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Abstract − Recently, for single series, the necessary and sufficient conditions for |C ,0| ⇒
∣∣∣A f

∣∣∣
k

and vise versa, and
∣∣∣A f

∣∣∣⇒ |C ,0|k and vise versa have been established, where 1 < k <∞ and A is a

factorable matrix. The present study extends these results to double summability, and also provides

some new results.

Subject Classification (2020): 40D25, 40F05.

1. Introduction

The summability theory has an important role in applied mathematics, engineering sciences, and analysis

essentially in functional analysis, approximation theory, calculus, quantum mechanics, probability theory,

Fourier analysis. The main purpose of the theory is to assign a limit value for divergent series or sequences

by using a transformation which is given by the most general linear mappings of infinite matrices. The

reason why matrices are used for a general linear operator is that a linear operator from a sequence space

to another one can be given by an infinite matrix. In this regard, the literature in the field of summability

theory continues to develop not only on the generation of sequence spaces through the matrix domain

of a particular matrices such as Hölder, Euler, Cesàro, Hausdorff, Nörlund and weighted mean matrices

and on the investigation of their topological, algebraic structures and matrix transformations but also on

examinations about new series spaces derived by several absolute summability methods from a different

perspective (see, [1–9]). Besides of all these, recently, a many of new article using by double series are also

placed in literature. For instance, in [10], the characterizations of the equivalence |C ,0,0|k ⇔ ∣∣R, pn , qn
∣∣
k

for doubly sequences given by Sarıgöl and the necessary and sufficient conditions for the equivalence of

absolute weighted mean summability methods of doubly infinite series are given in [11],( see also [12–16]).

The main purpose of this paper is to extend certain theorems given by Hazar and Gökçe in [7] to double

infinite series a different approach.
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2. Preliminary

Let
∑

xv be an infinite series of complex numbers with partial sums sn and σαn denote the n−th term of the

Cesàro (C ;α)-transform of s = (sn). If (see [1])

∞∑
n=1

nk−1 |xn |k <∞

then, it is said that the series
∑

xv is summable |C ,0|k ,k ≥ 1.

Let A f = (anv ) be a factorable matrix i.e., the lower triangular with entries

anv =
{

ân av , 0 ≤ v ≤ n

0, v > n
(2.1)

where (ân) and (an) are any sequences of real numbers. The series
∑

xv is said to be summable
∣∣A f

∣∣
k , k ≥ 1,

if
∞∑

n=1
nk−1

∣∣∣∣ân

n∑
v=1

av xv

∣∣∣∣k

<∞ (2.2)

[9].

Let Λ and Γ be two methods of summability. Γ is said to include Λ if every series summable by the method

Λ is also summable by the method Γ and it is written Λ⇒ Γ. Also, Λ and Γ are said to be equivalent if each

methods includes the other and it is writtenΛ⇔ Γ.

Through the whole paper k∗ denotes the conjugate index of k, i.e., 1
k + 1

k∗ = 1. The following theorems are

given by Hazar and Gökçe [7] for single series:

Theorem 2.1. [7] Let 1 < k < ∞ and A be a factorable matrix given by (2.1) such that âv , av ̸= 0 for all v.

Then,
∣∣A f

∣∣
k |⇒ |C ,0| if and only if

∞∑
v=1

1

v

{
1

|âv |
(

1

|av |
+ 1

|av+1|
)}k∗

<∞

Theorem 2.2. [7] Let 1 < k <∞ and A be a factorable matrix. Then, |C ,0|k ⇒ ∣∣A f
∣∣ if and only if

∞∑
v=1

1

v

(
|av |

∞∑
n=v

|ân |
)k∗

<∞

Theorem 2.3. [7] Let 1 ≤ k <∞ and A be a factorable matrix. Then, |C ,0|⇒ ∣∣A f
∣∣
k if and only if

∞∑
n=v

nk−1 |ân av |k =O (1) as v →∞

Theorem 2.4. [7] Let 1 ≤ k < ∞ and A be a factorable matrix such that âv , av ̸= 0 for all v. Then,
∣∣A f

∣∣ ⇒
|C ,0|k if and only if

vk−1

|âv |k
(

1

|av |k
+ 1

|av+1|k
)
=O (1) as v →∞
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For any double sequence
(
xi j

)
, define

∆11xi j = xi j −xi−1, j −xi , j−1 +xi−1, j−1; i , j ≥ 1

Let
∑∑

xi j be a double infinite series with partial sums snm . By tαβnm , we denote the double Cesàro means(
C ,α,β

