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Abstract
The purpose of the present manuscript is to present a new sequence of Bernstein-Durrmeyer operators.
First, we investigate approximation behaviour for these sequences of operators in Lebesgue Measurable
space. Further, we discuss rate of convergence and order of approximation with the aid of Korovkin
theorem, modulus of continuity and Peetre K-functional in lp space. Moreover, Voronovskaja type theorem
is introduced to approximate a class of functions which has first and second order continuous derivatives.
In the last section, numerical and graphical analysis are investigated to show better approximation
behaviour for these sequences of operators.
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1. Introduction
Operators theory is a fascinating field of research for the last two decades due to the advent of computer. It

contributes important role in applied and pure mathematics, viz, fixed point theory, numerical analysis etc. In
computational aspects of mathematics and shape of geometric objects, CAGD (Computer-aided Geometric design)
plays an interesting role with the mathematical description. It focuses on mathematics which is compatible with
computers in shape designing. To investigate the behavior of parametric surfaces and curves, control nets and
control points has a significant role respectively. CAGD is widely used as an application in applied mathematics and
industries. It has several applications in other branches of sciences, e.g., approximation theory, computer graphics,
data structures, numerical analysis, computer algebra etc. In 1912, Bernstein [1] was the first who introduced
a sequence of polynomials to present a smallest and easiest proof of celebrated theorem named as Weierstrass
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approximation theorem with the aid of binomial distribution as follows:

Bl(g;x) =

l∑
ν=0

g
(ν
l

)( l
ν

)
µν(1− µ)l−ν , µ ∈ [0, 1], (1.1)

where g is a bounded function defined on [0, 1]. The basis
(
l
ν

)
µν(1 − µ)l−ν of Bernstein polynomials (1.1) has

significant role in preserving the shape of the surfaces or curves (see [2]-[4]). Graphic design programs, viz,
photoshop inkspaces and Adobe’s illustrator deals with Bernstein polynomials in the form of Bèzier curves. To
preserve the shape of the parametric surface or curve, it depends on basis

(
l
ν

)
µν(1− µ)l−ν which is used to design

the curves.
In 1962, Schurer [5] presented the following modification of Bernstein operators (1.1) is denoted as Bm,l :

C[0, 1 + l] → C[0, 1] and given by:

Bm,l(g;µ) =

m+l∑
i=0

g

(
j

m

)(
m+ l
j

)
µk(1− µ)m+l−j , µ ∈ [0, 1],

for l ∈ N∪{0} and g ∈ C[0, 1+ l]. In the recent past, Several modifications have studied in various functional spaces
to achieve better approximation results (see Acar et al. [6], Acu et al. [7], Braha et al. ([8], [9]), Cai et al. [10], Cetin et
al. [11], Kajla et al. [12], Mohiuddine et al. [13]). Izgi [14] introduced a new sequence of Bernstein polynomials as:

An(h;u) =

n∑
k=0

qn,k,a,b(u)h

(
k

n

n+ a

n+ b

)
,

where qn,k,a,b(u) =
(

n+b
n+a

)n (
n
k

)
uk
(

n+a
n+b − u

)n−k

, 0 ≤ a ≤ b, u ∈
[
0, n+a

n+b

]
and h ∈ C [0, 1] . Further, he constructed

two dimentional sequences of operators to approximate a class of bivariate continuous functions on square
and triangular domain. Moreover, he investigated rate of convergence and order of approximation in different
functional spaces with the aid of modulus of continuity, In the last, he presented another variant of these sequences
to approximate a wider class, i.e., Lebesgue measurable class as:

Tn (h;u) =
(n+ b)(n+ 1)

n+ a

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)h(t)dt, (1.2)

where q∼n,k(u) =: qn,k,a,b(u) and In =
[
0, n+a

n+b

]
.

and

T ∗
n (h;u) =

{
Tn (h;u) u ∈ In
h(u) u ∈ [0, 1] / In

(1.3)

Remark 1.1. Bernstein-Durrmeyer type operators defined by (1.2) are linear and positive.

