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Abstract. The two-parameter exponential distribution is often used to model
the lifetime of a product. The comparison of the mean lifetimes of several

products is a main concern in reliability applications. In this study, the per-
formance of the methods to compare the mean lifetimes of several products

based on generalized p-value, parametric bootstrap, and fiducial approach are

compared in the presence of outliers. The results of Monte-Carlo simulations
clearly indicate that there is no uniformly powerful test. The parametric boot-

strap test is superior to the others except in the case of the lower number of

groups and the presence of outliers. An illustrative example of testing the
equality lifetimes of a component is given to perform the proposed tests. The

considered tests are implemented in an R package doex.

1. Introduction

Testing equality of means of several normal populations under unequal variances
is a very common Behrens-Fisher-type problem in social sciences, agriculture, bi-
ology, etc. The generalized p-value method is used to solve this problem [1]. The
generalized F-test is proposed using the generalized p-value method, and its mod-
ifications for non-normality caused by outliers are improved by Cavus et al. [2],
caused by skewness by Cavus et al. [3], and performed in a real data application
by Cavus et al. [4]. Moreover, there are few parametric methods for testing the
equality of means of skewed populations. Tian and Wu [5] proposed a generalized
p-value approach for log-normal populations, Tian [6], Ma and Tian [7] improved
procedures for inverse Gaussian and Niu et al. [8] proposed a generalized p-value
procedure for Birbaum-Saunders distributions.
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The two-parameter exponential distribution is used in many real-life problems
such as modeling extreme rainfalls, the lifetime of a component, the service time
of an agent, and so on. Ghosh and Razmpour [9] indicated that two-parameter
exponential distribution is used to model the guaranteed time with unknown and
possibly unequal failure rates in reliability and life testing. There are some proce-
dures improved for the two-parameter exponential distribution. Chen [10] proposed
a range statistic for comparing location parameters of two-parameter exponential
distributions. Singh [11] derived a likelihood ratio test for testing the equality of
location parameters of two-parameter exponential distributions based on Type II
censored samples under unknown scales. Kambo and Awad [12] proposed a test
statistic based on doubly censored samples to test the equality of location parame-
ters of k exponential distributions when the scale parameter is unknown. Hsieh [13]
proposed an exact test for comparing location parameters simultaneously of sev-
eral two-parameter exponential distributions under unequal scale parameters with
unknown scale parameters. Vaughan and Tiku [14] extended the test developed by
Tiku and Vaughan [15] for k > 2 populations for testing equality of location pa-
rameters of two-parameter exponential populations from censored samples. Ananda
and Weerahandi [16] proposed a testing procedure based on generalized p-values
for testing the difference between two exponential means. Wu [17] proposed a one-
stage multiple comparison procedure for comparing k − 1 treatment exponential
mean lifetimes with the control based on doubly censored samples under unequal
scales. Malekzadeh and Jafari [18] proposed some procedures based on generalized
p-values, parametric bootstrap, and fiducial approaches by using Cochran type test
statistics for testing the means of several two-parameter exponential distributions
under progressively Type II censoring. The two-parameter exponential distribution
has scale and location parameters. In the testing equality of means of two-parameter
exponential distributions, the scale parameter is a nuisance parameter when it is
unknown or unequal. Therefore, the considered problem turns into a Behrens-
Fisher-type problem. There is no study on the testing equality of two-parameter
exponentially distributed population means for complete data in the presence of
outliers.

The article discusses the testing equality means of k two-parameter exponentially
distributed populations for complete data in the presence of outliers. In the next
section, the procedures proposed by Malekzadeh and Jafari [18] are introduced. A
Monte-Carlo simulation study is conducted for comparing the performances of these
tests for complete data in the presence of outliers in Sec 3. To show the efficiency
of the tests, illustrative examples are given in Sec 4. The results are discussed in
the last section.
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2. Methodology

In this section, methods proposed by Malekzadeh and Jafari [18] are introduced.
The probability density function of the two-parameter exponential distribution is
given in (1).

f(x; a, b) =
1

a
exp

{
− x− b

a

}
, x > b, a > 0 (1)

where a is the scale and b is the location parameter. We are interested in the
problem of testing the equality of means of k exponentially distributed populations
for complete data in (2).