)
of the double sequence (snm), that is

tαβnm = 1

Aα
n Aβ

m

n∑
i=0

m∑
j=0

Aα−1
n−i Aβ−1

m− j si j (2.3)

where

Aα
0 = 1, Aα

n = (α+1)(α+2) · · · (α+n)

n!
, Aα

−n = 0 for n ≥ 1

The series
∑∑

xi j is said to be summable
∣∣C ;α;β

∣∣
k , k ≥ 1, if

∞∑
n=1

∞∑
m=1

(nm)k−1
∣∣∣∆11tαβnm

∣∣∣k <∞ (2.4)

[12, 13]. In the special case for β= 0 and α= 0 the summability method
∣∣C ;α;β

∣∣
k , reduces to |C ;0;0|k .

A double infinite matrix is called factorable if there exist sequences a(1)
n , â(1)

n , a(2)
n , â(2)

n such that

anmi j =
{

a(1)
i â(1)

n a(2)
j â(2)

m , 0 ≤ i ≤ n,0 ≤ j ≤ m

0, otherwise

where a(1)
n , â(1)

n , a(2)
n , â(2)

n are any sequences of real numbers.

We say that the series
∑∑

xi j is summable
∣∣A f

∣∣
k , k ≥ 1, if

∞∑
n=1

∞∑
m=1

(nm)k−1

∣∣∣∣∣â(1)
n â(2)

m

n∑
i=1

a(1)
i

m∑
j=1

a(2)
j xi j

∣∣∣∣∣
k

<∞ (2.5)

where A is factorable matrix.

Let us consider the space

Lk =
{

x = (xi j ) ∈Ω :
∞∑

i , j=0

∣∣xi j
∣∣k <∞

}
,1 ≤ k <∞

which is the set of double sequences corresponding to the well known space ℓk of single sequences [16],

whereΩ is the set of all double sequences of complex numbers. Also, in the case k = 1 the space reduces to

L , studied by Zeltser [17]. On the other hand, Lk is the Banach space [16] according to its natural norm

∥x∥Lk =
( ∞∑

i , j=0

∣∣xi j
∣∣k

)1/k

,1 ≤ k <∞

and, for k =∞, L∞ is the space of all bounded double sequences, which is a Banach space with the norm

∥x∥L∞ = supi , j

∣∣xi j
∣∣.

The following lemmas play significant role in our paper:
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Lemma 2.5. [14] Let k ≥ 1 and A = (amnr s) be a four dimensional infinite matrix of complex numbers. Then,

A ∈ (L ,Lk ) if and only if
∞∑

m,n=0
|amnr s |k =O(1) as r, s →∞ (2.6)

Lemma 2.6. [14] Let 1 ≤ k <∞ and A=(
amni j

)
be an four dimensional infinite matrix of complex numbers.

Define Wk (A) and wk (A) by

Wk (A) =
∞∑

r,s=0

( ∞∑
m,n=0

|amnr s |
)k

(2.7)

and

wk (A) = sup
M X N

∞∑
r,s=0

∣∣∣∣∣ ∑
(m,n)∈M X N

amnr s

∣∣∣∣∣
k

(2.8)

where M and N are finite subsets of natural numbers. Then, the following statements are equivalent:

i. Wk∗(A) <∞

ii. A ∈ (Lk ,L )

iii. At ∈ (L∞,Lk∗)

iv. wk∗(A) <∞

Lemma 2.7. [11] Let k > 0, (pn) and (qn) are positive sequences such that Pn = p0+p1+...+pn →∞,n →∞,

(P−1 = p−1 = 0). Then, there exists two strictly positive constans M and N , depending only on k, such that

M

Pi−1Q j−1
≤

∞∑
n=i

∞∑
m= j

pn qm

PnP k
n−1QmQk

m−1

≤ N

Pi−1Q j−1

for all i , j ≤ 1, where M , N are independent of (pm), (qn).

3. Main Results

In this section, we prove the following theorems mentioned the relations between the summability methods

|C ,0,0|k ,
∣∣A f

∣∣
k , for several case of k.

Theorem 3.1. Let 1 < k <∞ and A be factorable matrix given by (2.1). Then, |C ,0,0|k ⇒ ∣∣A f
∣∣ if and only if

∞∑
i=1

∞∑
j=1

1

i j

(∣∣∣a(1)
i a(2)

j

∣∣∣ ∞∑
n=i

∞∑
m= j

∣∣â(1)
n â(2)

m

∣∣)k∗

<∞ (3.1)

Proof.

