
* Corresponding Author Cite this article 

*(memedosman471@gmail.com) ORCID ID 0000-0002-1717-8601 
  
 

 

Othman, M. M. (2023). Modeling of daily groundwater level using deep learning neural 
networks. Turkish Journal of Engineering, 7(4), 331-337 
 

 

 

Turkish Journal of Engineering – 2023, 7(4), 331-337 

 

 

Turkish Journal of Engineering 

https://dergipark.org.tr/en/pub/tuje 

e-ISSN 2587-1366 

 
 
 

Modeling of daily groundwater level using deep learning neural networks 
 

Mohammed Moatasem Othman *1  

 
1Atilim University, Department of Civil Engineering, Turkiye 
 
 
 
 

Keywords  Abstract 
Artificial Intelligence  
CNN-biLSTM 
Groundwater   
Neural Network  

 Groundwater is an essential water source, becoming more vital due to shortages in available 
surface water resources. Hence, monitoring groundwater levels can show the amount of water 
available to extract and use for various purposes. However, the groundwater system is 
naturally complex, and we need models to simulate it. Therefore, we employed a deep learning 
model called CNN-biLSTM neural networks for modeling groundwater, and the data was 
obtained from USGS. The data included daily groundwater levels from 2002 to 2021, and the 
data was divided into 95% for training and 5% for testing. Besides, three deep CNN-biLSTM 
models were employed using three different algorithms (SGDM, ADAM, and RMSprop(. Also, 
Bayesian optimization was used to optimize parameters such as the number of biLSTM layers 
and the number of biLSTM units. The model's performance was based on Spearman's Rank-
Order Correlation (r), and the model with SGDM showed the best results compared to other 
models in this study. Finally, the CNN model with LSTM can simulate time series data 
effectively. 
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1. Introduction  
 

Groundwater refers to the gravitational water in the 
more subordinate soil layer [1]. It is an essential provider 
of freshwater that can assist in solving problems related 
to the shortages in freshwater supplies. Therefore, 
frequent groundwater level monitoring is necessary for 
practical groundwater resource management [2] 
because precise and trustworthy groundwater level 
(GWL) predictions give fundamental details on 
groundwater availability [3]. Besides, the plunge in water 
levels implies that the resources are consumed 
significantly in some areas [4]. Thus, assessing the 
known groundwater resource in a more practical 
technique is required and developing the best 
consumption objectives [5]. 

The GWL is part of the natural groundwater system, 
which is exceptionally complicated. Therefore, there is a 
necessity for simplification in managing groundwater 
resources. A model, such as the groundwater model, is an 
approach that can be used to simulate and understand 
the natural groundwater system. Besides, modeling 
groundwater is meant to imitate the aquifer's physical 

variables [5]. Thangarajan [5] showed that the 
groundwater models could be classified into physical, 
analog, and mathematical Models. Physical models were 
employed from the 1930s to the 1950s to analyze 
groundwater problems; for instance, the physical 
groundwater model called the sand tank model, a basic 
laboratory-scale standard with proper aquifer features, 
is scaled down to simulate the field conditions [5]. The 
mathematical model includes the exact details of the 
conceptual model but is described as controllable 
equations with analytical and numerical explanations [6-
9]. The analog model considers a similarity between 1D 
groundwater steady flow expressed by Darcy's law and 
the constant flow of electrical waves by Ohm's law [9]. It 
is essential to mention that the details of these models 
are out of the scope of this study.  

