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Research Article

Abstract − In this study, suborbital graphs, Gu,N and Fu,N are examined. Mod-
ular group Γ and its act on Q̂ are studied. Lorentz matrix that gives the vertices
obtained under the classical matrix multiplication in the suborbital graph Fu,N is
analysed with the Lorentz matrix multiplication. Lorentz matrix written as Möbius
transform is normalized and the type of the transform is researched. Moreover, a
different element of Modular group Γ is scrutinized. The vertices on the path start-
ing with ∞ are obtained under this element and the Lorentz matrix multiplication.
For this path, it is shown that the vertices obtained in Fu,N under the Lorentz ma-
trix multiplication with the Lorentz matrix satisfied the farthest vertex condition
for the previous vertex.
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1. Introduction

Graph theory and its elements are at the core of our work. With the discovery of non-Euclidean
geometry in the 18th and 19th centuries, Graph theory began to be studied in this field as well.
Elliptic and hyperbolic geometries are both of non-Euclidean geometries.Moreover, with the discovery
of invariant theory and non-Euclidean geometries, linear fractional transformation groups achieve
special importance. Since linear fractional transformation groups are suitable for the topological
group structure, they have been extensively studied in recent years with different methods. In [1],
some ideas were put forward about graph action firstly. These ideas found an important place in
the work of [2] and [3] in applications for finite groups. Modular group Γ and its subgroups,which
play an important role in the last theorem by proved Fermat, have been researched extensively in
recent years. In [4], suborbital graphs, Gu,N and Fu,N obtained by element of Modular group Γ are
examined and they presented some conclusions. In [5], it is provided that suborbital graph is a forest
if and only if it does not have triangles. Elliptic elements and elliptic circuits are investigated in [6].
In [7], it is shown that each vertex in the suborbital graph Fu,N has a continued fraction structure for
(u,N) = 1 and u ≤ N and investigated the vertices on path with minimal lengths. Suborbital graphs
are studied for invariant groups in [8]. The vertices obtained with help of continued fractions and
recurrence relations are generalized and associated with Fibonacci numbers in [9]. In [10], Gündoğan
and Keçilioğlu defined Lorentz matrix multiplication.

This study investigates corollaries of suborbital graph act by different matrix multiplication.Then,we
use Lorentz matrix multiplication and investigate Lorentz matrix (Equation 6) that gives the vertices
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obtained under classical matrix multiplication with Lorentz matrix multiplication. Here, it is demon-
strated that Lorentz matrix (Equation 6) is not an element of Modular group Γ.

However, we examined an element (Equation 7) of Modular group Γ. We obtained a path starting
with ∞ using Equation 7 in this article.Then, we demonstrated that the vertices on this path satisfy
the minimal length condition. In addition,we assumed k as 1 in Equation 7. Therefore, we associated
the vertices of path with Fibonacci numbers and nth vertex with golden section.

2. Preliminary

2.1. Suborbital Graphs

Assume that (G,Ω) is a transitive permutation group, g ∈ G and α, β ∈ Ω. Then G provides

g : (α, β)→ (g(α), g(β))

on Ω × Ω.The orbitals of this transformation are called suborbitals of G. O(α, β) represents the
suborbital covering (α, β).

O(α, β) = {g(α, β)|g ∈ G}

(x,y) ∈ O(α, β)⇔ g ∈ G : (x, y) = g(α, β) = (g(α), g(β))

The suborbital graph G(α, β) can be obtained from the suborbital O(α, β). Assume that γ and δ
vertices in Q̂, if (γ, δ) ∈ O(α, β) exists, the orbit represents a directional edge from γ to δ and is
denoted by γ −→ δ. This edge can be drawn at H = {z ∈ C|Im(z) > 0} as a hyperbolic geodesic.

O(β, α) is also an orbit and can be equal to or different from the O(α, β). If the orbits are different
from each other, the suborbital graph G(β, α) is the opposite direction of the edges of the suborbital
graph G(α, β) and in this case the suborbital graphs are called paired suborbital graphs.If the orbits
are equal, G(β, α) = G(α, β) and the graph includes the opposite pair of edges; in this case, by
replacing each pair with a simple directed edge, an undirected edge paired with it is obtained.In other
words, if O(β, α) = O(α, β) and (γ, δ) ∈ O(α, β), the edge between γ and δ vertices is denoted by
γ − δ instead of γ ↔ δ.

Assume that equivalence relation is ”≈ ” and for all α, β ∈ Ω, for all g ∈ G, if is provided
g(α) ≈ g(β) when α ≈ β, ”≈ ” is called “G-invariant equivalence relation ”on Ω, and equivalent
classes formed in this way are called ”blocks”. Examples of these relations are identity and universal
relation:

i. identity relation, ”α = β ⇔ α ≈ β” for all α, β ∈ Ω

ii. universal relation, ”α ≈ β” for all α, β ∈ Ω.

