1. Assume R0 ≤ 1. Then P0 is globally asymptotically stable in Ω.

Proof. First, if y(0) = 0, from System (2) it’s easy to see that y(t) = 0 for all t > 0 and x(t) → A/µ and
z(t)→ B/µ as t→∞, i.e. (x(t), y(t), z(t))→ P0.

Next, assume y(0) > 0 and z(0) > B/µ. The second equation of System (2) implies

y′ = y(αx− ηz − δ − µ) < y(αA/µ− ηB/µ− δ − µ) ≤ 0

since R0 ≤ 1. It’s not difficult to show that in this case y(t)→ 0 as t→∞. As a result, we get x(t)→ A/µ
and z(t)→ B/µ, i.e. (x(t), y(t), z(t))→ P0.

Finally, assume y(0) > 0 and z(0) ≤ B/µ. Define a Lyapunov function V1 : Ω→ R by

V1(x, y, z) =
1

A

[µx
A
− 1− ln

(µx
A

)]
+
µy

A2
+
B

A2

[µz
B
− 1− ln

(µz
B

)]
. (11)

It is easy to verify that for any (x, y, z) ∈ Ω, V1(x, y, z) ≥ 0 and V1(P0) = 0. A direct computation, clearly
we can assume that x, z > 0 from the first and third equation of System (2), leads to

V ′1(x, y, z) =
µ

A

(
µ

A
− 1

x

)(
A

µ
− x
)

+
µB

A2

(
µ

B
− 1

z

)(
B

µ
− z
)

+
αy

A
− µ2y

A2
− By

A2

(
η +

δ

z

)
≤ − µ2

A2x

(
x− µ

A

)2
− µ2

A2z

(
z − µ

B

)2
+
y

A2
(αA− µ2 −Bη − δµ). (12)

Note that αA − µ2 − Bη − δµ ≤ 0 if R0 ≤ 1. Therefore, (12) implies V ′(x, y, z) ≤ 0 and V ′(x, y, z) = 0
holds only when (x, y, z) = (A/µ, 0, B/µ) or x = A/µ, z = B/µ, and R0 = 1, which means that y = 0.
The maximum invariant set in {(x, y, z) ∈ Ω : L′ = 0} is the Singleton P0. By LaSalle’s Invariant Principle
[21], see also, for example, [22, 24, 23], (x(t), y(t), z(t)) → P0 as t → ∞. This and the local stability of P0

established in Theorem 3.1 imply that P0 is globally asymptotically stable in Ω. �

Next, we will study the global asymptotic stability of P ∗ = (x∗, y∗, z∗) in
◦
Ω when R0 > 1. In

◦
Ω, we have

x, y, z > 0. Let

V2(x, y, z) = x− x∗ − x∗ ln
( x
x∗

)
+ y − y∗ − y∗ ln

(
y

y∗

)
+ z − z∗ − z∗ ln

( z
z∗

)
. (13)
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The derivative of V2 along the solution of System (2) can be calculated as

V ′2(x, y, z) =
A

x
(x− x∗) + µ (x∗ − x) + α(x∗y − xy∗)

+
δ + ηz

z
(y∗z − yz∗) + µ(y∗ − y)

+
B

z
(z − z∗) + µ(z∗ − z).

Note that
x∗y − xy∗ = x∗(y − y∗) + y∗(x∗ − x), y∗z − yz∗ = y∗(z − z∗) + z∗(y∗ − y).

The above V ′2(x, y, z) can be written as

V ′2(x, y, z) = (x− x∗)
(
A

x
− µ− αy∗

)
+(y − y∗)

(
αx∗ − µ− δ + ηz

z
z∗
)

+ (z − z∗)
(
B

z
+
δ + ηz

z
y∗ − µ

)
.

Now, from the first equation of System (3), we have

A

x∗
= αy∗ + µ

and this results in
A

x
− µ− αy∗ =

A

x
− A

x∗
=

A

xx∗
(x∗ − x).

Using expressions for x∗ and y∗ in (4) and (5), we can get

αx∗ − µ− δ + ηz

z
z∗ =

δ

z
(z − z∗)

and
B

z
+
δ + ηz

z
y∗ − µ = − Bη + δµ

z(δ + ηz∗)
(z − z∗).

