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Abstract: This study aims to conduct a comparative study of Bagging and 

Boosting algorithms among ensemble methods and to compare the classification 

performance of TreeNet and Random Forest methods using these algorithms on the 

data extracted from ABİDE application in education. The main factor in choosing 

them for analyses is that they are Ensemble methods combining decision trees via 

Bagging and Boosting algorithms and creating a single outcome by combining the 

outputs obtained from each of them. The data set consists of mathematics scores of 

ABİDE (Academic Skills Monitoring and Evaluation) 2016 implementation and 

various demographic variables regarding students. The study group involves 5000 

students randomly recruited.  On the deletion of loss data and assignment 

procedures, this number decreased to 4568. The analyses showed that the TreeNet 

method performed more successfully in terms of classification accuracy, 

sensitivity, F1-score and AUC value based on sample size, and the Random Forest 

method on specificity and accuracy. It can be alleged that the TreeNet method is 

more successful in all numerical estimation error rates for each sample size by 

producing lower values compared to the Random Forest method.  When comparing 

both analysis methods based on ABİDE data, considering all the conditions, 

including sample size, cross validity and performance criteria following the 

analyses, TreeNet can be said to exhibit higher classification performance than 

Random Forest. Unlike a single classifier or predictive method, the classification 

or prediction of multiple methods by using Boosting and Bagging algorithms is 

considered important for the results obtained in education. 

1. INTRODUCTION 

The retrieval of information that needs to be obtained in order to make speculations concerning 

an event or situation from a community instead of a single person definitely provides the 

opportunity to make stronger inferences with poorer error rate. In the daily life as well, the 

attempt to obtain a greater deal of information that can be gained regarding an event or situation, 

and the overall evaluation of the collected data, is ultimately the result of attempting to reach a 

more precise conclusion. However, during a decision phase yielding important results, the 

opinions of experts who are thought to help make decisions are consulted. For example, the 

opinions of several specialists are asked before a life- threatening operation. In addition, 

ensemble- based decision- making processes are also administered to elect a manager or to 
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decide on a new law (Polikar, 2012). Likewise, ensemble methods performs analysis methods 

and, in this respect, it has received increasing attention in recent years with its use with various 

multiple classification systems, data mining methods and machine learning algorithms (Do-

Nascimento et al., 2019; Lee et al., 2010; Zhang & Ma, 2012). The methods that were initially 

used to reduce the variance of classification and predictive analyses and to increase the accuracy 

of classification were then successfully utilized for various purposes such as feature selection 

and the determination of confidence interval (Abeel et al., 2010; Kumari, 2012; Saeys et al., 

2008; Zhang & Ma, 2012). 

Technological advancement and novel statistical algorithms have allowed for a better 

understanding of data mining and improved its use. The emergence and development of 

ensemble learning in the last quarter can be regarded as a reflection of this process. On account 

of the combination of basic statistical methods to generate ensemble learning methods, the 

results with high classification success and precise prediction as well as low error variance have 

been obtained (Bauer & Kohavi, 1999; Hansen & Salamon, 1990; Onan, 2015; Opitz & Shavlik, 

1996; Polikar, 2006; Sagi & Rokach, 2018) and, in this respect, its use has recently increased 

in various areas such as health, economy, banking, agriculture, engineering, business and 

education (Akman, 2010; Şevgin & Önen 2022). 

There have been several studies employing ensemble methods encountered in the literature 

(Abidi et al., 2020; Baskin et al., 2017a; Baskin et al., 2017b; Dietterich, 2000; Dietterich, 2002; 

Freund & Schapire, 1996; Friedman, 2001; Kapucu & Cubukcu, 2021; Kausar et al., 2020; Li 

et al., 2022; Mousavi & Eftekhari, 2015; Pong-Inwong & Kaewmak, 2016; Steinki & 

Mohammad, 2015; Wang et al., 2018). It is worth noting that the researchers who conduct 

studies on data mining and machine learning have fallen behind in discovering the success of 

Ensemble-based learning methods in terms of classification and prediction-based decision- 

making (Polikar, 2012). Nevertheless, with the studies carried out in recent years, it has been 

seen that a great deal of knowledge and literature have been obtained especially in the field of 

education (Abdar et al., 2018; Abellán & Castellano, 2017; Aggarwal et al., 2021; Almasri et 

al., 2019; Ashraf et al., 2021; Ashraf et al., 2020; Arun et al., 2021; Guo et al., 2021; Karalar et 

al., 2021; Keser & Aghalarova, 2022; Kotsiantis et al., 2010; Injadat et al., 2020a; Injadat et al., 

2020b; Premalatha & Sujatha, 2021). This comparative study focusing on Bagging and 

Boosting (Akman, 2010; Zhou, 2012) algorithms that are the most well-known Ensemble 

methods may contribute to the literature and, particularly the field of educational data mining, 

in order to list and utilize the concept of Ensemble Learning and its methods among advanced 

statistical methods in the field of education.                 