Unlike these relations, if there is a G -invariant equivalence relation on Ω, (G,Ω) is called imprimitive,
otherwise primitive.The transitive act of the primitive group (G,Ω) is necessary, otherwise the orbits
do not constitute a system block and its reverse is not true.

Theorem 2.1. [4] Assume that (G,Ω) is an transitive permutation group. In this case (G,Ω) is
primitive ⇔ Gα the stabilizer of a point α ∈ Ω is a maximal subgroup of G for all α ∈ Ω.

Theorem 2.2. [4] G is a suborbital graph for transitive permutation group (G,Ω). In this case,

i. G acts as a group of automorphism of G.

ii. G acts as transitive on vertices of G.

iii. If G is self-paired, then G acts transitively on ordered pairs of consecutive vertices of G.

iv. If G is not self-paired, then G acts transitively on the edges of G.
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2.2.Modular Group and its Act on Q̂ Under Classical Matrix Multiplication

The Modular group is the quotient group of the SL(2,Z) with {∓I}. Specially if the Modular group
is denoted by Γ, it is written as

Γ = PSL(2,Z) ∼= SL(2,Z)/{∓I}

Γ =

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
Γ is consist of ∓

(
a b
c d

)
matrices pairs. Here, the + and − symbols are ignored and matrices

considered equivalent.
Some equivalent subgroups of Γ are given below:

Γ0(N) =

{(
a b
c d

)
∈ Γ | c ≡ 0 (mod N)

}

Γ0(N) =

{(
a b
c d

)
∈ Γ | b ≡ 0 (mod N)

}
Γ1(N) =

{(
a b
c d

)
∈ Γ | a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
The hyperbolic plane is defined by H = {z ∈ C : Im(z) > 0}. Möbius transformations are known
transformations with the elements of the Modular group in the upper half plane H. Transformation
is defined by for all z ∈ C (

a b
c d

)
: z → az + b

cz + d

f and g are elements of Modular group Γ for f(z) and g(z) linear Möbius transformations.

f(z) =
−1
z

=
0z − 1

1z + 0
⇒ f =

(
0 −1
1 0

)
∈ Γ

g(z) = z + λ =
1z + λ

0z + 1
⇒ g =

(
1 λ
0 1

)
∈ Γ

In addition, Möbius transformations are used to describe the elements of Q̂. Especially for a
c ∈ Q̂, if

c = 0, it is accepted as a
c = ∞. For x, y ∈ Z and (x, y) = 1, each element of Q̂ can be expressed as

reduced fraction x
y .Since

x
y = −x

−y , the notation is not uniform. ∞ would be considered as 1
0 = −1

0 .For
z = x

y , Möbius transformation is written as(
a b
c d

)
:
x

y
→ ax+ by

cx+ dy
(1)

The reduced result in Equation 1 is shown as follows:

c(ax+ by)− a(cx+ dy) = cax+ cby − acx− ady = (cb− ad)y = −y

d(ax+ by)− b(cx+ dy) = dax+ dby − bcx− bdy = (ad− bc)x = x

(ax+ by, cx+ dy) = 1

Lemma 2.3. [4]

i. Act of Γ is transitive on Q̂.

ii. Element of Γ that fixed a vertex on Q̂ is infinitely period.2
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Assume that examine what has been given so far about suborbital graphs if G is the Modular

group Γ and Ω is Q̂. Γ∞ which fixed ∞ is a subgroup of Γ produced by Z =

(
1 1
0 1

)
. Then we

can generate Γ-invariant equivalence relations on Q̂ by obtaining the subgroups H of Γ containing Γ∞

or equivalently Z. Since Z =

(
1 1
0 1

)
, the congruence groups Γ0(N) can be selected as H, with

N ∈ N. Clearly, Γ∞ < Γ0(N) ⩽ Γ for all N ∈ N and Γ∞ < Γ0(N) < Γ for N > 1. Hence, act of Γ on
Q̂ is imprimitive.

Assume that denote the reduced Γ- invariant equivalence relation on Q̂ of Γ0(N) with ”≈N”.

Transformations v = g(∞) and w = g
′
(∞) are provided for v = r

s ,w = x
y ∈ Q̂ and g =

(
r ∗
s ∗

)
,

g
′
=

(
x ∗
y ∗

)
∈ Γ.

Since
v ≈N w ⇔ g(v) ≈N g

′
(w)⇔ g−1g

′ ∈ H = Γ0(N)

and

g−1 =

(
∗ ∗
−s r

)
g−1g

′
=

(
∗ ∗
−s r

)(
x ∗
y ∗

)
=

(
∗ ∗

ry − sx ∗

)
∈ H = Γ0(N)

v ≈ w ⇔ ry − sx ≡ 0 (mod N)

results are obtained. In other words, v = r
s and w = x

y are equivalent ⇔ ∃u ∈ H : x ≡ ur (mod N),
y ≡ us (mod N)

Similarly, Γ0(N) which fixed 0 is a subgroup of Γ produced by B =

(
1 0
1 1

)
. Thus, we can

generate Γ-invariant equivalence relations on Q̂ by finding the subgroups K of Γ containing Γ0(N) or
equivalently B.