We finally obtain

V ′2(x, y, z) = − A

xx∗
(x− x∗)2 +

δ

z
(y − y∗)(z − z∗)− Bη + δµ

z(δ + ηz∗)
(z − z∗)2. (14)

Theorem 4.2. Assume that R0 > 1. If δ = 0, then P ∗ = (x∗, y∗, z∗) is globally asymptotically stable in
◦
Ω.

Proof. Using the Lyapunov function given in (13) assuming δ = 0, by (14), we end up with

V ′2(x, y, z) = − A

xx∗
(x− x∗)2 − Bη + δµ

z(δ + ηz∗)
(z − z∗)2.

Obviously, V ′2(x, y, z) ≤ 0 for all (x, y, z) ∈
◦
Ω and V ′2(x, y, z) = 0 holds only for the set

M = {(x, y, z) ∈
◦
Ω: x = x∗, z = z∗}.

The maximum invariant set in M is the unique equilibrium P ∗. Again, by the asymptotic stability theorem

[21, 22, 24, 23], all solutions starting inside
◦
Ω converge to P ∗. This fact and the local stability of the

equilibrium P ∗ established in Theorem 3.1 imply the global asymptotic stability of P ∗. �
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Remark 4.3. We want to point out that we only proved that P ∗ is globally asymptotically stable in
◦
Ω when

δ = 0 in Theorem 4.2. But numerical simulations show that P ∗ is globally asymptotically stable in
◦
Ω as long

as it exists, i.e., if R0 > 1. See Figure 1 for the convergence of the solutions to P ∗ for different initial points
when δ > 0. Here we choose A = 2, B = 0.1, µ = .2, α = 1, β = 1, η = 0.5, δ = 0.4. Calculation shows that
R0 = 11.7647 > 1 and P ∗ = (3.7809, 0.3276, 6.3816). Solutions converge to P ∗ regardless where the solution
starts.
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t

2

4

6

8
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Figure 1: Solutions converge to P ∗.

Remark 4.4. From Sections 3 and 4, we can conclude that the dynamics of System (2) is completely
determined by the basic reproduction R0 when there is no delay. If R0 ≤ 1, P0 is the only equilibrium and
all solutions converge to P0. That means that in this case, the number of active online network users will
eventually approach to zero. On the other hand, while R0 > 1, all solutions converge to P ∗. The active
online network users will settle at the level of y∗ > 0 over time.

5. Hopf bifurcation

As we see from Remark 4.2, the dynamics of System (2) is completely determined by the basic reproduc-
tion R0 when the delay τ = 0. We are interested in the question that if the delay τ could cause the stability
switch of the UPE P ∗ as it increases. In this section, we study the occurrence of Hopf bifurcations using
the delay τ as the bifurcation parameter. Note that when R0 > 1 there is a unique UPE P ∗ = (x∗, y∗, z∗).
For this section, we will always assume that R0 > 1.

The characteristic equation of System (2) at the unique equilibrium P ∗ when τ ≥ 0 is the determinant
of the matrix

J∗ =

 λ+ αy∗ + µ αx∗ 0
−αy∗ λ+ µ− αx∗ + ηz∗ + δe−λτ ηy∗

0 −ηz∗ − δe−λτ λ− ηy∗ + µ

 ,

which is
(λ+ µ)(λ2 + a1λ+ b1 + (δλ+ c1)e

−λτ ) = 0, (15)

where

a1 = 2µ+ αy∗ + ηz∗ − αx− ηy∗,
b1 = µ2 + (αy∗ + ηz∗ − αx∗ − ηy∗)µ+ αηy∗(x∗ + z∗ − y∗), (16)

c1 = δ(µ+ αy∗).

One root of Equation (15) is λ = −µ < 0. The other roots are determined by the transcendental equation

λ2 + a1λ+ b1 + (δλ+ c1)e
−λτ = 0. (17)
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From the discussion in Section 2, we know that if R0 > 1 and τ = 0, P ∗ is locally asymptotically stable.
Our interest is to see whether or not the delay τ will cause the stability of P ∗ to switch as τ increases while
R0 remains larger than the unity. Due to Lemma 1.1, we need to investigate if a zero of Equation (17) will
appear on or cross the imaginary axis. Keep in mind that when R0 > 1, z∗ > B/µ.