Various studies were employed broadly to study 
GWL using the literature mentioned above models 
(physical, analog, and mathematical models). Faulkner et 
al. [10] used a laboratory analog model to imitate 
groundwater flow and solute transport in an aquifer and 
showed that the analog model could provide the 
hydraulic head distribution. Gholami et al. [11] 
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constructed a laboratory approach to investigate the 
influence of the GWL change on internal air pressure. 
Boyraz et al. [12] performed analytical, experimental, 
and numerical solutions to describe the GWL 
distribution. Lee et al. [13] employed numerical and 
sandy tank models to study the increase of GWL due to 
underground obstructions in the coastal aquifer. They 
showed that the sandy tank experiment offered details of 
the hydraulic features of groundwater systems such as 
GWL in the coastal aquifer with an obstacle like a seawall. 
Xu et al. [14] conducted a sequence of laboratory 
experiments to examine the differences in GWL during 
dewatering. Kagabu et al. [15] designed a three-stage 
tank model to imitate GWL changes before the 
earthquake and then apply it to the same case for the 
post-earthquake duration. They showed that their model 
could represent GWL differences due to earthquake 
events. Ansarifar et al. [16] employed MODFLOW 
mathematical approach to simulate the groundwater 
level in a coastal aquifer. Akter and Ahmed [17] used 
MODFLOW 2005 mathematical model to study water 
level drawdown and groundwater modeling. They 
showed that mathematical models could show pertinent 
details and save money and time. Armanuos et al. [18] 
used MODFLOW to study the effects of the rising 
pumping on the GWL in the aquifer. Yang et al. [19] 
employed an analytical model to study the GWL over 
height varying with multi-tidal circumstances. 

The improvement of soft computing applications such 
as artificial intelligence (AI) has recently encouraged 
researchers to adopt it to study various engineering 
problems [20-27]. One of the AI applications is deep 
learning (DL), as shown in Figure (1) [27], and is 
established on the algorithms created and inspired by the 
biological neuron system of humans to calculate or 
approximate functions by solving many inputs into a 
target output [28]. Besides, DL boosts computer 
technology to create outcomes established on the earlier 
known data [29-30]. DL has changed conventional 
industries and is increasingly employed in many 
scientific fields [31] and water resource engineering. For 
example, AI models were used to show the potential to 
handle investigations on relations between input and 
important system variables [32]. 
 

 
Figure 1. Artificial Intelligence models [27] 

 
Moreover, Rajaee et al. [33] reviewed 67 papers for 

applications of machine learning approaches such as 
artificial neural networks, adaptive neuro-fuzzy 

inference systems, genetic programming, and support 
vector machine in GWL modeling from 2001 to 2018. 
They showed that artificial intelligence techniques could 
be employed to forecast the GWL time series in various 
aquifers. Nevertheless, the deep learning approaches 
grew slowly initially [31] but are to succeed in water 
resources engineering [32]. It is recommended to read 
published studies in the literature for more details on DL 
models, which can be found in [34-36]. 

Long short-term memory (LSTM) neural network is 
one of the deep learning applications, and it has been 
applied in various studies [37-40], and the employment 
of LSTM in GWL modeling is also increasing. Zhang et al. 
[41] created a two-layer LSTM model for forecasting 
GWL and trained the LSTM model with monthly water 
diversion, evaporation, precipitation, temperature, and 
time as input parameters. They showed that The LSTM 
offers a good performance for GWL simulating. Huang et 
al. [42] applied the LSTM model to estimate groundwater 
recharge according to GWL change. They compared the 
performance of the LSTM model with multi-layer 
perception (MLP) and linear regression models and 
found that LSTM demonstrated better results than the 
two models. Shin et al. [43] employed LSTM to forecast 
the GWL due to pumping wells in the locations close to 
observing wells. They showed that the GWL forecast by 
the LSTM model was extremely high. Vu et al. [44] used 
the LSTM model to rebuild GWL missed data of 
piezometers employed to observe water changes in a 
regional karstic aquifer. They showed that LSTM is 
proper for rebuilding the GWL changes with acceptable 
precision. Solgi et al. [45] employed LSTM to forecast 
GWL for short and long periods compared to a simple 
neural network. They showed that the LSTM exceeded 
the accurate GW level prediction of the simple neural 
network. Yokoo et al. [46] employed the LSTM model for 
GWL modeling and demonstrated that the model could 
simulate GWL in acceptable agreement with the 
measured data. Besides, a convolutional neural network 
(CNN) is another deep learning model used for various 
problems in civil engineerings, such as groundwater 
problems. Ali et al. [47] one of few studies that used 
groundwater level as the only input for training the AI 
model, used a hybrid CNN-BI LSTM neural network to 
model hourly groundwater levels. They showed that 
CNN-biLSTM could handle modeling hourly groundwater 
levels, and this model can be used for time series data. 