The number of equivalence classes under “≈N” is given by

Ψ(N) =| Γ : Γ0(N) |

equation.

2.3. Investigation of Gu,N and Fu,N

Since the act of Γ on Q̂ is transitive, each suborbit contains the pair (∞, v) for v ∈ Q̂. If v = u
N

for N ⩾ 0 and (u,N) = 1, suborbit is denoted by Ou,N , suborbital graph G(∞, v) corresponding
to Ou,N is denoted by Gu,N . If v = ∞, G1,0 = G−1,0 is trivial suborbital graph, so we can assume

v ∈ Q̂.v, v
′ ∈ Q̂ and O(∞, v) = O(∞, v

′
) ⇔ v and v

′
are in orbit of Γ∞. Since Γ∞ produced by

Z : v −→ v + 1, equivalent to v
′
= u

′

N for u ≡ u
′
(mod N).

Theorem 2.4. [4] r
s →

x
y ∈ Gu,N if and only if

i. x ≡ ur (mod N), y ≡ us (mod N) and ry − sx = N

ii. x ≡ −ur (mod N), y ≡ −us (mod N) and ry − sx = −N

Corollary 2.5. [4] Suborbital graph which is paired with Gu,N is G−u,N for u providing uu ≡
1 (mod N).

Corollary 2.6. [4] Gu,N is self-paired ⇔ u2 ≡ −1 (mod N).
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Gu,N is the discrete union of Ψ(N) subgraphs and the vertices of each subgraph form a single block
according to the ≈N Γ-invariant equivalence relation defined by ry − sx ≡ 0 (mod N). Since Γ acts
transitively on Q̂, Γ permutates these blocks as transitive and all subgraphs are isomorphic. Fu,N be
the subgraph of Gu,N consisting ∞ on vertices and

[∞] =

{
x

y
|y ≡ 0 (mod N), x, y ∈ Q

}
Thus, Gu,N consists of Ψ(N) discrete copies of Fu,N .

Theorem 2.7. [4] r
s →

x
y ∈ Fu,N if and only if

i. x ≡ ur (mod N) and ry − sx = N

ii. x ≡ −ur (mod N) and ry − sx = −N

Theorem 2.8. [4] Γ0(N) permutates vertices and edges of Fu,N transitively.

2.4. Continued Fractions

Continued fractions are basically divided into two groups as finite and infinite.

2.4.1. Finite Continued Fractions

A finite continued fraction is defined as follow

x = a1 +
1

a2 +
1

a3+
1

...+ 1

am−2+
1

am−1+
1

am

for a1 ⩾ 0,i ⩾ 2 and ai positive integer. It can be written as notation x = [a1; a2, a3, . . . , ak].

2.4.2. Infinite Continued Fractions

An infinite continued fraction is defined as follow

x = a1 +
1

a2 +
1

a3+
1

...+ 1

am−2+
1

...

for a1 ⩾ 0,i ⩾ 2 and ai ⩾ 1. It can be written as x = [a1; a2, a3, . . .] [11].
More generally, a continued fraction is defined

x = b0 +
a1

b1 +
a2

b2+
a3

...

(2)

where N is set of natural numbers, Z is set of integer numbers and ai ∈ Z − {0}, bi ∈ Z for all
i ∈ N ∪ {0}.

Continued fraction in Equation 2 can be written as

b0 +K∞
i=1

(
ai
bi

)
(3)

However, n. approach for continued fraction in Equation 3 is denoted by fn and it is written as

fn = b0 +Kn
i=1

(
ai
bi

)
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In additon, {fn} sequence is obtained by ({ai}i∈N, {bi}i∈N∪{0}) for i ⩾ 1, ai ̸= 0 and linear fractional
transformation sequences {tn(s)}n∈N∪{0} and {Tn(s)}n∈N∪{0} where

t0(s) = s, tn(s) =
an

bn + s
, n = 1, 2, 3, . . .

T0(s) = t0(s), Tn(s) = Tn−1(tn(s)), n = 1, 2, 3, . . .

fn = Tn(0) ∈ R̂ = R ∪ {∞}, n = 1, 2, 3, . . .

From here,
(({ai}i∈N, {bi}i∈N∪{0}), {fn})

can be written. This obtained sequence corresponds to the continued fraction given in Equation 2. ai
is called the partial numerator and bi is called the partial denominator.

