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Abstract 
  
This paper introduces the fourth order compact finite difference method for solving the numerical solution of 
one-dimensional wave equations. The convergence of the method for the problem under consideration had been 
investigated. To validate the applicability of the method on the proposed equation, two model examples have 
been solved for different values of mesh sizes. The numerical results in terms of point wise absolute errors 
presented in tables and graphs show that the present method approximates the exact solution very well. 
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1. Introduction 
 
 
Partial differential equations are equations that involve unknown functions of several 
variables and their partial derivatives. Wave equation is a hyperbolic second order linear 
partial differential equation which describes the nature of waves occurring in various physical 
phenomena. Initial value problems of hyperbolic type occurring in different fields like: sound 
wave, elastic, vibrations, fluid dynamics etc [1].  In physics, propagation of sound, light and 
water waves is modeled by hyperbolic partial differential equations. The efficient and 
accurate numerical techniques for the wave equations are of fundamental importance for the 
simulation of time dependent acoustic, electromagnetic or elastic wave phenomena [2].  
The development of numerical techniques for the solution of the hyperbolic nonlocal 
boundary value problems has been an important research topic in many branches of science 
and engineering [3]. There are many papers that deal with the numerical solution of wave 
equations. Recently, exponential B-spline collocation method for the numerical solution of 
one-space dimensional nonlinear wave equation with strong stability preserving time 
integration [3], numerical solution based on shifted Legendre tau technique for solving one-
dimensional wave equation with an integral condition [4], numerical solution of one-
dimensional heat and wave equation by non-polynomial quintic spline method [5] and a 
Galerkin based finite element model has been developed to solve linear second order one 
dimensional inhomogeneous wave equation numerically with accuracy of the developed 
scheme has been analyzed by comparing the numerical solution with exact solution given by 
the authors in [2]. In this paper, we introduce fourth order compact finite difference method 
(CFDM) for solving homogeneous and non-homogeneous one dimensional wave equations.   
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2. Description of the Method 
 
Consider the one dimensional wave equation of the form: 

2 2
2

2 2 ( , ), 0 , 0u uc q x t x l t T
t t

 
     

 
        (1) 

subject to the initial conditions:  

( ,0) ( )u x f x  and  ( ,0) ( )u x g x
t





         (2) 

and with boundary conditions:  
   1(0, ) ( )u t f t   and  2( , ) ( )u l t f t           (3) 

where 2c and l are positive finite real constants, the functions: 
( , ), ( ),q x t f x ( ),g x 1 2( ) and ( )f t f t  are real continuous functions. 

An example of hyperbolic partial differential equation is a one-dimensional wave equation for 
the amplitude function ( , )u x t with position x and time t . In order for this equation to be 
solvable the initial conditions Eq. (2) as well as the boundary conditions Eq. (3) should be 
provided [6]. To describe the scheme, we divide the interval [0, ] and [0, ]l T into N and M 
equal subintervals of mesh length andh k  respectively. 
 
Let 0 1 2 10 , NNx x x x x l       and 0 1 2 10 NNt t t t t T      be the mesh 
points with 0 0and ,jix x ih t t jk    for 1,2, ,i N   and 0,1, ,j M  . Assume 
that ( , )u x t  has continuous higher order partial derivatives on the region[0, ] [0, ]l T . For the 

sake of simplicity, we use ( , ) ( , ), ( , ) ( , )
n n

i j i jn n

u uu x t u i j x t i j
x x
 

 
   

and ( , ) ( , )
n n

i jn n

u ux t i j
t t

 


 
, ( 1n   called nth order derivatives). By using Taylor series 

expression, we have: 
 

2 2 3 3 4 4 5 5

2 3 4 5( 1, ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...
2! 3! 4! 5!

u h u h u h u h uu i j u i j h i j i j i j i j i j
x x x x x
    

       
    

            

 
(4) 

 
2 2 3 3 4 4 5 5

2 3 4 5( 1, ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...
2! 3! 4! 5!