AI techniques have been utilized to emulate GWL by 
engaging data like rainfall, temperature, humidity, 
evaporation, and extraction rates. Nonetheless, few 
pieces of research were used to predict the groundwater 
level based on the measured groundwater level as the 
only input to the AI model [45]. Hence, this study aims to 
employ daily groundwater level data to train CNN-bi 
LSTM models with Bayesian optimization to simulate 
GWL using only the GWL time series data as input to the 
models. The first section of the article contains a brief 
introduction to recent studies of GWL using various 
modeling approaches. The second section shows the 
study area and the deep learning models. The third 
section illustrates the results. Finally, the discussion with 
recommendations for further study. 
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2. Method 
 

2.1. Study Area 
 

The daily groundwater data were collected from The 
United States Geological Survey (USGS) for a city called 
Camdenton, a municipality in the middle of Camden 
County, Missouri, USA. The data consist of groundwater 
daily measurements from Jan 2002 – Oct 2021, as shown 
in Figure 2. The total number of measures was 7242; 
0.95% of data was selected for training the AI model, and 
0.5% for testing the AI model. 
 

 
Figure 2. Daily groundwater measurements 

 

2.2. CNN-biLSTM Model  
 

Bidirectional -LSTM (BiLSTM) is a distinct network of 
the traditional long-term short-memory neural network 
(LSTM), which includes forward and backward LSTM, 
supplying entry to the long-range context in both 
directions. Furthermore, LSTM is developed to fix the 
vanishing gradients problem using a unique gating 
process [48]. Besides, biLSTMs improve the quantity of 
data attainable to the AI model (Chiu and Nichols, 2016). 
Thus, the biLSTM permits for incorporation of the prior 
and following data [49]. The traditional LSTM contains 
multiple memory cells or blocks. Memory blocks include 
many memory units and three gates. The first one, the 
input gate, seeks to determine the required latest data 
and convert it to the cell form. The second one, called 
forget gate, manages to extract the details that are not 
important anymore. In contrast, the output gate 
determines what type of essential details in the cell 
should be considered as the outcome [49]. 

As biLSTM is a particular type of recurrent neural 
network (RNN), it converts the different activations into 
dependent activations procedures by delivering all the 
neural network layers with the same weights and biases 
and specifying earlier outcomes to give the subsequent 
hidden layer as input. For illustration, in a precise RNN 
method, per iteration, t, the hidden layer endures a 
hidden form, ℎt, updates and accelerates it based on the 
layer input, xt, and earlier hidden form, ℎt−1, employing 
the Equation 1 [50]. 
 

ℎ𝑡 =  𝜎ℎ( 𝑊𝑥𝑡 + 𝑉ℎ𝑡 − 1 − 𝑏ℎ) (1) 
 

W is the weight matrix delivered via the input to the 
hidden layer, V is the weight matrix between two hidden 
serial states (ℎt−1 and ℎt), 𝑏ℎis the bias vector for the 
hidden layer, and σℎ is the activation function to generate 
the hidden structure. The model result can represent as 
Equation 2 [50]: 
 

𝑦𝑡 =  𝜎𝑦( 𝑈ℎ𝑡 + 𝑏𝑦) (2) 

 
U is the weight matrix from the hidden converted to 

the output layer, and σy is the activation function of the 
result layer. Finally, the hidden layer supplies the 
outcome yt. The LSTM layers procedure series data uni-
directionally and modify it to capture the randomness. 
Nonetheless, a backward LSTM layer can deliver bi-
directionally into the model. Thus, developing a Bi LSTM 
layer, including a forward LSTM layer and a backward 
LSTM layer, processes series data with two particular 
hidden layers and merges them into the same result layer 
[51]. 