In accordance with the above, the linear fractional transformation Tn(s) can be expressed by

Tn(s) = b0 +
a1

b1 +
a2

b2+
a3

...+ an
bn+s

From the representation of continued fractions,

Tn(s) = (t0 ◦ t1 ◦ t2 ◦ . . . ◦ tn)

can be written where ◦ compound function.We get

(t0 ◦ t1)(s) = t0(t1(s))

and
tn(s) = (t ◦ t ◦ t ◦ . . . ◦ t)(s)

The number of nth modified approaches is denoted by

Tn(Sn) ∈ R

for {Sn}n∈N∪{0} sequence.

2.5. Paths of Minimal Length on Suborbital Graphs

In this section, some definitions and theorems are given about paths of minimal length on suborbital
graph.

Definition 2.9. [7] v0, v1, v2, . . . , vm is a sequence of different vertices of suborbital graph Fu,N . If
m ⩾ 2, v0 → v1 → v2 → . . .→ vm → v0 is called directed circuit (or closed path).If at least one (but
not all) edge in this path are is the opposite direction, this path is called an undirected circuit (or
reverse directed circuit). If m = 2, the circuit is called a triangle, directed or not.If m = 1, the path
v0 → v1 → v0 is called a self-matched edge.

Definition 2.10. [7] Since the elements of the Modular group represent Hyperbolic lines to Hyperbolic
lines, the elements of the graph Fu,N for proper visualization are shown half lines perpendicular to
the real axis in the upper half plane of H = {z ∈ C : Im(z) > 0} and half lines with the center on R
as hyperbolic geodesics.

Definition 2.11. [7] The path v0 → v1 → v2 → . . . → vm and v0 → v1 → v2 → . . . is called a path
and an infinite path in the graph Fu,N respectively.

Definition 2.12. [7] r
s
−→
< x

y ∈ Fu,N ( rs
←−
> x

y ∈ Fu,N ), if there is no vertex greater (or smaller) than the
x
y vertex connected to the r

s vertex in the graph Fu,N , the x
y vertex is called the farthest (nearest)

vertex.
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Definition 2.13. [7] For the path v0 → v1 → v2 → . . . → vm in the graph Fu,N to have minimal
length,vi ↮ vj where i < j − 1, i ∈ {0, 1, . . . ,m − 2},j ∈ {2, 3, . . . ,m} and vertex vi+1 should be the
farthest vertex that connects to vertex vi.

Definition 2.14. [7] If Fu,N contains no circuits it is called a forest. A connected non-empty graph
with no circuit is a tree.

Lemma 2.15. [12] If (u,N) = 1, there is an integer k that satisfies the equation u2 + ku + 1 ≡
0 (mod N).

For k ⩾ 2 and k ∈ Z,
(
−u u2+ku+1

N
−N u+ k

)
∈ Γ0(N) that the element of an equivalent subgroup

of the Modular group connects the vertices in order on an infinite minimal length path in suborbital
graph Fu,N and each vertex forms a continued fractional structure.

∞ =
1

0
→ u

N
→

u+ 1
k

N
→

u+ 1
k− 1

k

N
→

u+ 1
k− 1

k− 1
k

N
→ . . .

This path is right directed. Each vertex that can be connected to the previous vertex is the farthest
vertex.

It can be defined as

vq =

(
−u u2+ku+1

N
−N u+ k

)q

(v0) (4)

for all q ∈ Z+,where v0 =
u
N .

Theorem 2.16. [12] Assume that u2 + ku+ 1 ≡ 0 (mod N) and 1 < k < N in Farey graph.

i. The farthest vertex to which u
N can be connected becomes

u+ 1
k

N and there is no similar nearest
vertex.

ii. The farthest vertex to which
u+ 1

k
N can be connected becomes

u+ 1

k− 1
k

N and there is no similar nearest
vertex.

Theorem 2.17. [7] Assume that u2+ku+1 ≡ 0 (mod N) and u2−lu+1 ≡ 0(mod N) for 1 ⩽ k, l ⩽ N .
If the suborbital graph Fu,N is paired with itself, it is k = l = N and otherwise l = N − k.

Theorem 2.18. [7] Assume that u2 − lu+ 1 ≡ 0 (mod N) and 1 < l ⩽ N in Farey graph.

i. The farthest vertex to which u
N can be connected becomes

u− 1
l

N and there is no similar nearest
vertex.

ii. The farthest vertex to which
u− 1

l
N can be connected becomes

u− 1

l− 1
l

N and there is no similar nearest
vertex.

Corollary 2.19. [7] If u2 − u+ 1 ≡ 0 (mod N) then Fu,N has a triangle as 1
0 ←

u−1
N ← u

N ←
1
0 .

2.6. Lorentz Matrix Multiplication

In this section, we will investigate Lorentz matrix multiplication and related concepts, which have an
important place in our study.
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2.6.1. Lorentz Transform

Definition 2.20. [13] Linear transform θ : Rn → Rn is a Lorentz transform ⇔ θ(x) ◦ θ(y) = x ◦ y for
all x, y ∈ Rn.