u h u h u h u h uu i j u i j h i j i j i j i j i j
x x x x x
    

       
    

               (5) 
  

2 2 3 3 4 4 5 5

2 3 4 5( , 1) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...
2! 3! 4! 5!

u k u k u k u k uu i j u i j k i j i j i j i j i j
t t t t t

    
       

    
              (6) 
 

2 2 3 3 4 4 5 5

2 3 4 5( , 1) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...
2! 3! 4! 5!

u k u k u k u k uu i j u i j k i j i j i j i j i j
t t t t t

    
       

    
                (7) 
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Subtracting Eq. (5) from Eq. (4) and Eq. (7) from Eq. (6), we obtain the second order finite 
difference ( 1 ( , )cu i j ) for the first derivative of ( , )u i j : 
 

1
1

( 1, ) ( 1, )( , )
2cx

u i j u i ju i j
h

 
  

     and   1
2

( , 1) ( , 1)( , )
2ct

u i j u i ju i j
k

 
  

          

(8) 

where 
2 3 2 3

1 23 3( , ) and ( , )
6 6
h u k ui j i j

x t
  
   

   
 
Similarly, adding Eq. (4) with Eq. (5) and Eq. (6) with Eq. (7), we obtain the second order 
finite difference ( 2 ( , )c u i j ) for the first derivative of ( , )u i j : 
 

2
32

( 1, ) 2 ( , ) ( 1, )( , )cx
u i j u i j u i ju i j

h
 

   
               

(9) 2
42

( , 1) 2 ( , ) ( , 1)( , )ct
u i j u i j u i ju i j

k
 

   
                 (10) 

where 
2 4 2 4

3 44 4( , ) and ( , )
12 12
h u k ui j i j

x t
  

   
   

 
Substituting Eqs. (4) - (7) into Eqs. (9) and (10) yields: 
 

2 2 4
2

52 4( , ) ( , ) ( , ) and
12cx

u h uu i j i j i j
x x

  
  
 

      

 (11)
2 2 4

2
62 4( , ) ( , ) ( , )

12ct
u k uu i j i j i j

t t
  

  
 

       

   (12) 

where 
4 6 4 6

5 66 6( , ) and ( , )
360 360
h u k ui j i j

x t
  

 
   

 
Using from Eq.(1) and successive differentiation, we have: 
 

    
4 2 2 2 2

2 2
4 2 2 2 2 2 2 2 2

1 1 1 1( , ) ( ( , )) ( , ) ( , ) ( , )ct cx
u u q qi j i j i j u i j i j

x c x t c x c c t
     

   
    

     (13) 

    

4 2 2 2 2
2 2 2 2

4 2 2 2 2( , ) ( ( , )) ( , ) ( , ) ( , )ct cx
u u q qi j c i j i j c u i j i j

t t x t t
     

   
    

    (14) 

 
Substituting Eqs. (13) and (14) into Eqs.(11) and (12) respectively, gives: 
 

2 2 2
2 2 2

52 2 2 2

1 1( , ) ( , ) ( , ) ( , )
12cx cx ct

u h qu i j i j u i j i j
x c c x

   
  

      
 

2 2 2
2 2 2 2

62 2( , ) ( , ) ( , ) ( , )
12ct ct cx

u k qu i j i j c u i j i j
t t
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2 2 2 2
2 2 2

52 2 2 2

1 1( , ) ( , ) ( , ) ( , )
12 12cx cx ct

u h h qi j u i j u i j i j
x c c x

    
   

 
   (15)         

2 2 2 2
2 2 2 2

62 2( , ) ( , ) ( , ) ( , )
12 12ct ct cx

u k k qi j u i j c u i j i j
t t

    
   

 
     (16) 

 
Again, substituting Eqs.(15) and (16) into Eq.(1), we obtain: 
 