2. Preliminaries
In this section, let’s calculate the values of our operator 1, t, t2, t3 and t4 to examine the convergence states and

show that our operator satisfies the Korovkin conditions. After that, with the help of these values, let’s calculate
their central moments.

Lemma 2.1. Let fp(t) = tp, p ∈ N
⋃
{0} be the test functions. Then, we have

Tn (t
p;u) =

(n+ 1)!

(n+ p+ 1)!

p∑
s=0

(
p

s

)
p!n!

s! (n− s)!

(
n+ a

n+ b

)p−s

us.



200 H. Çiçek, A. İzgi & N. Rao

Proof. We know

n+a
n+b∫
0

q∼n,k(t)t
pdt =

(
n+ b

n+ a

)n(
n

k

) n+a
n+b∫
0

tk
(
n+ a

n+ b
− t

)n−k

tpdt

=

(
n+ b

n+ a

)n(
n

k

) 1∫
0

(
n+ a

n+ b

)n+p+1

xk+p(1− x)n−kdx

=

(
n+ a

n+ b

)p+1
n!

k!(n− k)!

(k + p)!

(n+ p+ 1)!
.

In view of (1.2), we have

Tn (t
p;u) =

n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)t
pdt

=
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

(
n+ a

n+ b

)p+1
n!

k!(n− k)!

(k + p)!

(n+ p+ 1)!

=

(
n+ a

n+ b

)p+1
(n+ 1)!

(n+ p+ 1)!

n∑
k=0

q∼n,k(u)
k!

(k + p)!
.

Now, the pth order derivative of the xp(x+ y)n expression is as:

∂p

∂up
[up(u+ v)n] =

∂p

∂up

n∑
k=0

(
n

k

)
uk+pvn−k

=

n∑
k=0

(
n

k

)
(k + p)!

k!
ukvn−k, (2.1)

or

∂p

∂up
[up(u+ v)n] =

p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us(u+ v)n−s. (2.2)

Combining equation (2.1) and equation (2.2), we obtain

n∑
k=0

(
n

k

)
(k + p)!

k!
ukvn−k =

p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us(u+ v)n−s.

Choosing u+ v = n+a
n+b and multiply both the sides in the above equation with

(
n+b
n+a

)n
, we have

(
n+ b

n+ a

)n n∑
k=0

(
n

k

)
(k + p)!

k!
uk

(
n+ a

n+ b
− u

)n−k

=

(
n+ b

n+ a

)n p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us

(
n+ a

n+ b

)n−s

. (2.3)

In the light of equation (2.1) and (2.3), we arrive at the required result.
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Lemma 2.2. Let fp(t) = tp, p ∈ {0, 1, 2, 3, 4} be the test function. Then

Tn (1;u) = 1,

Tn (t;u) = u− 2

n+ 2
u+

n+ a

(n+ 2) (n+ b)
,

Tn

(
t2;u

)
= u2 − 6 (n+ 1)

(n+ 2) (n+ 3)
u2 +

4n (n+ a)

(n+ 2) (n+ 3) (n+ b)
u+

2

(n+ 2) (n+ 3)

(
n+ a

n+ b

)2

,

Tn

(
t3;u

)
= u3 − 12

(
n2 + 2n+ 2

)
(n+ 2) (n+ 3) (n+ 4)

u3 +
9n (n− 1) (n+ a)

(n+ 2) (n+ 3) (n+ 4) (n+ b)
u2

+
18n

(n+ 2) (n+ 3) (n+ 4)

(
n+ a

n+ b

)2

u+
6

(n+ 2) (n+ 3) (n+ 4)

(
n+ a

n+ b

)3

,

Tn

(
t4;u

)
= u4 − 20

(
n3 + 3n2 + 8n+ 6

)
(n+ 2) (n+ 3) (n+ 4) (n+ 5)

u4 +
16n (n− 1) (n− 2) (n+ a)

(n+ 2) (n+ 3) (n+ 4) (n+ 5) (n+ b)
u3

+
72n (n− 1)

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)2

u2 +
96

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)3

u

+
24

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)4

.