Let ynm = (nm)1/k∗
t 00

nm where
(
t 00

nm

)
is as in (2.3), i.e.,

t 00
nm = 1

A0
n A0

m

n∑
i=0

m∑
j=0

A−1
n−i A−1

m− j si j = xnm

and

Tnm = â(1)
n â(2)

m

n∑
i=1

a(1)
i

m∑
j=1

a(2)
j xi j
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Then, the series
∑∑

xi j is summable
∣∣A f

∣∣ and |C ,0,0|k if and only if (Tnm) ∈L and (ynm) ∈Lk , respectively,

and

Tnm = â(1)
n â(2)

m

n∑
i=1

a(1)
i

m∑
j=1

a(2)
j (i j )−1/k∗

yi j =
∞∑

i=1

∞∑
j=1

cnmi j yi j

where C = (cnmi j ) is defined by

cnmi j =
{

(i j )−1/k∗
a(1)

i a(2)
j â(1)

n â(2)
m , 1 ≤ i ≤ n,1 ≤ j ≤ m

0, otherwise

Therefore, |C ,0,0|k ⇒ ∣∣A f
∣∣ if and only if C = (cnmi j ) ∈ (Lk ,L ), or equivalently, by Lemma 2.6,

∞∑
i=1

∞∑
j=1

1

i j

(∣∣∣a(1)
i a(2)

j

∣∣∣ ∞∑
n=i

∞∑
m= j

∣∣â(1)
n â(2)

m

∣∣)k∗

<∞

which concludes the proof.

Theorem 3.2. Let 1 ≤ k < ∞ and A be factorable matrix such that â(1)
n , a(1)

n , â(2)
n , a(2)

n ̸= 0 for all n. Then,∣∣A f
∣∣⇒|C ,0,0|k if and only if

(nm)k−1∣∣∣â(1)
n â(2)

m

∣∣∣k

 1∣∣∣a(1)
n

∣∣∣k
+ 1∣∣∣a(1)

n+1

∣∣∣k


 1∣∣∣a(2)

m

∣∣∣k
+ 1∣∣∣a(2)

m+1

∣∣∣k

=O (1) (3.2)

as n,m →∞.

Proof.

Let Tnm = ân b̂m

n∑
i=1

ai

m∑
j=1

b j xi j . A few basic calculations give

xnm = 1

a(1)
n a(2)

m

(
Tnm

â(1)
n â(2)

m

− Tn−1,m

â(1)
n−1â(2)

m

− Tn,m−1

â(1)
n â(2)

m−1

+ Tn−1,m−1

â(1)
n−1â(2)

m−1

)
(3.3)

Moreover,

ynm = (nm)1/k∗
t 00

nm = (nm)1/k∗ 1
a(1)

n a(2)
m

(
Tnm

â(1)
n â(2)

m
− Tn−1,m

â(1)
n−1 â(2)

m
− Tn,m−1

â(1)
n â(2)

m−1

+ Tn−1,m−1

â(1)
n−1 â(2)

m−1

)
=

∞∑
i=1

∞∑
j=1

dnmi j Ti j

where D = (dnmi j )

dnmi j =



(nm)1/k∗ 1
a(1)

n a(2)
m â(1)

n â(2)
m

, i = n, j = m

−(nm)1/k∗ 1
a(1)

n a(2)
m â(1)

n−1 â(2)
m

, i = n −1, j = m

−(nm)1/k∗ 1
a(1)

n a(2)
m â(1)

n â(2)
m−1

, i = n, j = m −1

(nm)1/k∗ 1
a(1)

n a(2)
m â(1)

n−1 â(2)
m−1

, i = n −1, j = m −1

Thus, we have
∣∣A f

∣∣⇒|C ,0,0|k if and only if D ∈ (L ,Lk ). It follows from Lemma 2.5 that Equation (3.2) holds.