2 2 2 2
2 2 2 2 2 2 2 2

62 2

2 2

52 2

1( , ) ( , ) ( , ) [ ( , ) ( , )
12 12 12

1 ( , ) ] ( , )
12

ct ct cx cx cx ct
k k q hu i j c u i j i j c u i j u i j

t c
h q i j q i j

c x

      




    




  


 

  

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

6 52 2

2 2 2
2

42 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
12 12 12 12

( , 1) 2 ( , ) ( , 1) ( 1, ) 2 ( , ) ( 1, ) ( 1, )
12

2 ( , )

ct ct cx cx cx ct

ct

k h h q k qu i j c u i j c u i j u i j i j i j c q i j
x t

u i j u i j u i j c k cu i j u i j u i j u i j
k h h

u i j

       

 

 
       

 
   

       

    
2 2 2

2 2
3 2 2

2 2
2

6 52

( 1, ) ( , 1) 2 ( , ) ( , 1) ( , )
12 12

( , ) ( , )
12

cx
h h qu i j c u i j u i j u i j i j
k x

k q i j c q i j
t

 

 


        




  


 
After simplification, we obtain:  

     
     
     

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2
2 2 4 2 2 4

2

( 1, 1) 10 2 ( , 1) ( 1, 1)

2 10 ( 1, ) 20 20 ( , ) 2 10 ( 1, )

( 1, 1) 10 2 ( , 1) ( 1, 1)

12 ( , ) ( , )

h c k u i j h c k u i j h c k u i j

h c k u i j h c k u i j h c k u i j

h c k u i j h c k u i j h c k u i j

qh k q i j h k i j h k
x

          

      

           

 
 



2

72 ( , )q i j
t




              

(17)                                                                                      
where  2 2 2 2

7 6 5 3 412 ( )h k c c         is a local truncation error. 
Eq. (17), can be written as: 
 

 
( 1, 1) ( , 1) ( 1, 1) ( 1, ) ( , )
( 1, ) ( 1, 1) ( , 1) ( 1, 1) ( , )

u i j u i j u i j u i j u i j
u i j u i j u i j u i j H i j

    
   

          
         

       

(18) 
 

for 1,2,3, . . . , 1i N     and    1,2,3, . . . , 1j M   
where  
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2 2 2

2 2 2

2 2 2

2 2 2

2 2
2 2 4 2 2 4

2 2

10 2
2 10
20( )

( , ) 12 ( , ) ( , ) ( , )

h c k
h c k

h c k
h c k

q qH i j h k q i j h k i j h k i j
x t









 

 

 

 

 
  

   

 
For 0j  , using the initial conditions Eq. (2) and central finite difference method, we obtain: 
 

( , 1) ( ,1) 2 ( ,0)uu i u i k i
t


  


         (19) 

 
Using Eq. (19) into Eq. (18) and putting -1i and 1i   in terms of i  at 0j  , we get:  
 

 

2 ( 1,1) 2 ( ,1) 2 ( 1,1) ( 1,0) ( ,0) ( 1,0)

2 ( 1,0) 2 ( ,0) 2 ( 1,0) ( ,0)

u i u i u i u i u i u i
u u uk i k i k i H i
t t t

     

  

        
  

     
  

  

(20)    
      

Thus, using the finite difference schemes given in Eqs. (18) and (20), which is a system  of 
1N  equations that gives an accurate numerical solution of one dimensional wave equation 

implicitly using the matrix inverse method. 