Proof. In the direction of Lemma 2.1, one can easily arrive at the proof of Lemma 2.2.

Consider δn,p (u) = Tn ((t− u)
p
;u) , p ∈ {0, 1, 2...}. Then, we obtain the central moments in the following

Lemma 2.3:

Lemma 2.3. For the operators given by δn,p (u), we have

δn,0 (u) = 1,

δn,1 (u) = − 2

n+ 2
u+

2

n+ 2

n+ a

n+ b
,

δn,2 (u) =
2(n− 3)

(n+ 2)(n+ 3)
u

(
n+ a

n+ b
− u

)
+

2

(n+ 2)(n+ 3)

(
n+ a

n+ b

)2

,

δn,3 (u) =
24(n− 1)

(n+ 2)(n+ 3)(n+ 4)
u3 − 36(n− 1)

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

+
12(n− 2)

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u+
6

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3

,

δn,4 (u) =
12(n2 − 21n+ 10)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
u4 − 2(5n3 − 3n2 − 242n+ 120)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)
u3

+
12(n2 − 27n+ 20)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)2

u2 − 24(n+ 1)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)3

u

+
24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)4

.

Proof. In view of Lemma 2.2, we can easily proof Lemma 2.3.

Now, we consider

δ = max
0≤u≤n+a

n+b

δn,2 (u) =
(n+ 1)

2 (n+ 2) (n+ 3)

(
n+ a

n+ b

)2

≤ 1

2 (n+ 2)
<

1

n
(2.4)

and

µ = max
0≤u≤n+a

n+b

δn,4 (u) ≤
24

(n+ 2) (n+ 3)
and µ <

1

n
for n > 20.
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Let CMu
[0, 1] =

{
h ∈ C [0, 1] : |h(u)| ≤ M

(
1 + u2

)
for all u ∈ R, M > 0

}
and for 1 ≤ p < ∞,

Lp [0, 1] =

h is measurable :

1∫
0

|h(u)|p du < ∞

 .

Lemma 2.4. For h ∈ CMu
[0, 1] endowed with the norm ∥h(u)∥∞ = supu∈[0,1] |h(u)|, we have

∥Tn (h)∥∞ ≤ ∥h∥∞ ,

i.e., the operator given by (1.2) is bounded.

Proof. In terms of the definition (1.2) and Lemma 2.2, we get

∥Tn (h)∥∞ ≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |h(t)| dt

≤ ∥h∥∞ Tn (1;u)

= ∥h∥∞ .

Since the operators introduced by (1.2) is linear and bounded. Therefore, it is continuous.
Let

Wn(u, t) =
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)q
∼
n,k(t),

then we can write (1.2) as:

Tn(h;u) =

∫
In

Wn(u, t)h(t)dt.

It is easy to see that ∫
In

Wn(u, t)dt = 1 < ∞,

∫
In

Wn(u, t)du = 1 < ∞,

for all n = 0, 1, 2... (see [15], page 31-32), for h ∈ Lp (In), Tn(h;u) exist for almost all u and belongs to Lp (In). Due
to Orlicz theorem, there exist a K > 0 such that∫

In

|Tn(h;u)|p du ≤ K ∥h∥∞ . (2.5)

3. Direct approximation results

Theorem 3.1. Let h ∈ CMu
[0, 1]. Then, one has

lim
n→∞

Tn(h;u) = h(u),

uniformly on [0, 1].

Proof. In view of Lemma 2.2, it is easy to check

lim
n→∞

Tn(fp(t);u) = fp(u),

for p = 0, 1, 2 uniformly on [0, 1]. Applying Bohman-Korovkin Theorem, the result follows.
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The first modulus of continuity is given by

ω1 (h, δ) = sup
|t−u|<δ
t,u∈[0,1]

|h(t)− h(u)| .

Theorem 3.2. Let h ∈ CMu [0, 1] . Then, we have

|Tn(h;u)− h(u)| ≤ 2ω1

(
h,

1√
n

)
.

