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Abstract. In this study, we interested in the compostions of integers. Then, the combinations of an integer whose
each part is odd were examined.

On = {(2a1 + 1, ..., 2at + 1) : 2a1 + 1 + ... + 2at + 1 = n and ai positive integer}.

and we call the set as an odd combination set On set of an integer n . Then, an action on the set are defined. Then,
the decomposition of the composition sets of a positive integer has been examined by using set theory. Then, we
also focused on the combination of an integer n whose sum is less than a fixed integer m. We have obtained the
composition set of an integer whose largest part is less than m. Using these sets, we obtained recurrence relations.
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1. Introduction

Partition Theory is an important area of additive number theory, a subject concerning the representation of integers
as sum of other integers. Recently, many researcher have written many publication on the theory of partition of a
number because the rich history of partition of a number has been gone back to not only to very famous mathematicians
Leonard Euler, but also Jacobi and also Indian mathematicians S. Ramanujan and English mathematicians G. H. Hardy
[7, 8, 10, 13, 15, 17, 20].

Partition of a positive integer is expressing that number as the sum of positive integers. The number of these parts
will be denoted by p(n). For a positive integer n, the partition function to be studied is the number of ways n can be
written as a sum of positive integers n.

Partition are divided into compositions and partitions. The commutative of the sums in partition is not important,
while the non-commutative of the sums in composition is important.

Example 1.1. The number 4 has 5 partitions and the number of compositions is 8.
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The set of partition of 5 is

{5; (4, 1); (3, 2); (3, 1, 1); (2, 2, 1); (2, 1, 1, 1); (1, 1, 1, 1)}

and 5 has 7 partitions.
The set of composition of 5 is

{5; (4, 1); (1, 4); (3, 2); (2, 3); (3, 1, 1); (1, 3, 1); (1, 1, 3); (2, 2, 1); (2, 1, 2);
(1, 2, 2); (2, 1, 1, 1); (1, 2, 1, 1); (1, 1, 2, 1); (1, 1, 1, 2); (1, 1, 1, 1)}

and 5 has 16 compositions.

2. Partitions

There is a lot of information about partitions in the literature. The expressions that will be used in our study from
this information are briefly summarized.

Euler investigated the generating function of the number of partitions of an integer n, as follows

f (x) =
∞∏

n=1

1
(1 − xn)

=

∞∑
n=0

p(n)xn,

where 0 < x < 1 [11].
After Euler’s iteration for the partition of an integer, many mathematicians worked to obtain a more efficient version

of the recurrence relation. The main purpose of the studies is to aim to reach the result by reducing the processes.
In studies conducted in this area, J.A.Ewell, M. Merca, B. Al, and M. Alkan ( [14, Theorem 1.2], [22, Theorem
1], [2, Theorem 2.4 and 2.5]) have obtained more effective recurrence relations.

As the studies on the partition theory progressed, new information was obtained by restricted partition. In the
literature, the restricted partitions are substantial as unrestricted partition of an integer [18, 19, 21].

From [11, page 309], we recall that the number of partitions of k into parts not exceeding m is denoted by pm(k)
for integers m, k. Then, pm(k) = p(k) for m ≥ k. It is clear that pm(k) is less than p(k) and the computation of pm(k)
is simpler for integers m, k. The generating function for the number of partitions of k into parts not exceeding m is
defined as

Fm(x) =
m∏

i=1

1
1 − xi = 1 +

∞∑
i=1

pm(i)xi.

In the literature, the restricted partitions are substantial as unrestricted partition of an integer [9, 23–25]. In [11], the
generating function of the number of partitions of an integer n into odd part is

∞∏
n=1

1
1 − x2n−1 =

∞∑
n=0

Q(n)xn.

The generating function of the number of partitions of an integer n into distinct odd parts is

∞∏
n=1

(1 + x2n−1) =
∞∑

n=0

Z(n)xn.