In the field of education, both in the phase of various and big data processing that poses 

opportunities for the construction of education within the Ministry and in the analysis process 

of multidimensional, complicated and noisy data obtained from students and teachers through 

large- scale tests, it is of importance to achieve strong and non-deviating outputs. Indeed, the 

use of ensemble methods can be considered as flexibility (Strobl et al., 2009) for the data 

analysis in the noisy data by its nature that we often call traditional which do not provide various 

assumptions required for the parametric methods. Thus, the achievement of the output with 

lower error variances in the field of education can be contributed. Considering the situations 

where decisions regarding students such as fail- pass or successful- unsuccessful are made or 

variables that affect student achievement are examined, the realization of analyses with high 

classification and prediction success and poor error rate may ensure the results in terms of high 

classification/ decision validity. It is clear that the use of ensemble methods in education serves 

to obtain results with high classification and prediction success and to gain results with high 

classification/ decision validity. Therefore, it is considered important to utilize ensemble 

methods to obtain evidence concerning classification/ precision validity in the procedures to be 

performed for classification and prediction. 
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1.1. Ensemble Learning 

Recently, in the process of statistically synthesizing the data obtained through scientific 

research, the idea of combining multiple methods to produce a new model based on 

classification or prediction has been emphasized by the researchers and been the subject of 

publications in recent years. Tukey is the first researcher who has introduced the concept of 

ensemble learning (1977) where he had used linear regression model to fit the original data as 

first step and then again linear regression model to fit the residual as a second step (Sagi & 

Rokach, 2018). Later, in the 1990s, Hansen and Salamon shared the outputs of neural network 

ensembles. In addition, in 1996, Breiman first proposed ideas for the Bagging algorithm and in 

the same year, Freund and Schapire came up with the first boosting algorithm. Subsequently, 

the AdaBoost algorithm was introduced by Freund and Schapire (1996) as a result of combining 

multiple weak classifiers to build one strong classifier. Moreover, certain studies on the 

development of ensemble methods using boosting algorithms such as Gradien Boosting 

presented by Friedman et al. (2000) and Multiple Additive Regression Trees (MART) proposed 

by Friedman and Meulman (2003) have been encountered. In the meantime, numerous 

ensemble methods which perform ensemble learning by using Bagging and Boosting 

algorithms have been developed (Kumari, 2012; Polikar, 2006; Schapire, 2003; Zhou, 2012).  

The fact that the information is obtained from the narration of more than one person who 

witnessed the same event rather than of a person, in other words, the information gathered from 

ensembles provide more reliable results with high accuracy. Learning in this way is called 

ensemble learning (Polikar, 2012). Similarly, the combination of the predictions of several base 

estimators is generally better than the prediction of one best predictor. A group of predictive 

methods is gathered under the title of Ensemble and the process of making predictions from the 

ensemble is called Ensemble Learning (Geron, 2019). To sum, Ensemble methods can be 

considered as the combination of multiple methods to produce outputs with higher success 

(Quinlan, 1996), that is outputs with higher levels of reliability (Akman, 2010; Maclin & Opitz, 

1997) in contrast to the outputs based on classification and prediction obtained from single 

methods. These methods, combined together to give an ensemble, can be a decision tree 

(C&RT, C5, CHIAD, ID3, QUEST) as well as such methods as MARS, YSA, SVA (Chen & 

Guestrin, 2016; Clarke et al., 2009; Freund & Schapire, 1996; Friedman, 2001; Friedman & 

Meulman, 2003; Quinlan, 1996; Sutton, 2005; Zhou, 2012). The algorithms that combine these 

methods and give an ensemble are Boosting, Bagging, Stacking, Max Voting, Averaging, 

Weighted Averaging and Blending algorithms (Baskin et al. 2017a; Zhang & Ma, 2012; Zhou, 

2012). Of these algorithms, Bagging and Boosting are the most elaborated and known ensemble 

learning algorithms (Akman, 2010; Zhou, 2012). Within the scope of this study, Bagging and 

Boosting algorithms are included.                  

As stated above, although Bagging and Boosting algorithms can be applied to several methods, 

it has been seen that they are mostly used together with decision trees in the literature. In certain 

sources, however, ensemble methods are referred as Tree- based Ensemble Methods (Akman, 

2010). The TreeNet method, which creates ensembles using classification and regression trees 

(C&RT) with the boosting algorithm, and the Random Forest (Breiman, 2001), which creates 

ensembles using C&RT with the bagging algorithm, are included in the present study. In certain 

sources, although Random Forest is considered as an Ensemble method independently due to 

the fact that it creates random subspaces to do a random selection of a subset of features to use 

to grow each tree (Geron, 2019; Han et al., 2012), it is also included in the Bagging title since 

it utilizes Bagging algorithm in the formation of ensemble (Clarke et al., 2009; Nisbet et al., 

2009). Hastie et al. (2009) stated that Random Forest method was a modification of the Bagging 

algorithm. The main factor choosing TreeNet and Random Forest methods for the current study 

is that both methods are Ensemble methods that combine single decision trees (classification 

and regression trees - C&RT) with Bagging and Boosting algorithms and combine the outputs 



Int. J. Assess. Tools Educ., Vol. 10, No. 3, (2023) pp. 544–562 

 547 

obtained from each of them into a single output. An example representing the working principle 

of ensemble methods is presented in Figure 1 below: 

Figure 1. The illustration of the working principle of Ensemble Model 

 

 

In Figure 1, the value of each tree is combined to produce the final value of the ensemble. The 

combination process differs since Bagging and Boosting algorithms use their own techniques. 