Proof. In view of Lemma 2.3, (2.4) and Cauchy-Schwartz inequality, we get

|Tn(h;u)− h(u)| ≤ Tn(|h(t)− h(u)| ;u)

≤ Tn(

(
1 +

|t− u|
δ

)
ω1 (h, δ) ;u)

= ω1 (h, δ)

[
1 +

1

δ
Tn(|t− u| ;u)

]
≤ ω1 (h, δ)

[
1 +

1

δ

√
Tn((t− u)

2
;u)

]
≤ ω1 (h, δ)

[
1 +

1

δ

√
1

n

]
.

Choosing δ = 1√
n

, we arrive at the desired result.

For each 0 ≤ α ≤ 1 and M > 0, let Lipmα denote the set of all functions h on [0, 1] such that

|h(u)− h(v)| ≤ M |u− v|α . (3.1)

Theorem 3.3. If h satisfy condition (3.1), then we have

|Tn(h;u)− h(u)| ≤ M

(
1

n

)α
2

.

Proof. Use Cauchy-Schwartz inequality, (2.4) and (3.1), we have

|Tn(h;u)− h(u)| =

∣∣∣∣∣∣∣
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)h(t)dt− h(u)

∣∣∣∣∣∣∣
≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |h(t)− h(u)| dt

≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)M |u− v|α dt

≤ M

n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) (u− v)
2
dt


α
2

≤ M

(
1

n

)α
2

the proof is completed.
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Theorem 3.4. If h ∈ L1 [0, 1] , u ∈ (0, 1) and h endowed with a continuous derivative on the interval [0, 1], then

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣+ 2
√
δn,2(u)ω1

(
h

′
,
√

δn,2(u)

)
.

Proof. Since h is differentiable on [0, 1] therefore by mean value theorem of differential calculus we have

h(t)− h(u) = (t− u)h
′
(θ) = (t− u)h

′
(u) + (t− u)

(
h

′
(θ)− h

′
(u)
)
, (3.2)

where θ := θ(u, t) belongs to the interval obtained by u and t. Then, on combining (1.3) to (3.2), we have

Tn(h;u)− h(u) =
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)h
′
(u)dt

+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)
(
h

′
(θ)− h

′
(u)
)
dt

= h
′
(u)Tn((t− u);u)

+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)
(
h

′
(θ)− h

′
(u)
)
dt,

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣
+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
∣∣∣h′

(θ)− h
′
(u)
∣∣∣ dt.

Now, we use properties of modulus of continuity∣∣∣h′
(θ)− h

′
(u)
∣∣∣ ≤ ω1

(
h

′
, |θ − u|

)
≤
(
1 +

|θ − u|
β

)
ω
(
h

′
, β
)

≤
(
1 +

|t− u|
β

)
ω
(
h

′
, β
)
.

Since u ≤ θ ≤ t. Therefore, we have

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣
+ω

(
h

′
, β
) n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
(
1 +

|t− u|
β

)
dt.

Let’s examine the last term of last inequality;

ω
(
h

′
, β
) n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
(
1 +

|t− u|
β

)
dt

= ω
(
h

′
, β
)(

Tn(|t− u| ;u) + 1

β
Tn((t− u)

2
;u)

)
= ω

(
h

′
, β
)(√

Tn((t− u)
2
;u) +

1

β
Tn((t− u)

2
;u)

)
= ω

(
h

′
, β
)(√

δn,2(u)

[
1 +

1

β
δn,2(u)

])
.
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Then, on choosing β =
√
δn,2(u), we prove the desired result.

4. Voronovskaya-type theorem

In this section, we prove Voronvoskaya-type asymptotic theorem for the operators Tn(h;u) to approximate a
class of functions which has first and second order continuous derivatives.

Theorem 4.1. Let h ∈ CMu [0, 1] . If h
′
, h

′′
exists at a fixed point u ∈ [0, 1] then we have

lim
n→∞

n {Tn(h;u)− h(u)} = (−2u+ 1)h
′
(u) + u(1− u)h

′′
(u).