From (16 and use expressions given in (4 and (5), we can get

b1 + c1 =
(µz∗ −B)

(
α
(
η
(
B + η(z∗)2

)
+ δ2 + δ(µ+ 2ηz∗)

)
+ η(δ + ηz∗)2

)
(δ + ηz∗)2

> 0

since z∗ > B/µ. Therefore, λ = 0 is not a root of (17). Now, let λ = ωi (ω > 0) be a root to Equation (17).
Plug it into (17), we get

−ω2 + a1ωi+ b1 + (δωi+ c1)(cos(ωτ)− i sin(ωτ)) = 0.

Separating the real and imaginary parts gives

c1 cos(ωτ) + δω sin(ωτ) = ω2 − b1, (18)

−c1 sin(ωτ) + δω cos(ωτ) = −a1ω. (19)

Squaring both sides and adding them together yields

ω4 + (a21 − δ2 − 2b1)ω
2 + b21 − c21 = 0.

Let p = w2 and denote a2 = a21 − δ2 − 2b1 and b2 = b21 − c21. Then the above equation can be rewritten as

p2 + a2p+ b2 = 0. (20)

The following result is well known.

Lemma 5.1. For Equation (20), we have

(a) If b2 < 0 or if b2 = 0 and a2 < 0, then it has a unique positive root.

(b) If a2 ≥ 0 and b2 ≥ 0, then it has no positive roots.

(c) If a2 < 0 and b2 > 0, then it has no positive roots if a22 − 4b2 < 0; one positive root if a22 − 4b2 = 0;
and two positive roots if a22 − 4b2 > 0.

Plug a1, b1, c1 given in (16) and x∗ and y∗ given in (4) and (5) into a2 and b2, a tedious and long
calculation gives

a2 =a21 − δ2 − 2b1 =
1

(δ + ηz∗)2
P1(z

∗), (21)

b2 =b21 − c21 =
(µz∗ −B)

(δ + ηz∗)4
P2(z

∗)P3(z
∗), (22)

where

P1(z) = −2η2µ(α+ η)z3 + (2Bη2(α+ η) + µ(α2µ− 4αδη − 2αδη2))z2

+(B(4αδη + 2δη2 − 2αµ)− 2αδ2µ)z

+B2(η2 + α2) + δ2µ2 + 2Bδ(αδ + ηµ), (23)

P2(z) = (αη2 + η3)z2 + (2αδη + 2δη2)z + αδ2 + αδµ+ αBη + δ2η,

P3(z) = (αη2µ+ η3µ)z3 − (αBη2 +Bη3)z2

+(−αδ2µ+ αδµ2 + αBηµ− 2Bδη2 − 3δ2ηµ)z

−αB2η + αBδ2 − αBδµ−Bδ2η − 2δ3µ. (24)
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Note that P1(z) is a degree three polynomial with P1(B/µ) = (Bη + δµ)2 > 0 and P1(z)→ −∞ as z →∞.
By Descartes’ Rule of Signs, P1 has one or three positive roots. Let z1 > B/µ be the first value of z such
that P1(z1) = 0. Obviously, P2(z

∗) > 0, and µz∗−B > 0 as z∗ > B/µ if R0 > 1. P3(z) is also a degree three
polynomial of z such that

P3(B/µ) = −4Bδ2η − 2δ3µ− 2B2δη2

µ
< 0

and P3(z) → ∞ as z → ∞. Thus, P3 has one or three positive roots. Let z2 > B/µ be the first value of z
such that P3(z2) = 0. If we assume that both P1 and P3 have one positive root, i.e., z1 and z2 are the only
positive numbers such that P1(z1) = 0 and P3(z2) = 0. We then have the following cases in terms of z1, z2
and z∗ along with the signs of a2 and b2 :

(I) If z1 = z2, then

(1) z∗ < z1 =⇒ a2 > 0, b2 < 0;

(2) z∗ = z1 =⇒ a2 = 0, b2 = 0;

(3) z∗ > z1 =⇒ a2 < 0, b2 > 0.