During the consolidation process, boosting algorithm iteratively constructs a series of decision 

trees being trained whereas Bagging algorithm consists of simple random sampling with 

replacement. These algorithms and the analyses that use them are respectively elaborated 

below. 

1.1.1. Boosting 

In Boosting algorithm, each model is constructed on the incorrectly predicted data of the 

previous model (Friedman, 2001). In other words, each model learns from the errors of the 

previous model. This is realized by weighting the data points and the whole process continues 

sequentially (Friedman & Meulman, 2003). Then, the weak learners are eliminated one by one 

and the strong learner is reached (Polikar, 2012). The last model is yielded from the weighted 

average of all models (Zhou, 2012). 

Boosting algorithm [Rokach (2019)]. 

Input: I (a weak inducer), S. (a training set) and k (the sample size for the first classifier) 

Output: M1, M2, M3 

1: S1 ← Randomly selected k < m instances from S without replacement; 

2: M1 ← I (S1) 

3: S2 ← Randomly selected instances (without replacement) from S - S1 such that half of them 

are correctly classified by M1. 

4: M2 ← I (S2) 

5: S3 ← any instances in S - S1 - S2 that are classified differently by M1 and M2.  

As shown above, boosting algorithm has an iterative characteristic. The algorithm generates 

three classifiers. The sample S1, which is used to train the first classifier M1, is randomly 

selected from the original data set. The second classifier, M2, is trained on a sample M2, half of 

which consists of instances that are incorrectly classified by M1, and the other half is composed 

of instances that are correctly classified by M2. The last classifier, M3, is trained with instances 

that the two previous classifiers disagree on (Rokach, 2019).    

The error rate of the Mi model is calculated using the given the formula below:  

𝑒𝑟𝑟𝑜𝑟(𝑀𝑖) = ∑ 𝑤𝑗 × 𝑒𝑟𝑟𝑜𝑟(𝑋𝑗)𝑑
𝑗=1                         (1) 
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In this equation, error (Xj) is the classification error of Xj. If the group is incorrectly classified, 

error (Xj) = 1, otherwise it is 0 (zero) (Han et al., 2012). If the performance of the classifier, 

Mi, is poor, the classification error exceeds 0.5, in which case Mi is abandoned. Instead, the 

operation is retried by generating a new Si training data (Han et al., 2012). The error rate of Mi 

affects the updating of the weights of the training set. If the observations are correctly classified, 

the weighting of observations is multiplied by the value obtained from the equation below:     

𝑒𝑟𝑟𝑜𝑟(𝑀𝑖)

(1−𝑒𝑟𝑟𝑜𝑟(𝑀𝑖)
              (2) 

When the weights of all correctly classified observations are updated, the weights of all 

observations (including those that are incorrectly classified) are normalized so that their sum 

remains the same as before. As a result, the weights of misclassified observations are increased 

and the weights of correctly classified observations are reduced. The lower the error rate is for 

a classifier, the higher the accuracy rate is (Han et al., 2012). The weight calculated for each Mi 

classifier is represented by the equation below:   

𝑙𝑜𝑔
1−𝑒𝑟𝑟𝑜𝑟(𝑀𝑖)

𝑒𝑟𝑟𝑜𝑟(𝑀𝑖)
             (3) 

Based on boosting algorithm, various alternatives such as AdaBoost (Adaptive Boosting – 

Freund & Schapire, 1996), Gradient Boosting (Friedman, 2001), XGBoost (Chen & Guestrin, 

2016) have been developed to determine the weights used in the training and classification 

phases of the boost iteration. However, AdaBoost and Gradient Bosting are commonly used 

algorithms (Sinharay, 2016). 

1.1.2. Bagging 

Bagging is an abbreviation for Bootstrap-Aggregating. It was first proposed by Leo Breiman in 

1996. It is a simple, yet effective method for generating an ensemble of classifiers. The 

ensemble classifier that is created by this method consolidates the outputs of various learned 

classifiers into a single classification and this results in a classifier whose accuracy is greater 

than the accuracy of each individual classifier (Rokach, 2019). Bootstrap in the bagging 

algorithm is represented as resampling (Breiman, 1996). In this method, each classifier in the 

ensemble is trained on a sample of instances taken with replacement (allowing repetitions) from 

the training set. All classifiers are trained using the same learning algorithm. Therefore, some 

of the original instances may appear more than once in a training set, and some may not be 

included at all (Efron & Tibshirani, 1993). 

Bagging Algorithm [Rokach (2019)]. 

Input: I (a base inducer), T (the number of iterations), S (the original training set), µ (the sample 

size). 

1: t ← 1 

2: Repeat 

3: St ← a sample of µ instances from S with replacement.  

4: Construct classifier Mt using I, with St as the training set.   

5: t ← t + 1 

6: until t > T 

The Bagging algorithm works as shown above. The classifiers are all trained using the same 

learning algorithm. The algorithm receives an induction algorithm ‘I’ which is used for training 

all members of the ensemble. The stopping criterion in line six terminates the training when the 

ensemble size reaches ‘I’. One of the main advantages of bagging is that it can be implemented 
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easily in a parallel mode by training the various ensemble classifiers on different processors 

(Rokach, 2019).   