Proof. Let u ∈ [0, 1] be fixed. By Taylor’s expansion of h, we can write

h(t) = h(u) + (t− u)h
′
(u) +

1

2
(t− u)2h

′′
(u) + φ(t, u)(t− u)2. (4.1)

Where the function φ(t, u) is the Peano form of remainder, φ(t, u) ∈ CMu
[0, 1] and

lim
n→∞

φ(t, u) = 0.

Applying Tn(h;u) both the sides of (4.1) and Lemma 2.3, we have

n {Tn(h;u)− h(u)} = n

{(
− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

)
h

′
(u)

+
1

2

(
2(n− 3)

(n+ 2)(n+ 3)
u

(
n+ a

n+ b
− u

)
+

2

(n+ 2)(n+ 3)

(
n+ a

n+ b

)2
)
h

′′
(u)

}
+nTn(φ(t, u)(t− u)2;u).

Using Cauchy-Schwarz inequality, we have

nTn(φ(t, u)(t− u)2;u) ≤
(
Tn(φ

2(t, u);u)
) 1

2
(
Tn((t− u)4;u)

) 1
2 . (4.2)

One can observe that φ2(u, u) = 0 and φ2(., u) ∈ CMu
[0, 1] . Then, it follows that

lim
n→∞

Tn(φ
2(t, u);u) = φ2(u, u) = 0. (4.3)

Now, from (4.2) and (4.3), we obtain

lim
n→∞

nTn(φ(t, u)(t− u)2;u) = 0. (4.4)

From (4.4), we get the required result.

5. Local approximation

The K-functional is given by :

K2 (h, δ) = inf
g∈W 2

{
∥h− g∥∞ + δ

∥∥∥g′′
∥∥∥} ,

where δ > 0, W 2 =
{
g : g

′
, g

′′ ∈ C [0, 1]
}

and by [13] there exists a positive constant M > 0 such that

K2 (h, δ) ≤ M ω2 (h, δ) .

Where the second order modulus of continuity for h ∈ CMu
[0, 1] is defined as:

ω2 (h, δ) = sup
|t−u|<δ
t,u∈[0,1]

|h(t+ 2x)− 2h(u+ x) + h(u)| .
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Theorem 5.1. For the operators introduced by Tn(.; .) and h ∈ CMu
[0, 1], we have

∥Tn (h;u)− h(u)∥∞ ≤ 2K2

(
h,

δ1n
2

)
+ δ2n

∥∥∥g′
∥∥∥
∞

,

here δ1n = maxu∈[0,1]

{
8u3+u+1

(n+3)(n+4)

}
= 10

(n+3)(n+4) and δ2n = max
{
infu∈[0,1]

{
|1−2u|
n+2

}}
= 1

(n+2) .

Proof. Let g ∈ W 2 and t ∈ [0, 1] . By Taylor’s expansion, we have

g(t) = g(u) + (t− u)g
′
(u) +

t∫
u

(t− v)g
′′
(v)dv.

Applying (1.2) on both the sides of above relation and using Lemma 2.3, we have

Tn (g;u) = g(u) +

(
− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

)
g

′
(u) + Tn

 t∫
u

(t− v)g
′′
(v)dv;u

 .

Further

|Tn (g;u)− g(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∣∣∣g′
(u)
∣∣∣+ Tn

 t∫
u

|t− v|
∣∣∣g′′

(v)
∣∣∣ dv;u


≤

∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

Tn

 t∫
u

(t− v)
2
dv;u


1
2

. (5.1)

In the light of Lemma 2.2

Tn

 t∫
u

(t− v)
2
dv;u

 = Tn

(
1

3
(t− u)

3
;u

)

= 8
n− 1

(n+ 2)(n+ 3)(n+ 4)
u3 − 12

n− 1

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

+4
n− 2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u

+
2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3

. (5.2)

Combining equation (5.2) and (5.1), we obtain

|Tn (g;u)− g(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

{
8

n− 1

(n+ 2)(n+ 3)(n+ 4)
u3 − 12

n− 1

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

∣∣∣∣∣∣∣∣∣+4
n− 2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u+
2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3
} 1