Convolutional Neural Network (CNN) is a multi-layer 
artificial intelligence model founded on convolution 
calculation. CNN model has been widely used in 
numerous areas. It is presented by Y. LeCun et al. [52] and 
is a feed-forward neural network. CNN's local perception 
and weight sharing can remarkably reduce the 
parameters; thus, models can be executed to foretell 
time-series data. Besides, the typical CNN model 
provides a standard network configuration for the CNNs, 
primarily including convolutional layers, pooling layers, 
and fully connected layers, as shown in Figure 2. The 
mechanism of CNN is that each layer retains a majority of 
convolution kernels and pulls the data characteristic. Its 
calculation is as Equation (3): 
 

𝑙𝑡 =  tanh (𝑥𝑡 ∗ 𝑘𝑡 + 𝑏𝑡) (3) 
 

Where 𝑙𝑡  is the result value after convolution, tanh is 
the activation function, 𝑥𝑡 is the input vector, 𝑘𝑡 is the 
weight of the convolution kernel, and 𝑏𝑡 is the bias of the 
convolution kernel [53].  

A CNN-biLSTM standard model, as illustrated in 
Figure 3, incorporates CNN layers that carry the 
characteristic from input data and biLSTMs layers to 
deliver sequel projections. It is employed for activity 
recognition. Their specific attributes utilize optical time 
series projection problems [54]. biLSTM with CNN layers 
has been used for encoding spatiotemporal elements for 
varied objectives, like precipitation estimation [55]. Still, 
the applications of CNN-biLSTM approaches in hydrology 
have not been exploited to unravel problems [56]. The 
component for both CNN and Bi LSTM models is 
presented in the publications extensively. 

In this study, three CNN-biLSTM models were 
developed to model the daily groundwater level, and 
these models were optimized with Bayesian 
optimization to determine the best performance. Table 1 
shows the hyperparameters parameters for the three 
models. The three models were trained with 350 epochs, 
60 iterations, 32 batch sizes, and a factor for dropping 
rate equal to 0.5. Moreover, each model was trained with 
three different algorithms to update the weights, as 
shown in Table 2. The first model was trained with 
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stochastic gradient descent with momentum (SGDM), the 
second one with RMSprop, and the last one with root 
mean squared propagation (ADAM).  
 

 
Figure 3. CNN model [57] 

 

 
Figure 4. CNN-biLSTM model [57] 

 
Besides, the performance of models was assessed 

based on Spearman's Rank-Order Correlation: 
 

𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (4) 

 
Where 𝜌 is Spearman's rank correlation coefficient, is 

the distinction between the two classes per observation, 
and n is the number of data. 
 

Table 1. Hyperparameters parameters 
Number of LSTM Layer 1 to 4 

Number of BI-LSTM Units 75 to 200 

Learning Rate 0.001 to 1 

L2Regularization Rate 0.00000000001 to 0.001 

 
Table 2. CNN-biLSTM models 

Model  Training algorithm 
Model 1 SGDM 
Model 2 RMSprop 
Model 3 ADAM 

 
 

 
3. Results  
 

The results showed that the first model is the best 
among CNN-biLSTM models developed for modeling 
daily groundwater levels. Model 1 showed a high 
correlation coefficient (R) equal to 0.9896 for training 

and 0.9633 for the testing stage, as illustrated in Figures 
5 and 6. Furthermore, Bessie, Bayesian optimization 
showed the best parameters for training model 1, as 
shown in Table 3. 
 

 
Figure 5. Training stage for model 1 

 

 
Figure 6. Testing stage for model 1 

 
Table 3. Optimized parameters for model1 

Number of BI-LSTM Layer 1 
Number of BI-LSTM Units 171 

 Initial Learning Rate 0.021642 
L2Regularization Rate 2.8×𝑒−10 

 
 

 
Figure 7. Training stage for model 2 
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Meanwhile, the second model showed a good 
correlation coefficient (R) equal to 0.8201 in the training 
stage but a better correlation in the testing stage equal to 
0.9027, as shown in Figures 7 and 8. Besides, Table 4 
shows the optimized parameter for model 2. 