The integer 6 has the partition p(6) = 11. Since the number of partitions, which are all odd numbers (the ones with
odd partition are written in bold), is 4, Q(6) = 4 and the odd and irregular partition is 1 + 5, that is, Z(6) = 1. In order
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to see these three values together, if the number 6 is analyzed by breaking it down, it becomes

6
1 + 5
4 + 2
4 + 1 + 1
3 + 3
3 + 2 + 1
3 + 1 + 1 + 1
2 + 2 + 2
2 + 2 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1.

3. Compositions

While there is a lot of information about partitions in the literature, information about compositions is limited. One
of these information is the theorem that Gupta proved.

Theorem 3.1 ( [16]). , The number of partition of a composition of a positive integer n is 2n−1.

Proof. The partitions of n can be classified under two heads: Those in which the first part is 1; and those in which
the first part is > 1. Removing 1 (the first part), from each partition of n of the first kind, we obtain all the different
partitions of (n − 1), each once. Reducing by 1 the first part in the partitions of the second kind, we again get all the
partitions of (n− 1) as before. Hence, the number of partitions of n, is twice the number of partitions of (n− 1) and the
result follows readily by induction. □

We focus on decompositions of the composition sets. We recall some expressions from [1].
Let n be a positive integer and we define the set

Pn =
{
(a1, a2, ..., at) : a1 + a2 + ... + at = n, ai, t ∈ Z+

}
.

In fact, the element of Pn is a composition of integer n and so Pn is the set of a composition of an integer n.
Now, we want to construct Pn+1 by using Pn. First, we define operations with the a composition a = (a1, a2, ..., at)

of integer n;
(1 ⊙ a) = (1, a1, a2, ..., at) ,

(1 ⊕ a) = (a1 + 1, a2, ..., at) .
Then, 1 ⊕ a, 1 ⊙ a ∈ Pn+1 and sowe also use the notaions 1 ⊕ Pn, 1 ⊙ Pn for the set of new type elements, i,e;

1 ⊕ Pn = {1 ⊕ a : a ∈ Pn}

1 ⊙ Pn = {1 ⊙ a : a ∈ Pn}.

Example 3.2. The number 3 has 4 compositions.The set of composition of 3 is {3; (1, 2); (2, 1); (1, 1, 1)}.Thus

1 ⊕ P3 = {4; (2, 2); (3, 1); (2, 1, 1)},

1 ⊙ P3 = {(1, 3); (1, 1, 2); (1, 2, 1); (1, 1, 1, 1)}.

Theorem 3.3 ( [1]). , For a positive integer n, we have

Pn+1 = (1 ⊕ Pn) ∪ (1 ⊙ Pn).

Example 3.4.
1 ⊕ P3 = {4; (2, 2); (3, 1); (2, 1, 1)},

1 ⊙ P3 = {(1, 3); (1, 1, 2); (1, 2, 1); (1, 1, 1, 1)}.
Thus,

(1 ⊕ P3) ∪ (1 ⊙ P3) = {4; (2, 2); (3, 1); (2, 1, 1)} ∪ {(1, 3); (1, 1, 2); (1, 2, 1); (1, 1, 1, 1)}
= P4.

We can give an alternative proof with Theorem 3.3 for the theorem that Gupta proved.
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Theorem 3.5. The number of a composition of an integer n (n > 1) is 2n−1.

Proof. Let n be a positive integer. It is clear that, the number of element of both (1 ⊕ Pn) and (1 ⊙ Pn) are equal, i.e.
(|1 ⊕ Pn| = |1 ⊙ Pn| and so |Pn+1| = 2 |1 ⊙ Pn|. Since |P2| = 2, we have that |Pn+1| = 2n by induction metod [3]. □

In [5], we generated the formula that gives the composition number of n patches consisting of m parts.

Theorem 3.6. Number of k decompositions of n positive integers, where k and n are positive integers

Pk(n) =
(n − 1)!

(n − k)!(k − 1)!
.