The most important feature that distinguishes the Bagging algorithm from the Boosting 

algorithm is that sampling with replacement is used. That is, it is likely to use a sample more 

than once in the Bagging algorithm. However, in Boosting algorithm, the sample that has been 

used is not used again. The common feature of the Bagging and Boosting algorithms is that in 

both algorithms, they generate the last classifier through multiple voting for classification 

models, and the last estimator through the average of parameter estimates for regression models 

(Ferreira & Figueiredo, 2012). In this respect, it has been considered important in terms of using 

the data obtained in the field of education in the analysis of classification and prediction. 

Besides, unlike the results obtained by a single method, the use of results obtained through more 

than one method has also been regarded noteworthy in terms of the reliability and validity of 

the results obtained. Finally, it has been thought that it may contribute to the field in terms of 

using novel methods built on Bagging and Boosting algorithms in education. In fact, it has been 

seen that both the Boosting and Bagging algorithms are included in certain studies conducted 

in the field of education. However, this study is remarkable in terms of the fact that it elaborates 

the concept of ‘Ensemble Learning’ entitled under data mining and machine learning and 

compares the methods based on the most known algorithms, Bagging and Boosting, on the data 

in the field of education. Therefore, “The purpose of the study is to conduct a comparative study 

of Bagging and Boosting algorithms among ensemble methods and to examine the 

classification performance of both methods on the data obtained in the field of education 

through TreeNet and Random Forest”. To this end, answers to the following questions have 

been sought:       

1) Do the performance measurements of TreeNet and Random Forest methods using Bagging 

and Boosting algorithms obtained according to each sample size based on 3,5 and 10-fold cross 

validity on the ABİDE data using Bagging and Boosting algorithms differ?   

2) Is there a difference between TreeNet and Random Forest method using Bagging and 

Boosting algorithms on the ABİDE data based on the comparison of RMSE, MSE, MAD and 

MRAD values? 

2. METHOD 

The study was designed with quantitative research and a relational survey model was used with 

a descriptive approach. The relational model allows researchers to obtain information regarding 

a large group by examining a sample (Leedy & Ormrod, 2005). 

2.1. Data Set 

The data set of the study consists of mathematics scores of ABIDE (Academic Skills 

Monitoring and Evaluation) 2016 administered to 8th grade students. ABIDE implementation 

includes Turkish, Mathematics, Science and Social Studies achievement tests prepared for 8th 

grade students. However, the Mathematics achievement test was focused in the current 

research. For the data of 5000 students randomly recruited from the data set, data deletion was 

carried out for the demographic data and the values were assigned to the obtained from the 

scales through (MCAR) regression since it is below %5 for the loss data (Tabachnick & Fidell, 

2015). As a result of the deletion of loss data and assignment procedures, this number decreased 

to 4568. The dependent variable (students’ maths achievement), which is a continuous variable, 

was dual-categorized by considering the first quarter of %25 (low maths achievement) and the 

fourth quarter of %25 (high maths achievement). 2284 (1034 female and 1250 male) students, 

1142 in the first quarter and 1142 in the fourth quarter, constitute the sample of the study. Those 

in the first quarter with maths scores between 343,10- 440,14 refer to the students with low 
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maths achievement whereas those in the fourth quarter with maths scores between 556,62- 

776,02 refer to the students with high maths achievement. 

2.1.1. Measurement tools 

The current research consists of mathematics achievement test in ABİDE implementation, 

demographic information collected by student survey and the variables collected at the scale 

level that are the attitude towards the school, peer bullying, parental approach, liking of 

mathematics course, self-efficacy perception towards the mathematics course, the value given 

to the mathematics course and teacher’s instructional activities.  

Prior to the data analysis through ensemble methods, the reliability, validity and multiple 

connection problems of the scales used in the research were examined. With the purpose of 

determining the reliability coefficient, McDonald’s (ω) reliability index was employed instead 

of Chronbach Alpha reliability index due to the fact that the factor loads of the items were not 

equal (Yurdugül, 2006). McDonald’s (ω) reliability index of the scales ranged from 0.77 

(parental approach) the lowest to 0.94 (teacher’s instructional activities) the highest and these 

values can be said to be at acceptable levels. In order to prove the validity of the scale, 

exploratory factor analysis was performed and it was found that each scale had one dimensional 

and that factor loads of the items varied between 0.369 the lowest and 0.875 the highest. Since 

the factor loads related to the items are above the acceptable minimum value, 0.30 (Çokluk et 

al., 2012), it can be said that they are above the acceptable value. Moreover, Tolerance and VIF 

values were examined for multi connection problem, and it was revealed that Tolerance values 

ranged between 0.520 and 0.916 and VIF values varied between 1.091and 1.922. Since these 

values are higher than 0.100 for Tolerance and lower than 10 for VIF (Schroeder et al., 1990), 

it can be stated that there is no multi connection problem. 

2.2. Data Analysis 

In the research, the data set was divided into four data sets as 250, 500, 1000 and 2000 in terms 

of sample size through simple random sampling without replacement. The observations in each 

data set were assigned to the data set in a way that they were subjected to 3-fold, 5-fold and 10-

fold cross validation.       

In this study, in the context of ensemble methods, performance criteria based on sample size 

were compared for TreeNet analysis method using Boosting algorithm and Random Forest 

method using Bagging algorithm in the background. In data analysis, the educational version 

of the SPM 7.0 statistical package program and open source Phyton-based Orange package 3.34 

version were utilized. In addition, the evaluation of performance criteria yielded by confusion 

matrix was made through the test data and the 2nd category (Successful) was considered as the 

focus group. 