Finally, the last model, model 3, showed the worse 
performance, with a correlation coefficient (R) equal to 
0.8128 in training and 0.8811 in testing stages, as shown 
in Figures 9 and 10, respectively. Besides, Table 5 shows 
the optimized parameter for model 3. 

 

 
Figure 8. Testing stage for model 2 

 

Table 4. Optimized parameters for model 2 
Number of BI-LSTM Layer 2 
Number of BI-LSTM Units 94 

Initial Learning Rate 0.010901 
L2Regularization Rate 1.7 ×𝑒−5 

 

 
Figure 9. Training stage for model 3 

 

 
Figure 10. Testing stage for model 3 

 

Table 5. Optimized parameters for model 3 
Number of BI-LSTM Layer 2 
Number of BI-LSTM Units 84 

 Initial Learning Rate 0.010009 
L2Regularization Rate 0.00015 

4. Conclusion  
 

The groundwater level is a vital detail that can be 
influenced due to environmental divergence. For 
instance, an investigation of climate deviation shows that 
decreasing rainfalls and temperature growths lead to 
problems such as finding available water resources [50-
60]. Besides, research on the groundwater level is critical 
for providing details on the availability of groundwater 
resources. Thus, a hybrid CNN-biLSTM was utilized, 
which integrates CNN and biLSTM networks. The results 
showed that the three models showed good outcomes 
based on the coefficient correlation (R), especially the 
model trained with the SGDM training algorithm. 
Besides, the CNN-bi LSTM showed it could handle time 
series data related to hydrology problems like modeling 
daily groundwater data. Finally, Bayesian optimization 
was employed to locate the most acceptable 
hyperparameter parameters, including the number of 
LSTM layers, the number of LSTM units, the learning rate, 
and the L2regularization rate. The limitation of the 
current study is that the model is trained with only daily 
groundwater level, and it is recommended that the model 
trained with monthly groundwater level to show the 
ability of model for simulating various time steps. 

 

 
Conflicts of interest 
 
The authors declare no conflicts of interest. 

 

References  
 

1. Ao, C., Zeng, W., Wu, L., Qian, L., Srivastava, A. K., & 
Gaiser, T. (2021). Time-delayed machine learning 
models for estimating groundwater depth in the 
Hetao Irrigation District, China. Agricultural Water 
Management, 255, 107032. 

2. Taylor, C. J., & Alley, W. M. (2001). Ground-water-level 
monitoring and the importance of long-term water-
level data (Vol. 1217). Denver, CO, USA: US 
Geological Survey. 

3. Wunsch, A., Liesch, T., & Broda, S. (2020).  
Groundwater Level Forecasting with Artificial 
Neural Networks: A Comparison of LSTM, CNN and 
NARX. Hydrology and Earth System Sciences 
Discussions, 2020, 1-23. 

4.  Ebrahimi, S., & Khorram, M. (2021). Variability effect 
of hydrological regime on river quality pattern and 
its uncertainties: case study of Zarjoob River in 
Iran. Journal of Hydroinformatics, 23(5), 1146-1164. 

5. Thangarajan, M. (2007). Groundwater models and 
their role in assessment and management of 
groundwater resources and pollution. 
In groundwater (pp. 189-236). Springer, Dordrecht. 

6. Bear, J., Beljin, M. S., & Ross, R. R. (1992). Fundamentals 
of groundwater modeling. Ground-water issue (No. 
PB-92-232354/XAB; EPA-540/S-92/005). 
Environmental Protection Agency, Ada, OK (United 
States). Robert S. Kerr Environmental Research Lab. 

7. Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). 
Introduction. Applied Groundwater Modeling, 3–25. 
https://doi.org/10.1016/b978-0-08-091638-
5.00001-8 



Turkish Journal of Engineering – 2023, 7(4), 331-337 

 

  336  

 

8. Alasta, M. S., Ali, A. S. A., Ebrahimi, S., Ashiq, M. M., 
Dheyab, A. S., AlMasri, A., Alqatanani, A., & Khorram, 
M. Modeling of Local Scour Depth Around Bridge 
Pier Using FLOW 3D. 