Base {x1, x2, . . . , xn} ∈ Rn is orthonormal if and only if x1 ◦ x1 = 1, for other cases xi ◦ xj = δij .

Theorem 2.21. [13] Linear transform θ : Rn → Rn is a Lorentz transform if and only if θ is linear
and {θ(e1), θ(e2), . . . , θ(en)} is an Lorentz orthonormal base of Rn.

Assume that θ is linear and {θ(e1), θ(e2), . . . , θ(en)} is an Lorentz orthonormal base of Rn. Since
θ Lorentz transform,

θ(x) ◦ θ(y) = θ(
∑n

i=1 xiei) ◦ θ(
∑n

j=1 xjej)

= (
∑n

i=1 xiθ(ei)) ◦ (
∑n

j=1 yjθ(ej))

=
∑n

i=1

∑n
j=1 xiyjθ(ei) ◦ θ(ej)

= −x1y1 + x2y2 + . . .+ xnyn = x ◦ y

Definition 2.22. [13] x, y ∈ Rn is Lorentz orthogonal ⇔ x ◦ y = 0.

2.6.2. Some Properties of Lorentz Matrix Multiplication

Assume that Rm
n be the set of matrices of type m × n and Rn

p be the set of matrices of type n × p.
Between the rows of the matrix A = (aij) ∈ Rm

n and the columns of the matrix B = (bjk) ∈ Rn
p ,

A.LB = (−ai1b1k +
∑n

j=2 aijbjk) is defined with “.L” and this product is called the “Lorentz matrix

product”. A.LB is a matrix of type m × p. Besides, if we assume Ai as ith row of A and Bj as
jth column of B, ⟨Ai, B

j⟩L is dot product (i, j)th of A.LB. Lm
n is denoted Rm

n that Lorentz matrix
multiplication applied. A.LB can be given more generally as follows:

A.LB =

 ⟨A1, B
1⟩ . . . ⟨A1, B

j⟩
...

. . .
...

⟨Aj , B
1⟩ . . . ⟨Aj , B

j⟩


Theorem 2.23. [10] The following equations are obtained under Lorentz matrix multiplication.

i. For all A ∈ Lm
n , B ∈ Ln

p , C ∈ Lp
r , A.L(B.LC) = (A.LB).LC

ii. For all A ∈ Lm
n , B,C ∈ Ln

p , A.L(B + C) = A.LB +A.LC

iii. For all A,B ∈ Lm
n , C ∈ Ln

p , (A+B).LC = A.LC +B.LC

iv. For all k ∈ R,A ∈ Lm
n , B ∈ Ln

p , k(A.LB) = (kA).LB = A.L(kB)

Theorem 2.24. [10] The Lorentz unit matrix can be represented as

I.L =


−1 . . . 0
...

1 0
0 1

0

0 . . . 1


n×n

Definition 2.25. [10] A is a matrix of type n × n, if there is a B matrix of type n × n such that
A.LB = B.LA = In, A is called reversible and denoted by A−1.

Definition 2.26. [10] Transpose of A = [aij ] ∈ Lm
n demonstrations with AT and define with AT =

[aji] ∈ Ln
m.

Definition 2.27. [10] If A−1 = AT for A ∈ Ln
n matrix, A is called L− orthogonal.
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2.7. Pseudo Matrix Multiplication

Throughout this section Rm,n is denoted the set of matrices of type m×n. Rm,n is a real vector space
by addition and scalar multiplication. Each element of the matrix A ·v B is the inner product defined
by Equation 5 where “·v” is the Pseudo matrix product between two matrices. The set of matrices
defined pseudo matrix multiplication is denoted by Rm,n

v . (i, j)th Element of matrice’s A ·vB is defined
by

⟨x, y⟩v = −
v∑

j=1

aijbjk +
n∑

j=v+1

aijbjk (5)

i. If v = 0 then it is equivalent to classic matrix multiplication.

⟨x, y⟩0 = −
∑0

j=1 aijbjk +
∑n

j=0+1 aijbjk

= ai1b1k + ai2b2k + . . .+ ainbnk

ii. If v = 1 then it is equivalent to Lorentz matrix multiplication.

⟨x, y⟩1 = −
∑1

j=1 aijbjk +
∑n

j=1+1 aijbjk

= −ai1b1k + ai2b2k + . . .+ ainbnk

in [14].

Theorem 2.28. [14] det(A ·v B) = (−1)vdetA · detB, for all A,B ∈ Rn,n
v .

Since it is equivalent to Lorentz matrix multiplication for v = 1,det(A ·1B) = −detA ·detB is obtained.