(II) If z1 < z2, then

(1) z∗ ≤ z1 =⇒ a2 ≥ 0, b2 < 0;

(2) z1 < z∗ ≤ z2 =⇒ a2 < 0, b2 ≤ 0;

(3) z∗ > z2 =⇒ a2 < 0, b2 > 0.

(III) If z1 > z2, then

(1) z∗ < z2 =⇒ a2 > 0, b2 < 0;

(2) z2 ≤ z∗ ≤ z1 =⇒ a2 ≥ 0, b2 ≥ 0;

(3) z∗ > z1 =⇒ a2 < 0, b2 > 0.

By Lemma 5.1, we have the following results based on these cases.

Theorem 5.2. Let R0 > 1, and let a2, b2, P1 and P3 be defined by (21), (22), (23), and (24). Assume that
P1 and P3 have a unique positive root z1 and z2, respectively. We then have:

(I) When any of the following conditions is satisfied, Equation (20) has no positive roots.

(1) z1 = z2 and z∗ = z1;

(2) z1 > z2 and z2 ≤ z∗ ≤ z1;
(3) z∗ > max{z1, z2} and a22 − 4b2 < 0.

(II) When any of the following conditions is satisfied, Equation (20) has a unique positive root.

(1) z1 < z2 and z∗ ≤ z2;
(2) z1 ≥ z2 and z∗ < z2;

(3) z∗ > max{z1, z2} and a22 − 4b2 = 0.

(III) Equation (20) has two positive roots if z∗ > max{z1, z2} and a22 − 4b2 > 0.

Now assume that R0 > 1 and Equation (20) has at lease one positive root. We study Hopf bifurcations
of System (2) at P ∗. Solving p from Eq.(20) for the positive roots gives

p± =
1

2

[
− (a21 − δ2 − 2b1)±

√
(a1 − δ2 − 2b1)2 − 4(b21 − c21)

]
.
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Note that if Equation (20) has a unique positive root, then it is p+. Let ω± =
√
p±. Solving for sin(ωτ) and

cos(ωτ) from (5.2) and (5.3), we get

cos(ωτ) =
c1ω

2 − a1δω2 − b1c1
c21 + δ2ω2

= d1(ω)

and

sin(ωτ) =
ω(a1c1 − b1δ + δω2)

c21 + δ2ω2
= d2(ω).

Define τ±n , n = 0, 1, 2, · · · , as

τ±n =


1
ω± (arccos d1(ω

±) + 2nπ) if d2(ω
±) > 0,

1
ω± (2π − arccos d1(ω

±) + 2nπ) if d2(ω
±) ≤ 0.

(25)

Hence, τ±n > 0 and Equation (17) has a pair of purely imaginary roots ±iω± when τ = τ±n for n = 0, 1, 2, · · · .
Next, we try to establish the transversality condition for Hopf bifurcations, see [25, 26] for details about
Hopf bifurcations. For τ ≥ 0, let

λ(τ) = α(τ) + iw(τ) (26)

be the root of Equation (17) satisfying

α(τ±n ) = 0, w(τ±n ) = w±.

Differentiating both sides of Equation (17) with respect to τ gives

dλ

dτ
[2λ+ a1 + (δ − c1τ − δτλ)e−λτ ] = λ(c1 + δλ)e−λτ .

Notice that
λ2 + a1λ+ b1 = −(δλ+ c1)e

−λτ ,

it follows (
dλ

dτ

)−1
= − 2λ+ a1

λ(λ2 + a1λ+ b1)
+

δ

λ(δλ+ c1)
− τ

λ

= − 1

λ

[
τ +

2λ+ a1
λ2 + a1λ+ b1

− δ

δλ+ c1

]
.

Substituting τ = τ±n and λ = iω± into the equality above, we get(
dλ

dτ

)−1
τ=τ±n

=
−1

iw±

[
τ±n +

2iw± + a1
−(w±)2 + a1iw± + b1

− δ

δiw± + c1

]
.