9. Prickett, T. A. (1975). Modeling techniques for 
groundwater evaluation. In Advances in 
hydroscience (Vol. 10, pp. 1-143). Elsevier. 

10.Faulkner, J., Hu, B. X., Kish, S., & Hua, F. (2009). 
Laboratory analog and numerical study of 
groundwater flow and solute transport in a karst 
aquifer with conduit and matrix domains. Journal of 
contaminant hydrology, 110(1-2), 34-44. 

11. Gholami, V. C. K. W., Chau, K. W., Fadaee, F., Torkaman, 
J., & Ghaffari, A. (2015). Modeling of groundwater 
level fluctuations using dendrochronology in 
alluvial aquifers. Journal of hydrology, 529, 1060-
1069. 

12. Boyraz, U., & Kazezyılmaz-Alhan, C. M. (2018). 
Solutions for groundwater flow with sloping stream 
boundary: analytical, numerical and experimental 
models. Hydrology Research, 49(4), 1120-1130. 

13. Lee, W. D., Yoo, Y. J., Jeong, Y. M., & Hur, D. S. (2019). 
Experimental and numerical analysis on hydraulic 
characteristics of coastal aquifers with 
seawall. Water, 11(11), 2343. 

14. Xu, Y. S., Yan, X. X., Shen, S. L., & Zhou, A. N. (2019). 
Experimental investigation on the blocking of 
groundwater seepage from a waterproof curtain 
during pumped dewatering in an 
excavation. Hydrogeology Journal, 27(7), 2659-
2672. 

15. Kagabu, M., Ide, K., Hosono, T., Nakagawa, K., & 
Shimada, J. (2020). Describing coseismic 
groundwater level rise using tank model in volcanic 
aquifers, Kumamoto, southern Japan. Journal of 
Hydrology, 582, 124464. 

16. Ansarifar, M. M., Salarijazi, M., Ghorbani, K., & Kaboli, 
A. R. (2020). Simulation of groundwater level in a 
coastal aquifer. Marine Georesources & 
Geotechnology, 38(3), 257-265. 

17. Akter, A., & Ahmed, S. (2021). Modeling of    
groundwater level changes in an urban 
area. Sustainable Water Resources 
Management, 7(1), 1-2018. 

18. Armanuos, A., Ahmed, K., Shiru, M. S., & Jamei, M. 
(2021). Impact of Increasing Pumping Discharge on 
Groundwater Level in the Nile Delta Aquifer, 
Egypt. Knowledge-Based Engineering and 
Sciences, 2(2), 13-23. 

19. Yang, M., Liu, H., & Meng, W. (2021). An analytical 
solution of the tide-induced groundwater table 
overheight under a three-dimensional kinematic 
boundary condition. Journal of Hydrology, 595, 
125986. 

20. Melesse, A. M., & Hanley, R. S. (2005). Artificial neural 
network application for multi-ecosystem carbon 
flux simulation. Ecological Modelling, 189(3-4), 305-
314. 

21. Ali, A. S. A., & Günal, M. (2021). Artificial neural 
network for estimation of local scour depth around 
bridge piers. Archives of Hydro-Engineering and 
Environmental Mechanics, 68(2), 87-101. 

22. Pérez-Pérez, E. J., López-Estrada, F. R., Valencia-
Palomo, G., Torres, L., Puig, V., & Mina-Antonio, J. D. 
(2021). Leak diagnosis in pipelines using a 
combined artificial neural network 
approach. Control Engineering Practice, 107, 
104677. 

23. Pan, L., Novák, L., Lehký, D., Novák, D., & Cao, M. 
(2021). Neural network ensemble-based sensitivity 
analysis in structural engineering: Comparison of 
selected methods and the influence of statistical 
correlation. Computers & Structures, 242, 106376. 

24. Wu, D., & Wang, G. G. (2021). Causal artificial neural 
network and its applications in engineering 
design. Engineering Applications of Artificial 
Intelligence, 97, 104089. 