2.8. Coordinate Transformations in Two Dimensional Lorentz Space

In this section, obtaining the Lorentz matrix using the displacement between two points in R2 is exam-
ined. Assume that m(CAx) = α,m(BAC) = β, m(BAx) = θ, B(sinh θ, cosh θ) and C(sinhα, coshα).
If point C(x, y) is rotated counter clockwise around the origin by an angle of β, it becomes point
B(x

′
, y

′
).Since the coordinates of point C are taken as x = r sinhα and y = r coshα, the coordinates

of point B are written as x
′
= r sinh(α+ β) and y

′
= r cosh(α+ β).

x
′

= r sinh(α+ β)
= r(sinhα coshβ + sinhβ coshα)
= r sinhα coshβ + r sinhβ coshα
= x coshβ + y sinhβ

y
′

= r cosh(α+ β)
= r(coshα coshβ + sinhα sinhβ)
= r coshα coshβ + r sinhα sinhβ
= y coshβ + x sinhβ
= x sinhβ + y coshβ

are obtained.
The trigonometric expansions of x

′
and y

′
can be rewritten in matrix form as follows:(

x
′

y
′

)
=

(
x coshβ + y sinhβ
x sinhβ + y coshβ

)
=

(
coshβ sinhβ
sinhβ coshβ

)(
x
y

)
If this matrix product is written according to the Lorentz matrix multiplication(

x
′

y
′

)
=

(
x coshβ + y sinhβ
x sinhβ + y coshβ

)
=

(
− coshβ sinhβ
− sinhβ coshβ

)
·L
(

x
y

)
(
− coshβ sinhβ
− sinhβ coshβ

)
∈ L2

2

matrix is obtained [10].
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Fig. 1. Rotation diagram between two points

3.Main Results

3.1. Obtaining Vertices of a Suborbital Graph Fu,N Under Lorentz Matrix Multi-
plication

In this section, we examine that the Lorentz matrix in Equation 6 that gives the vertices obtained
under the classical matrix multiplication in the suborbital graph Fu,N under the Lorentz matrix
multiplication and see that the Lorentz matrix in Equation 6 is not a member of the Modular group.
In Subsection 2.8, obtaining the Lorentz matrix using the displacement between two points in R2 was
examined. We know that from Equation 4

vq =

(
−u u2+ku+1

N
−N u+ k

)q

(v0)

From Subsection 2.8, the Lorentz matrix giving the same vertices on the path of minimal length can
be given by (

u u2+ku+1
N

N u+ k

)
∈ L2

2 (6)

From here, the vertices of the path with minimal length are provided as follows:

vq =

(
u u2+ku+1

N
N u+ k

)q

·L (v0)

for all q ∈ Z+,where v0 =
u
N .

Corollary 3.1. Lorentz matrix given in Equation 6 is not member of Modular group.

Proof. ∣∣∣∣ u u2+ku+1
N

N u+ k

∣∣∣∣ = u(u+ k)−N(u
2+ku+1

N )

= u2 + uk − u2 − uk − 1
= −1
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Since the determinant is -1 in Corollary 3.1., we can normalize the relevant matrix. The relevant
matrix can be written as the Möbius transform as follows:

m(z) =
uz + u2+ku+1

N

Nz + u+ k

For α ∈ Ĉ,

m(z) =
αuz + αu2+ku+1

N

αNz + α(u+ k)

det(m(z)) = αuα(u+ k)− αN(αu2+ku+1
N )

= α2u(u+ k)− α2(u2 + ku+ 1)

= α2u2 + α2uk − α2u2 − α2uk − α2

= 1

α2 = −1, α = ∓i If α = i, then

m(z) =
iuz + iu

2+ku+1
N

iNz + i(u+ k)

Möbius transform can be writtten for i ∈ Ĉ,(
ui u2+ku+1

N i
Ni (u+ k)i

)
as an element of Modular group.Similar operations can be done for α = −i.

From here, the type of Möbius transformation can be determined. Trace of Möbius transformation
m(z) = az+b

cz+d can be written as τ(m) = (a+ d)2. From the above matrix,

τ(m) = (a+ d)2

= (ui+ i(u+ k))2

= (ui)2 + 2uii(u+ k) + (i(u+ k))2

= −u2 − 2u2 − 2uk + (−u2 − 2uk − k2)

= −4u2 − 4uk − k2 = −(2u+ k)2

trace is obtained. m is elliptic since τ(m) = 0 real for u = −k
2 when k ⩾ 2,k ∈ Z and u are arbitrary

and m is loxodromic for u ̸= −k
2 and τ(m) is real.

Corollary 3.2. Assume that u2 + ku+ 1 ≡ 0 (mod N) under Lorentz multiplication in Farey graph
provided for (u,N) = 1 and k ⩾ 2,k ∈ Z. Under Lorentz matrix multiplication, i and ii are provided
for the vertices obtained by the matrix given in [7].

i. The farthest vertex to which u
N can be connected becomes

u+ 1
k

N and there is no similar nearest
vertex.

ii. The farthest vertex to which
u+ 1

k
N can be connected becomes

u+ 1

k− 1
k

N and there is no similar nearest
vertex.