By using the non commutative partition set of an integer n, we define the notation ā = a1.a2.a3...at for multiplication
of summand where n = a1 + ... + at. The sum of multiplication of summand in the non commutative partition set Pn

define the function from the non commutative partition sets of integers to to positive integers defined by

Tn := T (Pn) =
∑
a∈Pn

ā.

We may assume that, T0 = 1 and Tn = T (Pn) is called the multipliction sum of the non commutative partition set
Pn (or the multipliction sum of the integer n) [3]. It is well known that the number element of the non commutative
partition set Pn is 2n and now our aims are to investigate both the number element of the non commutative partition
subset of Pn and the multipliction sum of the non commutative partition subset of Pn. For new notions, we state an
easy numeric example;

Example 3.7. For n = 3, we have P3 = {(3), (1, 1, 1), (1, 2), (2, 1)} and T3 = T (P3) = 8.Moreover, it follows

1 ⊙ P3 = {(1, 3), (1, 1, 1, 1), (1, 1, 2), (1, 2, 1)}

1 ⊕ P3 = {(4), (2, 1, 1), (2, 2), (3, 1)}
and so P4 = (1 ⊙ P3) ∪ (1 ⊕ P3). Then, T4 = T (P4) = 13.

By Theorem 3.3, we obtain a recurance for the multipliction sum of the non commutative partition sets;

Theorem 3.8 ( [6]). For a positive integer n, we have

Tn+1 = Tn +

n∑
i=0

Tn−i. (3.1)

Proof. For an element a ∈ Pn+1, there is b = (b1, b2, ..., bl) ∈ Pn such that either a = 1 ⊙ b = b or a = 1 ⊕ b and so
a = 1 ⊙ b = b or a = 1 ⊕ b = (b2....bl) + b. Hence, we have that

T (1 ⊙ Pn) =
∑

1⊙b∈1⊙Pn

b = Tn.

Moreover, it follows that

T (1 ⊕ Pn) =
∑
a∈Pn

(1 + a1).a2.a3...at

=
∑
a∈Pn

(a1.a2.a3...at) +
n∑

i=1

∑
(a2.a3...at)∈Pn−i

(a2a3...at)

= Tn +

n∑
i=1

Tn−i =

n∑
i=0

Tn−i.

Therefore, we have that

Tn+1 = T (Pn+1) = T (1 ⊙ Pn) + T (1 ⊕ Pn) = Tn +

n∑
i=0

Tn−i.

Hence, we have completed the proof. □

By using Equations (4.1), (3.1) and the induction method, we obtain the generating function for Tn.
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Theorem 3.9 ( [6]). The generating function of Tn for a positive integer n is∑
n=0

Tnxn =
x

1 − 3x + x2.

Proof. Let h(x) =
∑

n=1 Tnxn. Then,

h(x) =
∑
n=1

Tnxn = T1x +
∑
n=2

Tnxn

= x + x
∑
n=1

Tn +

n∑
i=0

Tn−i

 xn

= x + xh(x) + x

T1x + T0x +
∑
n=2

n∑
i=0

Tn−ixn


= x + xh(x) + x

2x +
∑
n=1

n+1∑
i=0

Tn+1−ixn+1


= x + xh(x) + 2x2 + x

∑
n=1

Tn+1xn+1 + x
∑
n=1

n∑
i=0

Tn−ixn+1

= x + xh(x) + 2x2 + x
∑
n=1

Tn+1xn+1 + x
∑
n=1

(Tn+1 − Tn) xn+1

= x + xh(x) + 2x2 − x2h(x) + 2x
∑
n=2

Tnxn

= x + xh(x) − x2h(x) + 2xh(x).

Thus,
h(x) =

x
1 − 3x + x2 .

Hence, we have completed the proof. □

It is well known that the generating function for even Fibonacci number is x
1−3x+x2 .

Theorem 3.10. For any positive integer, we have that Tn = f2n .