It follows that

Re

(
dλ

dτ

)−1
τ=τ±n

=
a21 − 2b1 + 2(ω±)2

a21(ω
±)2 + (b1 − (ω±)2)2

− δ2

c21 + δ2(ω±)2

=
a21 − 2b1 + 2(ω±)2 − δ2

a21(ω
±)2 + (b1 − (ω±)2)2

=
±
√

(a1 − δ2 − 2b1)2 − 4(b21 − c21)
a21(ω

±)2 + (b1 − (ω±)2)2

=
±
√
a22 − 4b2

c21 + δ2(ω±)2
. (27)

We thus obtained that Re
(
dλ
dτ

)−1
τ=τ+n

> 0 and Re
(
dλ
dτ

)−1
τ=τ−n

< 0. The discussion above establishes the following
stability and Hopf bifurcation results.
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Theorem 5.3. Assume that R0 > 1 and let a2, b2, P1, P3, z
∗, ω+, τ+0 be defined above. Assume that P1 and

P3 have a unique positive root z1 and z2, respectively. We then have the following results.

(I) All roots of Equation (17) have negative real parts for all delay τ ≥ 0, if

(1) z1 = z2 and z∗ = z1, or

(2) z1 > z2 and z2 ≤ z∗ ≤ z1, or

(3) z∗ > max{z1, z2} and a22 − 4b2 < 0.

Therefore, P ∗ is locally asymptotically stable for all τ ≥ 0.

(II) There is a τ+0 > 0 such that all roots of Equation (17) have negative real parts for all τ ∈ [0, τ+0 ), and
it has a pair of purely imaginary roots ±ω+i and all other roots have negative real parts when τ = τ+0 ,
if

(1) z1 < z2 and z∗ ≤ z2, or

(2) z1 ≥ z2 and z∗ < z2, or

(3) z∗ > max{z1, z2} and a22 − 4b2 > 0.

Therefore, P ∗ is locally asymptotically stable for all τ < τ+0 . Hopf bifurcation occurs as τ passes cross
τ = τ+0 .

Remark 5.4. Under conditions (II)(1) and (II)(2), Equation (20) has a unique positive root. By the local
stability of P ∗ when R0 > 1 and τ = 0, the transversality condition (27), and Lemma 1.1, we can get that
all roots of Equation (17) have negative parts when τ < τ+0 . It has a pair of pure imaginary roots ±iω+

when τ = τ+n , and it has 2(n + 1) roots with positive real parts when τ ∈ (τ+n , τ
+
n+1), n = 0, 1, 2, · · · . P ∗ is

unstable when τ > τ+0 .

Remark 5.5. Under the condition z∗ > max{z1, z2} and a22 − 4b2 = 0, Equation (20) has a unique positive
root. We can get that all roots of Equation (17) have negative parts when τ < τ+0 . It has a pair of pure

imaginary roots ±iω+ when τ = τ+n , n = 0, 1, 2, · · · , but Re
(
dλ
dτ

)−1
τ=τ+n

= 0 from (27). The Hopf bifurcation
transversality condition fails.

Remark 5.6. Under the condition z∗ > max{z1, z2} and a22−4b2 > 0, Equation (20) has two positive roots.
It’s easy to show that τ+0 < τ−0 and there exists an integer i ≥ 0 such that

τ+0 < τ−0 < τ+1 < τ−1 < · · · < τ+i < τ+i+1.

We can conclude that P ∗ is asymptotically stable when τ is in the following intervals

[0, τ+0 ), (τ−0 , τ
+
1 ), · · · , (τ−i−1, τ

+
i )

and unstable when τ is in the following intervals

(τ+0 , τ
−
0 ), (τ+1 , τ

−
1 ), · · · , (τ+i−1, τ

−
i−1).

6. Numerical simulations

In this section, we will conduct some numerical simulations to exhibit the theoretical results we obtained
from the previous sections.

If we choose A = 6, B = .2, α = 1, β = 1, η = 0.5, µ = 2, δ = 0.4. Then we have P ∗ = (2.5, 0.4, 0.2), R0 =
1.22449 > 1, and

a1 = 1.8, b1 = 0.06, c1 = 0.96.