2.2.1. TreeNet 

The TreeNet method is based on stochastic gradient boosting algorithm to determine the 

weights used in the training and classification phases of the incremental iteration (Padmaja et 

al., 2016). Stochastic gradient boosting, developed by Friedman (2002), is used to address a 

regression task by optimizing the mean squared error. It is a non- parametric method where 

each successive learner is trained following the pseudo - residual errors of the preceding learner, 

thus finding solutions to classification and regression problems (Friedman, 2002; Hastie et al., 

2009). The TreeNet (TM Salford Systems, inc.) method has various titles due to commercial 

concerns such as Multiple Additive Regression Trees-MART (TM Jerill, inc.), Boosted 

Regression Trees-BRT (TM Stat Soft, inc.), Gradient Boosting Trees (GBT) and Gradient 

Boosting Model (GBM) (Elish & Elish, 2009; Hill & Lewicki, 2006). TreeNet is successfully 

applied in science fields where complex relationships of numerous variables are modelled by 
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adding classification trees when the dependent variable is categorical and the regression trees 

are added when the variable is continuous (Şevgin & Önen, 2022). 

2.2.2. Random forest 

Random Forest method is a special modification of Bagging algorithm (Amrieh et al., 2016; 

Hastie et al., 2009). It was created as a result of the application of the Random Subspace 

technique proposed by Ho (1998) on the Bagging method (Biau, 2012). In the bagging method, 

decision trees are generated by selection from the data set independently of one another through 

bootstrap technique. However, the Random Subspace method does a random selection of a 

subset of features to use to grow each tree (Akman, 2010). In Random Forest method, each 

decision tree that generates the decision forest is created by bootstrap sampling randomly 

selected from the original data set with replacement. The Random Forest proposed by Breiman 

(2001) is a non-parametric method applied in science fields where complex relationships of 

numerous variables are modelled by adding classification trees to regression trees through 

bootstrap sampling method when the dependent variable is two- class or multi- class (Biau & 

Scornet, 2016; Geneur et al., 2017).     

Recent studies have shown that ensemble learning methods outperform traditional regression 

methods (Elith et al., 2006). It can be said that TreeNet and Random Forest are among best 

performing ensemble methods (More detailed information for these two methods, see Breiman, 

2001; Friedman, 2002). 

2.2.3. Confusion matrix 

A confusion matrix is a technique for summarizing the performance of a classification 

algorithm. A confusion matrix is a two-dimensional matrix (“actual” and “predicted”), indexed 

in one dimension by the true class of an object and in the other by the class that the classifier 

assigns (Ting, 2017) and it allows easily discovering whether the system mixes the two classes 

(Şevgin, 2020). Table 1 presents an example of confusion matrix for a two - class classification 

task. 

Table 1. Confusion matrix. 

  Predicted Class 

  Unsuccessful Successful Total 

Actual Class 

Unsuccessful  TN FP TN+FP 

Successful FN TP FP+TP 

Total TN+FN FP+TP TN+FN+FP+TP 

(TP: True Positive TN: True Negative FP: False Positive Fn: False Negative) 

Confusion matrices represent counts from predicted and actual values. It is applied to binary 

classification. In this regard, the confusion matrix represents true positive (TP) values, false 

positive (FP) values, true negative (TN) values and false negative (FN) values (Ting, 2017). 

The output for True Positive and True Negative shows the instances predicted accurately. 

However, False Positive and False Negative represent the instances predicted incorrectly. 

Accuracy is calculated as the sum of two accurate predictions (TP + TN) divided by the total 

number of data sets (P + N). The best accuracy is 1.0, and the worst is 0.00. Ideally, the sum of 

TP and TN should have an approximate value to the total of the pattern and the sum of FP and 

FN values should be close to zero (Han et al., 2012). 

2.2.4. Performance criteria for the categorical dependent variable 

In this research, accuracy- percentage- sensitivity- precision ratios, AUC value of ROC curve 

and F1 score were used as performance criteria. The formulas are given below: 
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Accurate classification rate indicates how well the method used in classification problems 

predicts the class distributions of the data and is often expressed as a percentage. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
(TP+TN)

(TP+FP+TN+FN)
                                                                (4) 

Specificity refers to the probability of a negative test result, conditioned on the individual 

truly being negative and it takes a value between 0 and 1. This value is usually expressed as a 

percentage. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
(𝑇𝑁) 

(𝑇𝑁+𝐹𝑃)
                                                                                                            (5) 

Sensitivity represents how well a test can identify true positives and it reveals a value between 

0 and 1. This value is usually expressed as a percentage.   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                                                                                                            (6) 

The numerical value of accuracy represents the proportion of true positive results in the selected 

population and yields a value between 0 and 1. This value is usually expressed as a percentage. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
                                                                                                               (7) 

The F- score (also known as the F1- score or F-measure) is defined as the harmonic mean of 

precision and recall scores of a model in order to ensure a balanced measure of overall 

classification performance. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑥
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
             (8) 

2.2.5. Performance criteria for the continuous dependent variable 

The RMSE, MSE, MAD, and MRAD values which give error values for numerical prediction, 

allow data mining and machine learning methods to be examined and compared to one another.   