2

≤ |1− 2u|
n+ 2

∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

[
8u3 + u+ 1

(n+ 3)(n+ 4)

] 1
2

.
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With the aid of Lemma 2.4

|Tn (h;u)− h(u)| = |Tn (h;u)− Tn (g;u) + Tn (g;u)− g(u) + g(u)− h(u)|
≤ |Tn (h− g;u)|+ |Tn (g;u)− g(u)|+ |g(u)− h(u)|

≤ 2 ∥h− g∥∞ +
|1− 2u|
n+ 2

∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

[
8u3 + u+ 1

(n+ 3)(n+ 4)

] 1
2

,

for u ∈ [0, 1] . If the right side of the last inequality is taken as the maximum. The proof is completed.

Here. We introduce the direct estimate of the operators (1.2) with the aid of Lipschitz-type maximal function of
order β ∈ (0, 1] defined by Lenze [16] as follows:

ω∗
β (h, u) = sup

t ̸=u
u,t∈[0,1]

|h(t)− h(u)|
|t− u|β

. (5.3)

Using (5.3), the following inequality is achieved.

|h(t)− h(u)| ≤ ω∗
β (h, u) |t− u|β ω∗

β (h, u) δ
β
2 . (5.4)

Theorem 5.2. Let h ∈ CMu
[0, 1] and β ∈ (0, 1]. Then, we have

|Tn (h;u)− h(u)| ≤ ω∗
β (h, u) δ

β
2 .

Proof. If we use (5.4), (2.4)
(
δ = max0≤u≤n+a

n+b
δ (t− u)

2
)

and use Cauchy-Schwartz-Bunyakowsky inequlity, then
by using the operators (1.2) we have

|Tn (h;u)− h(u)| ≤ Tn (|h(t)− h(u)| ;u)

≤ ω∗
β (h, u)Tn

(
|t− u|β ;u

)
≤ ω∗

β (h, u)Tn

(
(t− u)

2
;u
) β

2

≤ ω∗
β (h, u) δ

β
2 .

6. Lp approximation

Theorem 6.1. Let h ∈ Lp [0, 1] for 0 ≤ p < ∞ . Then

lim
n→∞

∥Tn (h)− h∥Lp(In)
= 0,

is available.

Proof. First, we need to show that there exist a K > 0 such that ∥Tn∥Lp(In)
≤ K for any n ∈ N. For this purpose, if

we use (2.5) we have ∥Tn∥Lp(In)
≤ K. We consider the operator (1.3).

Let’s remember the Luzin theorem for a given ε > 0, there exists f ∈ C[0, 1] such that

∥h− f∥Lp[0,1]
<

ε

2(K + 1)
.

By using Theorem 3.1 for the same ε there exist n0 such that for all n > n0

∥Tn (f ;u)− f(u)∥Lp(In)
≤ ε

2
.

Based on this information, the following result is obtained

∥Tn (h)− h∥Lp(In)
≤ ∥Tn (h)− Tn (f)∥

Lp(In)
+ ∥Tn (f)− f∥C(In)

+ ∥h− f∥Lp(In)

= (K + 1) ∥h− f∥Lp(In)
+ ∥Tn (f)− f∥C(In)

< ε.

Then, the prof is completed.
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7. Some plots

In this section, we discuss the approximation behaviour of the sequence of operator defined by (1.2) for different
functions with the help of graphs. In addition, margins of error is shown with tables of numerical values.

Example 7.1. Let a = 0.4, b = 0.5 and h(u) = sin(4πu) + 4 sin( 14πu). Fig. 1 shows the Tn (h;u) operator’s
approximation to the h(u) (black) function for the values n = 50 (red), n = 100 (blue) and n = 300 (green).

Figure 1. Tn (h;u) Operator’s approximation to the function h(u) = sin(4πu) + 4 sin( 14πu) for different n values.