4. The Odd Combinations Set of An Integer

Now, we focus on the combinations of an integer whose each part is odd. We will examine odd compositions with
set theory. Let us use the notion

On = {(2a1 + 1, ..., 2at + 1) : 2a1 + 1 + ... + 2at + 1 = n and ai positive integer}

and we call the set as an odd combination set On set of an integer n. It is clear that, the even combination set of an
even integer 2n involved to the combination set of an integer n and so the number of element of the even combination
set of 2n is 2n−1. Now, we try to decompose the odd combination set as union of subset of odd combinations set of
integers.

Theorem 4.1 ( [6]). For a positive integer n, we get the decomposition of an odd combination of an integer n as a
disjoint union of subset of odd combinations set of integers;

O2n+1 = {(2n + 1)} ∪
n−1⋃
i=0

(
(2i + 1) ⊙ O2(n−i)

)
O2n =

n−1⋃
i=0

(
(2i + 1) ⊙ O2(n−i)−1

)
.

Proof. It is enough to show that, one inclusion for the odd number n = 2k + 1, where k an integer. Let x = (2a1 +

1, ..., 2at + 1) and assume that t is different from 1. Then, n − 2a1 − 1 = 2m for an integer even and so the element
b = (2a2 + 1, ...2at + 1) is O2m. Therefore, x = (2a1 + 1) ⊙ O2n−2a2 and this complete the proof. □



A Note on the Composition of a Positive Integer Whose Parts are Odd Integers 428

Corollary 4.2. The number kn of element of the odd combination set of an integer is the nth Fibonacci number.

Proof. By Theorem 4.1, it is easy to prove that kn+1 = kn + kn−1 and k0 = 0, k1 = 1. □

Using Theorem 4.1, it is easy to reprove the well known identities

f2n+1 = 1 +
n∑

i=1

f2i (4.1)

and

f2n =

n−1∑
i=0

f2i+1

for both the even and odd Fibonacci number.
In [6], we investigated the product sum of an odd combination of an integer n, i.e.,

on :=
∑
a∈On

ā.

One may compute the sequence as

o1 = 1, o2 = 1, o3 = 4, o4 = 7, o5 = 15, o6 = 32,
o7 = 65, o8 = 137, o9 = 284, o10 = 591, o11 = 1231...

Theorem 4.3 ( [6]). The generating function for the product sum of an odd composition sets is

o(x) = 1 + x2 (x + 1)
−2x + x2 − 1

x + 2x2 + x3 − x4 − 1
,

where |x| < 1.

Proof. [6], we have the recurrence relations for either an even or an odd term of the product sum of an odd composition
of an integer, for an integer n,

o2n+3 = 3o2n + 3o2n+1 − o2n−2 (4.2)
o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2. (4.3)

Let o(x) =
∞∑

n=1
onxn = 1+

∞∑
n=1

o2nx2n+
∞∑

n=1
o2n+1x2n+1 be the generating function for the product sum of an odd composition

of integers and so it is enough to investigate

A(x) =
∑
n=1

o2nx2n

B(x) =
∞∑

n=1

o2n+1x2n+1.

By using the recurrence identity (4.2), it is easy to compute that

(1 − 3x2)B(x) = x3(3 − x2)A(x) + 4x3. (4.4)

Similarly, it is also easy to compute

A(x) =
x
(
x2 + 1

)
(
x2 − 1

)2 B +
x2
(
x2 + 1

)
(
x2 − 1

)2 , (4.5)

due to the recurrence identity (4.3). Then, combining the equations (4.4) and (4.5), we figure out both A and B and so
it follows that

B(x) = −x3 5x2 − 6x4 + x6 − 4(
x + 2x2 + x3 − x4 − 1

) (
x − 2x2 + x3 + x4 + 1

) ,
A(x) = x2

(
x2 + 1

)2(
x − 2x2 + x3 + x4 + 1

) (
−x − 2x2 − x3 + x4 + 1

) .
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Therefore, we investigate the generating function

o(x) = 1 + x2 (x + 1)
−2x + x2 − 1

x + 2x2 + x3 − x4 − 1
.