25. Azari, B., Hassan, K., Pierce, J., & Ebrahimi, S. (2022). 
Evaluation of machine learning methods application 
in temperature prediction. Transactions of Civil and 
Environmental Engineering, 8, 1-12. 

26. Kashani, A. R., Camp, C. V., Akhani, M., & Ebrahimi, S. 
(2022). Optimum design of combined footings using 
swarm intelligence-based algorithms. Advances in 
Engineering Software, 169, 103140. 

27. ALI, A. S. A. (2021). Republic of Turkey Gaziantep 
Unıversity Graduate School of Natural & Applied 
Sciences. 

28. Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep 
learning (Vol. 1). Massachusetts, USA: MIT press. 

29. Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep 
learning for computational chemistry. Journal of 
Computational Chemistry, 38(16), 1291–1307. 
https://doi.org/10.1002/jcc.24764. 

30. Bashar, A. (2019). Survey on evolving deep learning 
neural network architectures. Journal of Artificial 
Intelligence, 1(02), 73-82. 

31.Shreyas, N., Venkatraman, M., Malini, S., & 
Chandrakala, S. (2020). Trends of sound event 
recognition in audio surveillance: a recent review 
and study. The Cognitive Approach in Cloud 
Computing and Internet of Things Technologies for 
Surveillance Tracking Systems, 95-106. 

32. Shen, C. (2018). A transdisciplinary review of deep 
learning research and its relevance for water 
resources scientists. Water Resources 
Research, 54(11), 8558-8593. 

33. Wunsch, A., Liesch, T., & Broda, S. (2021). 
Groundwater level forecasting with artificial neural 
networks: a comparison of long short-term memory 
(LSTM), convolutional neural networks (CNNs), and 
non-linear autoregressive networks with exogenous 
input (NARX). Hydrology and Earth System 
Sciences, 25(3), 1671-1687. 

34. Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A 
review of the artificial intelligence methods in 
groundwater level modeling. Journal of 
hydrology, 572, 336-351. 

35. Schmidhuber, J. (2015). Deep learning in neural 
networks: An overview. Neural Networks, 61, 85–
117. https://doi.org/10.1016/j. 
neunet.2014.09.003. 

36. Samudrala, S. (2019). Machine Intelligence: 
Demystifying Machine Learning, Neural Networks 
and Deep Learning. Notion Press. 

https://doi.org/10.1002/jcc.24764
https://doi.org/10.1016/j.%20neunet.2014.09.003
https://doi.org/10.1016/j.%20neunet.2014.09.003


Turkish Journal of Engineering – 2023, 7(4), 331-337 

 

  337  

 

37. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 
learning. MIT press. 

38. Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). 
Long short-term memory (LSTM) recurrent neural 
network for low-flow hydrological time series 
forecasting. Acta Geophysica, 67(5), 1471-1481. 

39. Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., 
Coxon, G., & Dadson, S. J. (2021). Benchmarking 
Data-Driven Rainfall-Runoff Models in Great Britain: 
A comparison of LSTM-based models with four 
lumped conceptual models. Hydrology and Earth 
System Sciences. 

40. Ayzel, G., Kurochkina, L., Abramov, D., & Zhuravlev, S. 
(2021). Development of a Regional Gridded Runoff 
Dataset Using Long Short-Term Memory (LSTM) 
Networks. Hydrology, 8(1), 6. 

41. Heindel, L., Hantschke, P., & Kästner, M. (2021). A 
Virtual Sensing approach for approximating 
nonlinear dynamical systems using LSTM 
networks. PAMM, 21(1), e202100119. 

42. Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). 
Developing a Long Short-Term Memory (LSTM) 
based model for predicting water table depth in 
agricultural areas. Journal of hydrology, 561, 918-
929. 

43. Huang, X., Gao, L., Crosbie, R. S., Zhang, N., Fu, G., & 
Doble, R. (2019). Groundwater recharge prediction 
using linear regression, multi-layer perception 
network, and deep learning. Water, 11(9), 1879. 