Example 7.2. Let be a = 0.9, b = 0.8 and h(u) = u
−1
8 sin(10u). Fig. 2 shows the Tn (h;u) operator’s approximation

to the h(u) (black) function for the values n = 50 (red), n = 100 (blue) and n = 300 (green).
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Figure 2. Tn (h;u) Operator’s approximation to the function h(u) = u
−1
8 sin(10u) for different n values.

Now let’s compare the classical Bernstein -Durrmeyer operator defined below with our operator defined in (1.2)
with a graph;

Sn(h;u) = (n+ 1)

n∑
k=0

φn,k(u)

1∫
0

φn,k(t)h(t)dt

here φn,k(u) =
(
n
k

)
uk (1− u)

n−k, h ∈ C [0, 1] , u ∈ [0, 1] .

Example 7.3. Let be a = 10, b = 50 and h(u) = u
−1
8 sin(10u). Fig. 3 shows the Tn (h;u) (blue) and Sn(h;u) (red)

operators are approximation to the h(u) (black) function for the value n = 100.

Table 1 shows the numerical values obtained with the maximum value of the statement |Tn (h;u)− h(u)|, in
order to examine how the Tn (h;u) operator approximation the function h(u) = sin(4πu) + 4 sin( 14πu) for a = 0.4,
b = 0.5 and different n, u values.

Table 1. Error margins between the Tn (h;u) operator and h(u) = sin(4πu) + 4 sin( 14πu)
n u = 0.2 u = 0.4 u = 0.6 u = 0.8
150 0.1065373586 0.213548394 0.216177741 0.106684568
250 0.0686472096 0.135810327 0.137416949 0.068763059
500 0.0362438876 0.071056815 0.071872379 0.036314182
1000 0.0186274446 0.036364660 0.036775374 0.018666478

The definition Izgi[14] provided to compare the approaches of different operators can be given as it comprises
statements that can be simplified as the numerator and the denominator. Ln and Tn are operators defined in the
same range:

lim
n→∞

sup0≤u≤n+a
n+b

|Ln(h;u)− h(u)|
sup0≤u≤n+a

n+b
|Tn(h;u)− h(u)|

=


0, Tn, faster

∞, Ln, faster

c(constant), equally fast
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Figure 3. Tn (h;u) and Sn(h;u) Operators are approximation to the function h(u) = u
−1
8 sin(10u) for n = 100.

Based on this definition, it is possible to examine the rate of approximation of the operators defined by

En(h;u) =
sup0≤u≤n+a

n+b
|Tn(h;u)− h(u)|

sup0≤u≤n+a
n+b

|Sn(h;u)− h(u)|
.

The En operator was defined by Aydın Izgi [17] in 2013 and this ratio is used as a measurement in many articles.
As shown in Fig 3, the operators will be compared in Table 2 for a = 0.1, b = 0.8 and different n values in order

to use the u points where the difference is seen more clearly.

Table 2. Error margins between the En (h;u) operator and h(u) = u
−1
8 sin(10u)

n u = 0.15 u = 0.45 u = 0.6 u = 0.75
150 0.9946389397 0.9924182950 0.9755127166 0.9850499535
250 0.9967498131 0.9953122198 0.9842312426 0.9907327967
500 0.9983634502 0.9976010256 0.9916588067 0.9952461550
1000 0.9991709201 0.9987821715 0.9956978930 0.9975866425

Table 2, shows that Tn (h;u) operators approximation the h(u) = u
−1
8 sin(10u) function better than the operators of

Sn (h;u).

8. Conclusion
In general, a new sequence of Bernstein-Durrmeyer operators was defined in our study. First, the approximation

behaviors for the defined operator sequences in the Lebesgue Measurable space were investigated in the article.
Then, with the help of Korovkin’s theorem, the modulus of continuity and the Peetre K-function on the space lp, the
convergence rate and the order of approximation are discussed. Also, the Voronovskaja type theorem was proved
to approximate a class of functions with continuous derivatives of the first and second order. Finally, numerical and
graphical analyses were examined to show better approximation behavior for these operator sequences, and it was
seen that the operator we have just defined works more efficiently than the Bernstein-Durrmeyer operator defined
earlier.
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