Since the vertices obtained under Lorentz matrix multiplication in the suborbital graph Fu,N with
vertices obtained in Theorem 2.16. are the same, then the proof of this Corollary is the same with
proof of Theorem 2.16.
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Corollary 3.3. For (u,N) = 1 and k ∈ Z, where u2 + ku− 1 ≡ 0 (mod N),(
u u2+ku−1

N
N u+ k

)
∈ Γ0(N) (7)

provides under Lorentz matrix multiplication,

∞ =
1

0
→ u

N
→

u− 1
k

N
→

u− 1
k+ 1

k

N
→

u− 1
k+ 1

k+ 1
k

N
→ . . .

path in suborbital graph Fu,N .

Proof. Here the first four vertices of the path are found, the other vertices are obtained in a similar
way. (

u u2+ku−1
N

N u+ k

)
·L
(

1
0

)
=

(
u
N

)
(

u u2+ku−1
N

N u+ k

)
·L
(

u
N

)
=

(
ku− 1
Nk

)
=

(
u− 1

k
N

)
(

u u2+ku−1
N

N u+ k

)
·L
(

ku− 1
Nk

)
=

(
k2u+ u− k
Nk2 +N

)
=

(
u− 1

k+ 1
k

N

)

(
u u2+ku−1

N
N u+ k

)
·L
(

k2u+ u− k
Nk2 +N

)
=

(
k3u− k2 + 2uk − 1

Nk3 + 2Nk

)
=

(
u− 1

k+ 1

k+ 1
k

N

)

Example 3.4. If u = 1, N = 5 and k = 3, from Corollary 3.3.

∞ =
1

0
→ 1

5
→ 2

15
→ 7

50
→

1− 1
3+ 1

3+1
3

5
→ . . .

is obtained.

Corollary 3.5. Assume that u2 + ku− 1 ≡ 0 (mod N) under Lorentz multiplication in Farey graph
provided for (u,N) = 1 and k ∈ Z. Under Lorentz matrix multiplication, i and ii are provided for
the vertices obtained by the matrix given in Equation 7.

i. The farthest vertex to which u
N can be connected becomes

u− 1
k

N and there is no similar nearest
vertex.

ii. The farthest vertex to which
u− 1

k
N can be connected becomes

u− 1

k+ 1
k

N and there is no similar nearest
vertex.

Proof. i. Assume that
u− r

m
N be the farthest vertex that can be connected with u

N , where u
N is a

vertex in Fu,N under Lorentz multiplication. Hence

u

N
→

u− r
m

N
=

um− r

mN

is obtained. um− r ≡ u2 (mod N),umN −N(um− r) = N must be provided for edge condition.
Thus,

umN −N(um− r) = N, umN −Num+Nr = N ⇒ r = 1
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If the value of r = 1 is substituted in the congruence equation,

um− 1 ≡ u2 (mod N)

is obtained. Then −u2 + um − 1 ≡ 0 (mod N). If equations −u2 + um − 1 ≡ 0 (mod N) and
u2+ku−1 ≡ 0 (mod N) are added, (um−1)+(uk−1) ≡ 0 (mod N). From here, m ≡ k (mod N)
is reached. As a result,

m = k +Nx, x ∈ N ∪ {0}

Thus, r
m = 1

k+Nx . Here, a function can be defined as follows:

f(x) =
u− r

m

N
=

u− 1
k+Nx

N
, f : N ∪ {0} → R

If the derivative of the function is taken, it is seen that it is strictly increasing.

f
′
(x) =

1

(k +Nx)2
> 0

Since it is a strictly increasing function, it takes the minimum value for x = 0.If the value of x = 0

is written in the relevant function, it becomes f(0) =
u− 1

k
N . It is obvious that (uk − 1, kN) = 1.

Consequently,
u− 1

k
N is a vertex at Fu,N and is the farthest vertex to which u

N can connect.

ii. Assume that
u− r

m
N be the farthest vertex that can be connected with

u− 1
k

N , where
u− 1

k
N is a vertex

in Fu,N under Lorentz multiplication. Hence

u− 1
k

N
=

uk − 1

kN
→

u− r
m

N
=

um− r

mN

is obtained. um− r ≡ −u(uk − 1) (mod N),(uk − 1)mN − kN(um− r) = −N must be provided
for edge condition. So, (uk − 1)mN − kN(um − r) = −N, ukmN − mN − knuM + kNr =
−N,−mN + kNr = −N,−m+ kr = −1⇒ m = kr+ 1. If the value of m = kr+ 1 is substituted
in the congruence equation, u(kr+1)−r ≡ −u(uk−1) (mod N) is obtained. Then u(kr+1)−r ≡
−u(uk − 1) (mod N), ukr + u− r + u2k − u ≡ 0 (mod N) is provided for ukr + u− r ≡ −u2k +
u (mod N). From here, (uk − 1)r + u2k ≡ 0 (mod N) and uk − 1 ≡ −u2 (mod N) are reached.