□

Now, we focus on the composition of an integer n whose summands less than the fix integer m = 2t + 1. We
recall some expressions from [4]. For positive integer n,t; we use the notation the subset On,2t+1 of On for the biggest
summand 2t + 1 of odd composition of n, i.e.,

On,m =
{
(2a1 + 1, 2a2 + 1, ..., 2ak + 1) : 2(a1 + ... + ak) + k = n, ai ≤ m for all i, and k ∈ Z+

}
.

When n ≤ m, it is clear that On,m = On. And again, if m = 2l by definition, On,m = On,2t.
We will now define a new notation to derive the recurrence relation, which gives parts of the odd compositions of

the positive integer n, the largest summand of which is m.
First, we define notation with the a composition b = (2b1 + 1, 2b2 + 1, ..., 2bk + 1) of integer n, i;

(i ⊙ b) = (i, 2b1 + 1, 2b2 + 1, ..., 2bk + 1) ,

Then, i ⊙ b ∈ On+i and sowe also use the notaion i ⊙ On for the set of new type elements, i,e;

i ⊙ On = {i ⊙ b : b ∈ On}.

Example 4.4. The set of composition of 5 is

{5; (4, 1); (1, 4); (2, 3); (3, 2); (3, 1, 1); (1, 3, 1); (1, 1, 3); (2, 2, 1); (2, 1, 2);
(1, 2, 2); (2, 1, 1, 1); (1, 1, 1, 2); (1, 2, 1, 1); (1, 1, 2, 1); (1, 1, 1, 1, 1)}

and 5 has 16 compositions. The set of odd composition of 5 is

{5; (3, 1, 1); (1, 3, 1); (1, 1, 3); (1, 1, 1, 1, 1)}.

The set of odd compositions of the

O5,3 = {5; (3, 1, 1); (1, 3, 1); (1, 1, 3); (1, 1, 1, 1, 1)}.

Lemma 4.5 ( [6]). For positive integers t, n,

On,m =

t⋃
i=0

(
(2i + 1) ⊙ On−2i−1,m

)
.

Proof. Because of the definition of On,m, summands of the compositions in the set must be odd positive integers. When
obtaining On,m, the largest summand must be m. The sum of the remaining summands of the composition whose first
summand is m must be n−m. And again, since these summands will be at largest m, the expression becomes m⊙On−m,m.
The proof is completed. □

Example 4.6. For n = 7 and t = 2,

O7,5 =

2⋃
i=0

(
(2i + 1) ⊙ O6−2i,5

)
= (1 ⊙ O6,5) ∪ (3 ⊙ O4,5) ∪ (5 ⊙ O2,5)

considering the

O6,5 = {(5, 1); (3, 3); (3, 1, 1, 1); (1, 5); (1, 3, 1, 1); (1, 1, 3, 1); (1, 1, 1, 3), (1, 1, 1, 1, 1, 1)} ,

O4,5 = O4 = {(3, 1); (1, 3); (1, 1, 1, 1)}

and
O2,5 = O2 = {(1, 1)}

sets results in

O7,5 =

{
(5, 1, 1); (3, 3, 1); (3, 1, 3); (3, 1, 1, 1, 1); (1, 5, 1); (1, 1, 5); (1, 3, 3);

(1, 3, 1, 1, 1), (1, 1, 3, 1, 1); (1, 1, 1, 3, 1); (1, 1, 1, 1, 3); (1, 1, 1, 1, 1, 1, 1)

}
.
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Now, we investigate the product sum of an odd compositions of the positive integer n, the largest summand of which
is m, i.e.,

on,m :=
∑

a1+a2+...+ak=n
ai≤m

a1.a2.....ak,

where i,m, k ∈ Z+.We may assume that, on,m = 0 for non-positive integers n. It is clear that, on,m = on when n ≤ m.

Example 4.7. For n = 4 and m = 5,

o4,5 = 3.1 + 1.3 + 1.1.1 = 7.