RMSE (Root Mean Square Error): RMSE measures the average difference between a statistical 

model’s predicted values and the actual values. The RMSE value is the measurement of how 

close the predictions are to the actual values. A low RMSE value refers to a better model 

performance. 

𝑅𝑀𝑆𝐸 = √∑
(ŷ𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1             (9) 

MSE (Mean Square Error): MSE is defined as mean or average of the square of the difference 

between actual and estimated values. Unlike RMSE, MSE is computed without taking the 

square root. The MSE value quantifies the size of prediction errors and a low MSE value means 

a better model performance. 

𝑀𝑆𝐸 =
1

𝑛
∑ (ŷ𝑖 − 𝑦𝑖)

2𝑛
𝑖=1           (10) 

MAD (Mean Absolute Deviation): MAD is a measure of the average absolute distance between 

each data value and the mean of a dataset. The MAD value measures the size of prediction 

errors, yet, unlike RMSE and MSE, it can be more sensitive to larger extreme outliers since it 

does not take the square of the deviation. 

𝑀𝐴𝐷 =
∑ |𝜒𝑖−𝑥̄|𝑛

𝑖=1

𝑛
           (11) 

MRAD (Mean Relative Absolute Deviation): MRAD is the average distance between each data 

point and the mean. MRAD provides an independent assessment of the scale of the measured 
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values by calculating the prediction errors to the actual values. Besides, it is useful or comparing 

values measured in different times. 

𝑀𝑅𝐴𝐷 =  

(∑ |(𝑥𝑖−𝑥)̄|𝑛
𝑖=1 )

𝑛

𝑥̄∗100
           (12) 

2.2.6. Cross validation 

Cross validation, also being referred to as rotation estimation, is a resampling technique used 

in statistical modelling and machine learning to evaluate the performance and generalization 

ability of two or more models. Cross validation involves dividing the existing dataset into k 

subsets, training the model on a subset of the data, and evaluating its performance on the 

remaining fold(s) (Olson & Delen, 2008). In K-fold cross-validation, the full data set is 

randomly divided into various subsets of k of approximately equal size. The classification 

model is trained and tested k times. In the present study, 3-fold, 5-fold and 10-fold cross-validity 

was applied to evaluate the performance of the methods. In other words, a cross-validity was 

performed in which one- third, one- fifth and one- tenth of the data set were considered as test 

data. 

3. RESULTS 

In this section, the TreeNet method using the boosting algorithm in the background and the 

Random Forest method using the Bagging algorithm are examined in different sample sizes, 3-

fold, 5-fold and 10-fold cross validity rates. At each sample size and each cross-validity rate, 

the number of trees that is required by the TreeNet and Random Forest methods to generate the 

optimal model is presented in Table 2. 

Table 2. The number of trees where Treenet and random forest models are established. 

 250 500 1000 2000 

TreeNet 

3K 648 312 762 484 

5K 446 465 700 475 

10K 561 426 739 465 

Random 

Forest 

3K 526 258 589 461 

5K 433 436 547 417 

10K 489 438 628 423 

 

Table 2 represents the number of trees needed to determine the optimal number of trees in the 

area under the ROC curve for TreeNet (Hastie et al., 2009). For Random Forest, the value with 

the lowest error rate in the decision forest refers to the number of trees needed for the most 

appropriate model to be established (Huffer and Park, 2020; Probst and Boulesteix, 2017). 

3.1. Findings on the TreeNet and Random Forest Methods by Sample Size 

The classification performances yielded by both analysis methods as a result of 3-fold cross 

validation for each level of the sample size taken from the study group are presented in Table 

3 as a percentage. In Table 3, it is seen that for both analysis methods with 3-fold cross-validity, 

they received the same value in terms of accurate classification rate in 500 sample size although 

TreeNet method was higher than Random Forest method in 250, 1000 and 2000 sample sizes. 

In terms of specificity, TreeNet method was found to be higher in 250 smaple sizes whereas 

Random Forest was revealed to be higher in 500, 1000 and 2000 sample sizes. In terms of 

sensitivity, it is seen that TreeNet method is higher than Random Forest method in all sample 

sizes. In terms of accuracy, it is seen that the TreeNet method is higher in the sample size of 

250 and 1000 and the Random Forest method is higher in the sample size of 500 and 2000. 

However, in terms of F1- score, it has been revealed that the TreeNet method is higher than the 
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Random Forest method in all sample sizes. In terms of AUC value, it has been found that the 

Random forest method is higher in the sample size of 250 and, however, that TreeNet method 

is higher in the sample sizes of 500, 1000 and 2000.  

Table 3. Percentages of classification performance by sample sizes for 3-Fold Cross validity. 