(uk − 1)r + u2k ≡ 0 (mod N),−u2r + u2k ≡ 0 (mod N)

−r + k ≡ 0 (mod N), r ≡ k (mod N), r = k +Nx, x ∈ N ∪ {0}

Hence, r
m = k+Nx

k(k+Nx)+1 . Here, a function can be defined as follows:

f(x) =
u− k+Nx

k(k+Nx)+1

N

= u(k(k+Nx)+1)−(k+Nx)
N(k(k+Nx)+1)

= uk2+ukNx+u−k−Nx
Nk2+kN2x+N

, f : N ∪ {0} → R

If the derivative of the function is taken, it is seen that it is strictly decreasing.

f
′
(x) =

−1
(k2 + kNx+ 1)2

< 0

Since it is a strictly decreasing function, it takes the maximum value for x = 0. If the value

of x = 0 is written in the relevant function, it becomes f(0) =
u− 1

k+ 1
k

N . We have to show that
(uk2 + u − k, k2 + 1) = 1. Assume that (u(k2 + 1) − k, k2 + 1) = g. From here, g \ k2 + 1 and
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g \ (u(k2 +1)). Then g \ (u(k2 +1))− k, g \−k. Hence g \ k2 +1, g = 1. We have to demonstrate
that (uk2 + u− k,N) = 1. For (u(k2 + 1)− k,N) = z, u(k2 + 1)− k = k(uk− 1) + u ≡ 0(mod z)
and N ≡ 0(mod z) are obtained. So, uk−1 ≡ −u2 (mod N). Then, k(uk−1)+u = k(−u2)+u ≡
0(mod z), u(−ku+1) ≡ 0(mod z), u ≡ 0(mod z) or −ku+1 ≡ 0(mod z). This is a contradiction.
Hence z = 1.

Consequently,
u− 1

k+ 1
k

N is a vertex at Fu,N and is the farthest vertex to which
u− 1

k
N can connect.

Since f(0) =
u− 1

k+ 1
k

N is, there is no nearest vertex to which
u− 1

k
N can connect.

Corollary 3.6. For (u,N) = 1,where u2 + u − 1 ≡ 0 (mod N) for k = 1,

(
u u2+u−1

N
N u+ 1

)
∈ Γ0(N)

provides under Lorentz matrix multiplication,

∞ =
1

0
→ u

N
→ u− 1

N
→

u− 1
2

N
→

u− 2
3

N
→ . . .→

u− Fn
Fn+1

N
→ . . .

path in suborbital graph Fu,N .

Proof. (n+ 1)th vertex is obtained as follows where nth vertex is
u− Fn

Fn+1

N :(
u u2+u−1

N
N u+ 1

)
·L

(
u− Fn

Fn+1

N

)
=

(
−u(u− Fn

Fn+1
) +N(u

2+u−1
N )

−N(u− Fn
Fn+1

) +N(u+ 1)

)

=

(
−u2 + u Fn

Fn+1
+ u2 + u− 1

−Nu+N Fn
Fn+1

+Nu+N

)

=

(
u Fn
Fn+1

+ u− 1

N Fn
Fn+1

+N

)

=

(
uFn+2 − Fn+1

NFn+2

)

=

(
u− Fn+1

Fn+2

N

)

Example 3.7. If u = 2, N = 5 and k = 1, from Corollary 3.6.,

∞ =
1

0
→ 2

5
→ 1

5
→ 3

10
→ · · · →

2− Fn+1

Fn+2

5
→ . . .

is obtained.

Corollary 3.8. For (u,N) = 1, where u2 + u − 1 ≡ 0 (mod N) for k = 1 and α is golden ratio,(
u u2+u−1

N
N u+ 1

)
∈ Γ0(N) provides value of vertex as

u− 1
α

N for n→∞ under Lorentz matrix multipli-

cation in suborbital graph Fu,N .
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Proof. From Corollary 3.6.,

limn→∞
u− Fn

Fn+1

N =
u−limn→∞

Fn
Fn+1

N

=

u− 1

limn→∞
Fn+1
Fn

N

=
u− 1

α
N

Example 3.9. If u = 2, N = 5, k = 1, and α = 1.618 from Corollary 3.8.,

2− 1
1.618

5
= 0, 276

is obtained.

4. Conclusion

In this study, we especially examined suborbital graphs obtained by Lorentz matrix multiplication. It is
seen that Lorentz matrix which gave vertices that are obtained by classical matrix multiplication is not
an element of Modular group Γ. Moreover, we defined a matrix that is an element of Modular group Γ.
Furthermore, we investigated vertices, edges and path obtained under Lorentz matrix multiplication
by this matrix. It is indicated that vertices on the path provide the minimal length condition. The
vertices are associated with Fibonacci numbers for k = 1 and value of vertex is found for n→∞.
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