Consequently, we have
P1(z) = 0.914− 1.24z + 2.15z2 − 1.5z3
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and
P3(z) = −0.42 + 0.96z − 0.075z2 + 0.75z3.

They both have a unique positive root such that

z1 = 1.17165, z2 = 0.4.

So we have
z∗ = 0.2 < z2 < z1,

which fits the case (II)(2) from Theorem 5.2. Calculations give

a2 = 2.96, b2 = −0.918.

In this case, Equation (20) has a unique positive root. We can find ω+ = 0.5320039 and τ+0 = 2.93232, that
means by Theorem 5.2 that P ∗ is locally asymptotically stable for all τ < 2.93232, and when τ = 2.93232,
Equation (17) has a pair of purely imaginary roots ±0.5320039i and all other roots have negative real parts.
Hopf bifurcation occurs as τ passes cross τ = 2.93232. See Figure 2(a) for the graphs of P1 and P2, 2(b)
for solutions to converge to P ∗ for τ = 2, and 2(c) for Hopf bifurcations to occur and periodic solutions to
appear when τ = 2.93232.
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Figure 2: The case: z∗ < z2 < z1.

Next, if we choose A = 20, B = .2, α = 0.3, β = 1, η = 0.5, µ = 2, δ = 0.4. Then we have P ∗ =
(8.67745, 1.01608, 0.406468), R0 = 1.22449 > 1, and

a1 = 1.39678, b1 = 0.0232058, c1 = 0.92193.

Consequently, we have
P1(z) = 0.8328− 0.176z − 0.44z2 − 0.8z3

and
P3(z) = −0.3164− 0.076z − 0.04z2 + 0.4z3.

They both have a unique positive root such that

z1 = 0.800331, z2 = 1.03002.

So we have
z1 < z2,

and
z∗ = 0.406468 < z2,
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which fits the case (II)(1) from Theorem 5.2. Calculations give

a2 = 1074459, b2 = −0.849417.

In this case, again Equation (20) has a unique positive root. We can find ω+ = 0.629831 and τ+0 = 2.28009,
that means by Theorem 5.2 that P ∗ is locally asymptotically stable for all τ < 2.28009, and when τ =
2.28009, Equation (17) has a pair of purely imaginary roots ±0.629831i and all other roots have negative
real parts. Hopf bifurcation occurs as τ passes cross τ = 2.28009. See Figure 3(a) for the graphs of P1 and
P2, 3(b) for solutions to converge to P ∗ for τ = 2, and 3(c) for Hopf bifurcations to occur and periodic
solutions to appear when τ = 2.28009.
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Figure 3: The case: z∗ < z1 < z2.

7. Discussion

In this paper, we propose and study an online social network mathematical model. We divide the
population into three major sub-classes: potential network users, active users, and people who are opposed
to networks. Unlike the studies in the literature, in our model we assume that some people coming into the
community that will never be interested in using online networks and active online social network users may
lose their interest after a period of time (a time delay for abandoning networks). After a basic reproduction
number R0 is identified, we show that if R0 ≤ 1, the system has a unique user-free equilibrium P0 and it
exists for all parameter values, whereas if R0 > 1, the system has two equilibria: P0 and a unique user-
prevailing equilibrium P ∗. Local and global stability analysis for both P0 and P ∗ is carried out when no
delay is presented. In this case, the dynamics of the system is completely determined by the reproduction
number R0. If R0 ≤ 1, P0 is globally asymptotically stable meaning that the number of active online social
network users will converge to zero over time. Therefore, the social network will die out, and there will be
fewer and fewer people using network. On the other hand, if R0 > 1, i.e., each active user will generate more
than one new network users, then P ∗ is globally asymptotically stable meaning that the number of active
network users will settle at a certain number over time. The network users will be persistent. Assuming
that R0 > 1, we investigated whether or not the time delay for active users to abandon the network may
cause the stability of P ∗ to switch as the delay τ is presented and increases. Conditions are established
that guarantee that P ∗ will stay asymptotically stable for all delay τ ≥ 0, so people in all three sub-classes
will settle at their corresponding numbers over time. We also found conditions and critical numbers such
that under these conditions Hopf bifurcation occurs as the delay increases and crosses the critical numbers.
Therefore, periodic solutions appear and the numbers of three sub-classes oscillate over time.