Corollary 3.3. Let 1 < k < ∞ and A be factorable matrix such that â(1)
n , a(1)

n , â(2)
n , a(2)

n ̸= 0 for all n. Then,∣∣A f
∣∣⇔|C ,0,0|k if and only if Equations (3.1) and (3.2) hold.
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Theorem 3.4. Let 1 < k < ∞ and A be factorable matrix such that â(1)
n , a(1)

n , â(2)
n , a(2)

n ̸= 0 for all n. Then,∣∣A f
∣∣
k ⇒|C ,0,0| if and only if

∞∑
i=1

∞∑
j=1

1
i j

{
1∣∣∣â(1)

i â(2)
j

∣∣∣
(

1∣∣∣a(1)
i a(2)

j

∣∣∣ + 1∣∣∣a(1)
i+1a(2)

j

∣∣∣ + 1∣∣∣a(1)
i a(2)

j+1

∣∣∣ + 1∣∣∣a(1)
i+1a(2)

j+1

∣∣∣
)}k∗

<∞ (3.4)

Proof.

Let T ′
nm = (nm)1/k∗

Tnm . Using (3.3), we have

t 00
nm = 1

a(1)
n a(2)

m

(
(nm)−1/k∗T ′

nm

â(1)
n â(2)

m
− ((n−1)m)−1/k∗T ′

n−1,m

â(1)
n−1 â(2)

m
− (n(m−1))−1/k∗T ′

n,m−1

â(1)
n â(2)

m−1

+ ((n−1)(m−1))−1/k∗T ′
n−1,m−1

â(1)
n−1 â(2)

m−1

)
= ∑

i

∑
j

enmi j T ′
nm

where

enmi j =



(nm)−1/k∗

a(1)
n a(2)

m â(1)
n â(2)

m
, n = i ,m = j

((n−1)m)1/k∗

a(1)
n a(2)

m â(1)
n−1 â(2)

m
, n −1 = i ,m = j

(n(m−1))1/k∗

a(1)
n a(2)

m â(1)
n â(2)

m−1

, n = i ,m −1 = j

((n−1)(m−1))1/k∗

a(1)
n a(2)

m â(1)
n−1 â(2)

m−1

, n −1 = i ,m −1 = j

Then, we get that
∑∑

xi j is summable |C ,0,0| whenever
∑∑

xi j is summable
∣∣A f

∣∣
k if and only if E =

(enmi j ) ∈ (Lk ,L ). So, we imply Equation (3.4) with Lemma 2.6. This concludes the proof.

Theorem 3.5. Let 1 ≤ k <∞ and A be factorable matrix. Then, |C ,0,0|⇒ ∣∣A f
∣∣
k if and only if

∞∑
n=i

∞∑
m= j

(nm)k−1
∣∣∣â(1)

n â(2)
m a(1)

i a(2)
j

∣∣∣k =O (1) as i , j →∞ (3.5)

Since the theorem can be proved by the similar way with Theorem 3.2, it has been left to reader.

Corollary 3.6. Let 1 < k < ∞ and A be factorable matrix such that â(1)
n , a(1)

n , â(2)
n , a(2)

n ̸= 0 for all n. Then,∣∣A f
∣∣
k ⇔|C ,0,0| if and only if Equations (3.4) and (3.5) hold.

It may be noticed that if we take â(1)
n = pn\PnPn−1, a(1)

n = Pn−1 and â(2)
n = qn\QnQn−1, a(2)

n = Qn−1, then

the summability method
∣∣A f

∣∣
k is reduced to the double absolute Riesz summability method

∣∣R, pn , qn
∣∣
k .

Hence, we get the following results:

Corollary 3.7. Let k ≥ 1. Then, |C ,0,0|⇒ ∣∣R, pn , qn
∣∣
k if and only if

∞∑
n=i

∞∑
m= j

(nm)k−1
(

pn qm

PnPn−1QmQm−1

)k

=O

(
1(

Pi−1Q j−1
)k

)

Corollary 3.8. Let k ≥ 1. Then,
∣∣R, pn , qm

∣∣ ⇒ |C ,0,0|k if and only if

(i j )
1/s∗

Pi Q j =O
(
pi q j

)
as i , j →∞
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Moreover, Equations (3.1) and (3.4) are equivalent to

∞∑
i=1

∞∑
j=1

1

i j
<∞

∞∑
i=1

∞∑
j=1

1

i j

(
Pi

pi

)k∗ (
Q j

q j

)k∗

<∞

which are impossible. Thus, we have the following result.

Corollary 3.9. If k > 1, then
∣∣R, pn , qm

∣∣
k ⇏ |C ,0,0| and also |C ,0,0|k ⇏

∣∣R, pn , qm
∣∣.

4. Conclusion

This paper aimed to adapt the summability method
∣∣A f

∣∣
k to double series and extend some theorems given

for single series to double series. The relations between other summability methods and
∣∣A f

∣∣
k are worth

studying.
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