   250 500 1000 2000 

3
K

 

T
re

eN
et

 

Accurate Classification 

Rate 
%76.80 

%71.40 %77.20 %77.20 

Specificity %74.56 %70.59 %76.24 %78.35 

Sensitivity %78.68 %72.24 %78.18 %76.00 

Accuracy %78.68 %70.24 %76.33 %77.10 

F1- score %78.68 %71.23 %77.25 %76.54 

AUC value %83.98 %80.84 %85.77 %84.80 

R
an

d
o

m
 F

o
re

st
 

Accurate Classification 

Rate 

%72.80 %71.40 %74.10 %76.15 

Specificity %67.54 %72.94 %77.03 %79.52 

Sensitivity %77.21 %69.80 %71.11 %72.62 

Accuracy %73.94 %71.25 %75.21 %77.28 

F1- score %75.54 %70.52 %73.10 %74.88 

AUC value %80.71 %81.35 %83.61 %84.79 

 

The classification performances obtained by both analysis methods as a result of 5-fold cross 

validation for each level of the sample size taken from the study group are presented in Table 

4 as a percentage. 

Table 4. Percentages of classification performance by sample sizes for 5-Fold Cross validity. 

   250 500 1000 2000 

5
K

 

T
re

eN
et

 

Accurate Classification Rate %71.20 %75.20 %75.20 %77.10 

Specificity %67.54 %74.90 %75.45 %77.67 

Sensitivity %74.26 %75.51 %74.95 %76.51 

Accuracy %73.19 %74.30 %74.95 %76.66 

F1- score %73.72 %74.90 %74.95 %76.58 

AUC value %80.65 %82.53 %84.47 %85.30 

R
an

d
o

m
 F

o
re

st
 Accurate Classification Rate %75.20 %74.20 %74.20 %76.55 

Specificity %71.93 %75.69 %77.22 %79.53 

Sensitivity %77.94 %72.65 %71.11 %73.44 

Accuracy %76.81 %74.17 %75.37 %77.47 

F1- score %77.37 %73.40 %73.18 %75.41 

AUC value %82.79 %81.75 %83.92 %84.90 
 

In Table 4, it is seen that for both analysis methods with 5-fold cross-validity, the Random 

Forest method is higher in the accurate classification rate in the sample size of 250 and that the 

TreeNet method is higher in the sample size of 500, 1000 and 2000. In terms of specificity, it 

has been demonstrated that Random Forest method is higher in all sample sizes. In terms of 

sensitivity, it is seen that the Random Forest method is higher in the sample size of 250 and the 

TreeNet method has been found to be higher in the sample sizes of 500, 1000 and 2000. 

Moreover, in terms of accuracy, it is seen that the Random Forest method is higher in sample 

size of 250 and the TreeNet method is higher in 500, 1000 and 2000 sample sizes. As for F1-
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score, it is seen that the Random Forest method is higher in the sample size of 250 and TreeNet 

method is higher in the sample sizes of 500, 1000 and 2000. In terms of AUC value, it has been 

revealed that the Random Forest method is higher in the sample size of 250 and TreeNet method 

is higher in the sample sizes of 500, 1000 and 2000.   

The classification performances obtained by both analysis methods as a result of 10-fold cross 

validation for each level of the sample size taken from the study group are presented in Table 

5 as a percentage. 

Table 5. Percentages of classification performance by sample sizes for 10-Fold Cross validity 

   250 500 1000 2000 

1
0

K
 

T
re

eN
et

 

Accurate Classification Rate %75.20 %74.40 %76.60 %77.20 

Specificity %76.32 %73.73 %75.84 %78.35 

Sensitivity %74.26 %75.10 %77.37 %76.00 

Accuracy %78.91 %73.31 %75.84 %77.10 

F1- score %76.52 %74.19 %76.60 %76.54 

AUC value %83.42 %82.92 %84.83 %84.80 

R
an

d
o

m
 

F
o
re

st
 

Accurate Classification Rate %75.20 %74.20 %73.70 %76.35 

Specificity %71.05 %75.69 %76.24 %79.82 

Sensitivity %78.67 %72.65 %71.11 %72.72 

Accuracy %76.43 %74.16 %74.58 %77.56 

F1- score %77.53 %73.40 %72.80 %75.07 

AUC value %83.12 %83.17 %83.49 %85.01 
 

In Table 5, it has been demonstrated that both methods receive the same value in the sample 

size of 250 in terms of correct classification rate with 10-fold cross-validity; however, it has 

been seen that the TreeNet method is higher compared to the Random Forest method in the 

sample sizes of 500, 1000 and 2000. Nevertheless. in terms of specificity, it has been found that 

the TreeNet method is higher in the sample size of 250 and that the Random Forest method is 

higher in the sample size of 500, 1000 and 2000. As for sensitivity, it has been indicated that 

the Random Forest method is higher in the sample size of 250 and that TreeNet method is higher 

in the sample sizes of 500, 1000 and 2000. In terms of accuracy, it is seen that the TreeNet 

method is higher in the sample size of 250 and 1000 and the Random Forest method is higher 

in the sample size of 500 and 2000. Furthermore, In terms of F1-score, it is seen that the Random 

Forest method is higher in the sample size of 250 and TreeNet method is higher in the sample 

sizes of 500, 1000 and 2000. Finally, in terms of AUC value, it has been revealed that the 

TreeNet method is higher in the sample sizes of 250 and 1000 and the Random Forest method 

is higher in the sample sizes of 500 and 2000. 