3. Stability and Convergence Analysis 

As cited in [1], [2] and [5], assume that the solution of Eq. (18) at the grid point ( , )ih jk  is: 
 

( , ) j ipu i j e           (21) 
 

where 1p   ,    is a real number and   is a complex number. 
Substituting Eq.(21) into Eq.(18) gives: 

 

 
1 ( 1) 1 1 ( 1) ( 1) ( 1)

1 ( 1) 1 1 ( 1) ( , )

j i p j ip j i p j i p j ip j i p

j i p j ip j i p

e e e e e e

e e e H i j

     

  

     

  

      

    

    

   
 

  1 1

2 2 2 2

( ) ( , )

( ) ( ) ( ) ( , ) 0

j j ip p ip ip p j ip p ip ip p

p p p p p p

e e e e e e e e e e H i j

e e e e e e H i j

         

     

        

         

          

          
 

   2 0a b d   

            

(22) 
 
where  
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2

2

2

,
( ) and

( , )

p p

p p

p p

a e e
b e e
d e e H i j

 

 

 

  

  

  

  

   

   

  

By using Routh Hurtiz criteria and using the transformation [5], 
1
1

z
z

 



 in Eq.(22), we 

have: 
 

2( ) 2( ) ( ) 0a b d a d a b d               (23) 
 

If 1  , then the difference scheme of Eq.(18) is stable. It is sufficient to show that: 

0 and 0b a d    
 

From Eq. (22), 
 

 
 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ) (2 10 ) 20( ) 2 10

2 ( 10 1) 10 ( 2) 10

p p p p

p p p

b e e h c k e h c k e h c k

h e e c k e e c k

   

  

            

      

 

2 2

2

2 2
2 2 2 2 2 2 4 2 2

2 2

( , )
2 2 2 ( , )

2 10 1 2 (2 1) 12 ( , ) ( , ) ( , )

p p p p

p p

p p p p

a d e e e e H i j
e e H i j

q qh e e k c e e h q i j h i j h k i j
x t

   

 

   

     

  

       

   

  
           

Clearly, for sufficiently small k , 0 and 0b a d   . 
Thus, the finite difference scheme given in Eq. (18) is absolutely stable for wave equation. 
Now, expand Eq. (17) in Taylor series and replace the derivatives involving x and t for the 
relation, 
 

  
2 2

2
2 2( , ) ( , ) ( , )u ui j c i j q i j

t x
 

 
 

            (24) 

 
and then we drive the local truncation error. The principal part of the local truncation error of 
the proposed method using Eqs. (10), (12) and (17) for the wave equation is: 
 

2 2 2 2
6 5 3 4

4 6 4 6 2 4 2 4
2 2 2 2

6 6 4 4

4 4
2 4 2 2 4 6 2 2 6

4 4

( , ) 12 ( )

12 ( , ) ( , ) ( , ) ( , )
360 360 12 12

( , ) ( , ) ( )

T i j h k c c

k u h u h u k uh k i j c i j c i j i j
t x x t

u uc h k i j h k i j O h k h k
x t

      

    
        

 
    

 

 

Thus, 0 as and 0.T h k    
So that, the scheme is consistent with the order of 4 2 2 4( )O h k h k . Hence the scheme is 
convergent.    



G.F. Duressa, T.A. Bullo and G.G. Kiltu 

36 
 

4. Numerical Examples  

To validate the applicability of the method, two wave equations have been considered. For 
each N, the point wise absolute errors are approximated by the formula, 

( , ) ( , ) ( , )i jE i j u x t u i j  for 0,1,2, . . . , and 0,1,2, . . . ,i N j M  , where ( , )i ju x t  

and ( , )u i j are the exact and computed approximate solution of the given problem 
respectively, at the nodal point ( , )i j . 

 

Example 1:  Consider the one dimensional wave equation given as [5] 
 

2 0, 0 , 0tt xxu c u x l t      
 

1c  , with initial conditions:  ( ,0) cos( ) and ( ,0) 0tu x x u x    
and boundary conditions:  (0, ) cos( ) and ( , ) cos( )u t t u l t t     

The exact solution for this problem is 
1 1( , ) cos( ( )) cos( ( ))
2 2

u x t x t x t     . The 

numerical solution in terms of point wise absolute errors by comparing with the previous 
method is given in Table 1. 

Table 1: The comparison of absolute errors for Example 1 at different values of the step size 
in the -direction h and time step size k = 0.0001. 