44. Shin, M. J., Moon, S. H., Kang, K. G., Moon, D. C., & Koh, 
H. J. (2020). Analysis of Groundwater Level 
Variations Caused by the Changes in Groundwater 
Withdrawals Using Long Short-Term Memory 
Network. Hydrology, 7(3), 64. 

45. Vu, M. T., Jardani, A., Massei, N., & Fournier, M. (2021). 
Reconstruction of missing groundwater level data 
by using Long Short-Term Memory (LSTM) deep 
neural network. Journal of Hydrology, 597, 125776. 

46. Solgi, R., Loaiciga, H. A., & Kram, M. (2021). Long 
short-term memory neural network (LSTM-NN) for 
aquifer level time series forecasting using in-situ 
piezometric observations. Journal of Hydrology, 601, 
126800. 

47. Yokoo, K., Ishida, K., Nagasato, T., Kawagoshi, Y., & Ito, 
H. (2021, October). Reconstruction of groundwater 
level at Kumamoto, Japan by means of deep learning 
to evaluate its increase by the 2016 earthquake. 
In IOP Conference Series: Earth and Environmental 
Science (Vol. 851, No. 1, p. 012032). IOP Publishing 

48. Ali, A. S. A., Ebrahimi, S., Ashiq, M. M., Alasta, M. S., & 
Azari, B. (2022). CNN-Bi LSTM neural network for 
simulating groundwater level. CRPASE: 
Transactions of Civil and Environmental 
Engineering, 8, 1-7. 

49. Guo, X. (2020, November). Prediction of taxi demand 
based on CNN-BiLSTM-attention neural network. 
In International Conference on Neural Information 
Processing (pp. 331-342). Springer, Cham. 

50. Tao, Y., Sun, H., & Cai, Y. (2022). Predictions of Deep 
Excavation Responses Considering Model 
Uncertainty: Integrating BiLSTM Neural Networks 
with Bayesian Updating. International Journal of 
Geomechanics, 22(1), 04021250. 

51. Dey, S., Dey, A. K., & Mall, R. K. (2021). Modeling long-
term groundwater levels by exploring deep 
bidirectional long short-term memory using hydro-
climatic data. Water Resources Management, 35(10), 
3395-3410. 

52. Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep 
bidirectional and unidirectional LSTM recurrent 
neural network for network-wide traffic speed 
prediction. arXiv preprint arXiv:1801.02143. 

53. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). 
Gradient-based learning applied to document 
recognition. Proceedings of the IEEE, 86(11), 2278-
2324. 

54. Lu, W., Li, J., Wang, J., & Qin, L. (2021). A CNN-BiLSTM-
AM method for stock price prediction. Neural 
Computing and Applications, 33(10), 4741-4753. 

55.Donahue, J., Anne Hendricks, L., Guadarrama, S., 
Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, 
T. (2015). Long-term recurrent convolutional 
networks for visual recognition and description. 
In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 2625-2634). 

56. Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & 
Woo, W. C. (2015). Convolutional LSTM network: A 
machine learning approach for precipitation 
nowcasting. Advances in neural information 
processing systems, 28. 

57. Anderson, S., & Radic, V. (2021). Evaluation and 
interpretation of convolutional-recurrent networks 
for regional hydrological modelling. Hydrology and 
Earth System Sciences. https://doi. 
org/10.5194/hess-2021-113, in review. 

58. Yerima, S. Y., Alzaylaee, M. K., & Shajan, A. (2021). 
Deep learning techniques for android botnet 
detection. Electronics, 10(4), 519 

59. Azizi, K., Kashani, A. R., Ebrahimi, S., & Jazaei, F. 
(2022). Application of a multi-objective 
optimization model for the design of piano key weirs 
with a fixed dam height. Canadian Journal of Civil 
Engineering, (ja). 

60. Ashiq, M. M., Jazaei, F., Ali, A. S., & Bakhshaee, A. (2022, 
December). Investigation and Identification of the 
Microplastics Presence in the Soil. In Fall Meeting 
2022. AGU. 

 
 

 
 

 
© Author(s) 2023. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://creativecommons.org/licenses/by-sa/4.0/