3.2. Findings on the TreeNet and Random Forest Methods Based on RMSE, MSE, MAD 

and MRAD Performance Measurements 

The classification performances of RMSE, MSE, MAD and MRAD values obtained by both 

analysis methods for each level of sample size taken from the study group are presented in 

Table 6. As shown in Table 6, it is seen that the TreeNet method yields lower error values than 

the Random Forest method in all sample sizes. It has been shown that the error values of the 

TreeNet method, in itself, increase in all metrics towards the sample sizes of 250, 500 and 1000, 

and decrease in the sample size of 2000. In the Random Forest method. however, it has been 

revealed that the error values obtained in all metrics decrease as the sample size increases. 
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Table 6. RMSE. MSE. MAD and MRAD Values of Both Methods in Each Sample Size. 

 250 500 1000 2000 
T

re
eN

et
 RMSE 46.45 61.67 71.65 71.10 

MSE 2158.32 3803.72 5133.75 5056.28 

MAD 36.00 48.71 57.29 56.47 

MRAD 0.075 0.102 0.120 0.118 

R
a

n
d

o
m

 

F
o

re
st

 RMSE 96.65 93.35 92.91 90.32 

MSE 9342.81 8714.05 8633.24 8156.97 

MAD 83.72 79.61 78.70 75.69 

MRAD 0.175 0.166 0.165 0.159 

4. DISCUSSION and CONCLUSION 

In the current study. Bagging and Boosting algorithms were elaborated and the classification 

performances of TreeNet and Random Forest methods using these algorithms were compared 

through a real data set from a large-scale national assessment. In this section, the results yielded 

from both methods and the usefulness of both analysis methods in education have been 

discussed. 

As the first result of the research, it was found that the performance measurements of TreeNet 

and Random Forest methods varied based on each sample size under 3, 5 and 10-fold cross 

validity. In its broadest sense, the TreeNet method yielded high values in accuracy, sensitivity 

rate, F1-score and AUC value in large samples whereas it takes high values in specificity and 

accuracy in smaller samples while it takes high values in specificity and accuracy in smaller 

samples. Furthermore, the Random Forest method takes high values in large samples in terms 

of specificity and accuracy although it yields high values in the smaller samples in the accuracy, 

sensitivity, F1-score and AUC value. In the performance measures listed above, it can be said 

that the Random forest method performs better in specificity and accuracy; however, the 

TreeNet method have a better performance in other metrics. Märker et al. (2011) noted that the 

TreeNet method performed better compared to the Random Forest method in terms of AUC 

value, Cohen's Kappa statistics and R2 value. In contrast, Mi et al. (2017) and Padmaja et al. 

(2021) reported in their study that the Random forest method performed better than the TreeNet 

method. 

As the second result of the research, it has been found that with the increase in the number of 

samples within the TreeNet method the metric values expressing the error increase by the 

sample sizes of 1000 and 2000 and that it yield similar values in the sample sizes of 1000 and 

2000. Instead of generating new classes through random selection from the data set, the 

Boosting algorithm learns from the errors and determines with which samples the incorrect 

classification process is performed and makes selections on these samples. In other words, 

considering that the Boosting algorithm acts sequentially with an iterative working principle 

with the logic of learning from errors by using the whole sample, the amount of error it produces 

in low data is reflected as less until the optimum number of trees is reached. In addition, as for 

the Random Forest method, it has been seen that the metric values that express the correct error 

from 250 samples to 2000 samples are reduced. Considering that the Bagging algorithm acts 

with an iterative working principle with the logic of learning from errors in order to use the 

random sample it yields from the data set to put back into place, it can be said that it can be said 

that these values decrease with the increase of the data it pulls randomly until it reaches the 

optimum number of trees to establish the final model. Finally, at all error rates for each sample 

size of the same data set, the TreeNet method has been shown to produce lower values than the 

Random Forest method. In this respect, it can be said that the TreeNet method produces more 

unbiased (Robust) results and performs better than the Random Forest method. Indeed, Padmaja 

et al. (2016) reported in their studies that the TreeNet method was more successful than the 
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Random forest method. In the same vein, in the study conducted by Subasi et al. (2022), it was 

reported that Stochastic Gradient Boosting method (another literature use of the TreeNet 

method) performed better compared to the Random Forest, Support Vector Machines, K-

nearest neighbours algorithm and artificial neural networks for RMSE, MSE, MAE and RAE 

performance criteria. Moreover, Tuğ-Karaoğlu and Okut (2020) have stated that the Boosting 

algorithm is more successful than the Bagging algorithm in their study and the same authors 

have also drawn attention to the above-mentioned issues as the source of success. Likewise, 

Dietterich (2000b), Machová (2006) and Quinlan (1996) stated in their study that the Boosting 

algorithm was more successful than the Bagging algorithm. 

When both analysis methods are compared internally, taking into account all conditions 

including sample size, cross-validity and performance criteria, it can be said that the TreeNet 

method shows higher classification and prediction performance than the Random Forest 

method. Märker et al. (2011) stated in their studies that the TreeNet method performed better 

than the Random Forest method in terms of classification performance. Similarly, Hastie et al. 

(2009) reported that boosting-based algorithms gave better results than bagging-based 

algorithms in most problem situations.     

In conclusion, these conclusions have been yielded by the mathematics achievement test of the 

ABİDE implementation administered to 8th grade students. Further studies with higher actual 

and artificial data are recommended for the comparability of the results. Furthermore, it is 

recommended to use both analysis methods to give flexibility to the analysis of data sets 

obtained in the field of education, especially data that do not show parametric features. 
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