References

[1] L. M. Bettencourt, A. Cintrn-Arias, D. I. Kaiser, and C. Castillo-Chvez, The power of a good idea: quatitative modeling
of the spread of ideas from epidemiological models, Physica A: Statistical Mechanics and its Applications, 364 (2006),
513–536.



Liancheng Wang, Min Wang, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 413–427. 427

[2] J. Cannarella and J. Spechler, Epidemiological modeling of online network dynamics, arXiv preprint arXiv:1401.4208
(2014), 1–10.

[3] R. Chen and L. Kong and M. Wang, Stability analysis of an online social network model with infectious recovery dynamics,
Rocky Mt. J. Math., accepted.

[4] G. Dai, R. Ma, H. Wang, F. Wang, and K. Xu, Partial differential equations with Robin boundary conditions in online
social networks, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1609–1624.

[5] J. R. Graef, L. Kong, A. Ledoan, and M. Wang, Stability analysis of a fractional online social network model, Math.
Comput. Simulat., 178 (2020), 625–645.

[6] L. Kong and M. Wang, Deterministic and stochastic online social network models with varying population size, Dyn.
Contin. Discrete Impuls. Syst. A: Math. Anal., accepted.

[7] L. Kong and M. Wang, Optimal control for an ordinary differential equation online social network model, Differ. Equ.
Appl., 14 (2022), 205–214.

[8] C. Lei, Z. Lin, and H. Wang, The free boundary problem describing information diffusion in online social networks, J.
Differential Equations, 254 (2013), 1326–1341.

[9] X. Liu, T. Li, X. Cheng, W. Liu, and H. Xu, Spreading dynamics of a preferential information model with hesitation
psychology on scale-free networks, Adv. Difference Equa., 2019 (2019), No. 279, 19pp.

[10] X. Liu, T. Li,and M. Tian, Rumor spreading of a SEIR model in complex social networks with hesitating mechanism, Adv.
Difference Equa., 2018 (2018), No. 391, 24pp.

[11] F. Wang, H. Wang, and K. Xu, Diffusion logistic model towards predicting information diffusion in online social networks,
2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW) (2012), 133–139.

[12] R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, ,Nature, 280 (1979), 361–367.
[13] W. Kermack and A. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical Character., 115 (1927) 700–721.
[14] M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, Global dynamics of an SEIR model with vertical transmission, SIAM J.

Appl. Math., 160 (1999), 191–213.
[15] M. Y. Li, H. L. Smith, and L. Wang, Global dynamics of a SEIR model with a varying total population size, Math. Biosci.,

62 (2001), 58–69.
[16] L. Wang, M. Y. Li, and D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and

ATL progression, Math. Biosci., 179 (2002), 207–217.
[17] S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with

two delays, Dynamics of Continuous, Discrete and Impulsive Systems, 10 (2003), 863–874.
[18] P. ven den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental

models of disease transmission Math. Biosc., 180 (2002), 29–48.
[19] J. K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York, 1969.
[20] N. D. Pavel, Differential Equations, Flow Invariance and Applications, Pitman Publishing Inc., London, 1984.
[21] J.P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied mathematics. SIAM, Philadelphia,

1976.
[22] E. A. Barbashin, Introduction to the Theory of Stability, Groningen: Wolters-Noordhoff, 1970.
[23] A. Korobeinikov, Lyaponov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21

(2004), 75–83.
[24] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method. Academic, New York, 1961.
[25] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[26] L. Wang and X. Wu, Stability and Hopf Bifurcation for an SEIR Epidemic Model with Delay, Advances in the Theory of

Nonl. Anal. and its Appl., 2 (2018), 113–127.


	1 Introduction
	2 Equilibrium points and basic reproduction number
	3 Local stability of equilibrium points with no delay
	4 Global stability of equilibrium points with no delay
	5 Hopf bifurcation
	6 Numerical simulations
	7 Discussion