Theorem 4.8. For an intergers n, t with 1 < n, we have that

on,m =

t∑
i=0

(2i + 1)on−2i−1,m. (4.6)

on,m = on−2,m + on−1,m − m.on−2t−3,m + 2
t∑

i=1

on−2i−1,m. (4.7)

Proof. For the equation (4.6) is proof,

On,m =

t⋃
i=0

(
(2i + 1) ⊙ On−2i−1,m

)
.

Then, we obtained from the sum of products function

on,2t+1 =

t∑
i=0

∑
b∈On−2i−1,2t+1

(2i + 1).
b̄︷      ︸︸      ︷

a1.a2.....ak

= 2
t∑

i=0

i
∑

b∈On−2i−1,2t+1

b̄ +
t∑

i=0

∑
b∈On−2i−1,2t+1

b̄

= 2
t∑

i=0

i.on−2i−1,2t+1 +

t∑
i=0

on−2i−1,2t+1

=

t∑
i=0

(2i + 1).on−2i−1,2t+1.

Thus, the proof of equation (4.6) is completed. For equation (4.7) is proof;

on−2,2t+1 =

t∑
i=0

(
(2i + 1).on−2i−3,2t+1

)
=

t+1∑
i=1

(
(2i − 1).on−2i−1,2t+1

)
=

t+1∑
i=1

2i.on−2i−1,2t+1 −

t+1∑
i=1

on−2i−1,2t+1.
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After some elementary calculations,

on−2,2t+1 =

t+1∑
i=1

2i.on−2i−1,2t+1 +

t+1∑
i=1

on−2i−1,2t+1 −

t+1∑
i=1

on−2i−1,2t+1 −

t+1∑
i=1

on−2i−1,2t+1

=

t∑
i=0

(2i + 1).on−2i−1,2t+1 + (2t + 3).on−2t−3,2t+1 − on−1,2t+1 − 2
t+1∑
i=1

on−2i−1,2t+1

= on,2t+1 + 2t.on−2t−3,2t+1 + 3on−2t−3,2t+1 − on−1,2t+1 − 2on−2t−3,2t+1 − 2
t∑

i=1

on−2i−1,2t+1

= on,2t+1 − on−1,2t+1 + (2t + 1).on−2t−3,2t+1 − 2
t∑

i=1

on−2i−1,2t+1.

Then,

on,2t+1 = on−2,2t+1 + on−1,2t+1 − (2t + 1).on−2t−3,2t+1 + 2
t∑

i=0

on−2i−1,2t+1.

□

Example 4.9. Because of the equation (4.5) for n = 7 and t = 2, the following was obtained:

O7,5 =

2⋃
i=0

(
(2i + 1) ⊙ O6−2i,5

)
= (1 ⊙ O6,5) ∪ (3 ⊙ O4,5) ∪ (5 ⊙ O2,5),

O6,3 =

1⋃
i=0

(
(2i + 1) ⊙ O5−2i,3

)
= (1 ⊙ O5,3) ∪ (3 ⊙ O3,3),

O7,3 =

1⋃
i=0

(
(2i + 1) ⊙ O6−2i,3

)
= (1 ⊙ O6,3) ∪ (3 ⊙ O4,3).

From equation (4.6), o7,5 = 58, o6,3 = 22 and o7,3 = 43 are obtained.
To compute on,m, we use equation (4.7), in the following. For n = 7 and t = 2,

o7,5 = o6,5 + o5,5 − 5.o2,5 + 2(o4,5 + o2,5)
= 32 + 15 − 5.1 + 2.8
= 58.

For n = 6 and t = 1,

o6,3 = o4,3 + o5,3 − 3.o1,3 + 2o3,3

= 7 + 10 − 3.1 + 2.4
= 22.

For n = 7 and t = 1,

o7,3 = o6,3 + o5,3 − 3.o2,3 + 2o4,3

= 22 + 10 − 3.1 + 2.7
= 43.
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