Rashidina and Mohsenyzadeha [5] Our method 

ix  it  Method I Method II h = 0.05 h = 0.025 h = 0.01 h = 0.005 

0.05 0.0003 5e-10 1e-9 1.2279e-12 6.8723e-14 1.1102e-15 1.1102e-15 
0.05 0.0005 1e-10 1e-9 3.4114e-12 1.9107e-13 4.1078e-15 3.9968e-15 
0.1 0.0003 2.1e-9 7e-10 1.0612e-12 6.6391e-14 2.7756e-15 5.5511e-16 
0.1 0.0005 9.7e-9 4e-10 2.9475e-12 1.8463e-13 7.7716e-15 9.9920e-16 
0.2 0.0003 6.2e-9 1e-10 9.1205e-13 5.6843e-14 1.7764e-15 5.5511e-16 
0.2 0.0005 1.3e-8 1e-10 2.5338e-12 1.5843e-13 4.8850e-15 1.3323e-15 
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  Fig. 1. Space-time graph of the solution for Example 1 when 0 5t  ,  0.1k h  . 
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      Fig. 2. Space-time graph of the solution for Example 1, when 0 1t   and  0.1k h  .  
 

Example 2:  Consider the non-homogeneous one dimensional wave equation given in [2] 

 
2 2

2 2 sin , 0u u x x
t x

 
   

   
 
with the boundary conditions:  (0, ) 0 ( , ); 0u t u t t    
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and initial conditions:   ( ,0) sin , ( ,0) sinuu x x x x
t


 


 

Exact solution given as: ( , ) sin (1 sin )u x t x t  . The numerical solution in terms of absolute 
errors is given in Table 2.     

Table 2: The comparison of absolute errors for Example 2 at 0.1 and 0.02h t  .  

Zafar et al. [2] Our Method 

ix  Exact FEM Absolute 
error Fourth order CFDM Absolute 

error 
0.000000000 0.000000000 0.000000000 0.000000000 0 0 
0.314159265 0.315196922 0.314917808 0.000279114 0.3151973325794360 4.1033e-07 
0.628318531 0.599954017 0.599009267 0.000530907 0.5995409541370464 7.8050e-07 
0.942477796 0.825196256 0.824465508 0.000730748 0.8251973298562680 1.0743e-06 
1.256637061 0.970076379 0.969217354 0.000859025 0.9700776414412834 1.2629e-06 
1.57796327 1.019998667 1.019095436 0.000903231 1.019999994553664 1.3279e-06 
1.884955592 0.970076379 0.969217354 0.000859025 0.9700776414412835 1.2629e-06 
2.199114858 0.825196256 0.824465508 0.000730748 0.8251973298562682 1.0743e-06 
2.513274123 0.599954017 0.599009267 0.000530907 0.5995409541370464 7.8050e-07 
2.827433388 0.315196922 0.314917808 0.000279114 0.3151973325794360 4.1033e-07 
3.141582654 0.000000000 0.000000000 0.000000000 0 0 
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Fig. 3. Space-time graph of the solution for Example 2, 0.1 and 0.01h k  .  
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5. Discussion and Conclusion 

In this paper, we presented fourth order compact finite difference method for solving 
quadratic one-dimensional wave equations. To further collaborate the applicability of the 
proposed method; tables of point wise absolute error and graphs have been plotted for 
Examples 1 and 2, for the exact solution versus the numerical solutions at different values of 
mesh size h and k. Table 1, shows the absolute errors obtained by fourth order compact finite 
difference method have been compared with absolute errors obtained by [5] and it show that 
the point wise absolute error decreases as the mesh size h decreases, which in turn shows the 
convergence of the computed solution. Table 2, also shows the absolute errors obtained by the 
present method have been compared with absolute errors obtained by [2]. Generally, the 
present method is computationally: stable, effective, simple to use, convergent and give 
accuracy solution than some previously existing methods.  
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