H0 : µ1 = µ2 = ... = µk

HA : µi ̸= µj for some i and j where i ̸= j
(2)

Rahman and Pearson [19] revisited the parameter estimations of two-parameter
exponential distribution and conducted a simulation study to compare the perfor-
mance of maximum likelihood, product spacing, and quantile estimation methods.
The uniformly minimum variance unbiased estimators of the two-parameter expo-
nential distribution parameters (Malekzadeh and Jafari, [18]):

â = S/(n− 1) (3)

b̂ = X(1) (4)

where X(1) = min(X1, X2, ..., Xn) and S =
∑n

j=1[Xj −X(1)]. Viveros and Balakr-

ishnan [20] gave the distributions of the following random variables.

W =
2(n− 1)S

a
∼ χ2

(2n−2) and Y =
2n(X(1) − b)

a
∼ χ2

(2) (5)

whereWi and Yi are independent random variables. Cochran [21] type test statistics
are used for Behrens-Fisher problems. Here, it is modified for testing the equality
of two-parameter exponential distributed means under unequal scale parameters.

Tt =

k∑
i=1

niµ̂
2
i

S2
i

−

(∑k
i=1

niµ̂
2
i

S2
i

)2

∑k
i=1

ni

S2
i

(6)

where µ̂ is the mean estimate and S is the scale estimate of the ith population. The
uniformly minimum variance unbiased estimator of µ = a+ b and it can be shown
as in (7).
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µ̂i = Xi(1) +
ni − 1

ni
Si =

ai
2ni

(Wi + Yi) + bi ∼ N(µi, a
2
i /ni) (7)

Tt is used for the rejection rule as a critical value of the Generalized p-value, Para-
metric Bootstrap, and Fiducial Approach test in the following subsections.

2.1. Generalized p-value (GP) Based Test. The generalized p-value method
is used to derive the test statistics in the presence of nuisance parameters. Weera-
handi [22] proposed the Generalized F-test for testing the equality of several popu-
lations’ means under unequal variances instead of the Classical F-test. Also, many
researchers used this method to derive test statistics for several distributions. In
this method, firstly sufficient statistics of parameters of the related distribution are
obtained. Using the sufficient statistics of the two-parameter exponential distri-
bution, (i) Ri can be obtained independently from the nuisance parameter, and,
(ii) since the observed λi values are independent of the nuisance parameter θi,
generalized pivot value can be estimated.

Ri = Xi(1) + (ni − 1)Si(2ni − Yi/niWi) (8)

Expected values of (Xi(1), Si) vector for Ri generalized pivot value and the variance
can be obtained as follows:

µRi = Xi(1) +
(ni − 1)2Si

n2
i − 2ni

(9)

σ2
Ri =

(ni − 1)4S2
i

n2
i (ni − 2)2

( 1

ni − 3

)
(10)

Cochran test statistic can be obtained as in (11) using expected value of Ri gener-
alized pivot and the variance of it.

TGP =

k∑
i=1

(Ri − µRi)
2

σ2
Ri

−

(∑k
i=1

Ri−µRi

σ2
Ri

)
∑k

i=1
1

σ2
Ri

(11)

The rejection rule is H0 is in (2) rejected when TGP > Tt. The p-value of the GP
test is computed at least 10.000 Monte-Carlo runs as pGP = P (TGP ≥ Tt).
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2.2. Parametric Bootstrap (PB) Based Test. Krishnamoorthy et al. [23] pro-
pose the parametric bootstrap method for testing the equality of normal population
means under heteroscedasticity. Let Yi ∼ χ2

(2) and Wi ∼ χ2
(2ni−2). The PB test

statistic is in (12) obtained for complete data from Malekzadeh and Jafari [18] using
the Cochran statistic.

TPB =

k∑
i=1

niµ
2
Bi

S2
Bi

−

(∑k
i=1

niµ
2
Bi

S2
Bi

)2

∑k
i=1

ni

S2
Bi

(12)

where µBi = (Si/2ni)(Wi + Yi) and SBi = SiWi/(2ni − 2). The rejection rule is
H0 is in (2) rejected when TPB > Tt. The p-value of the PB test is computed at
least 10.000 Monte-Carlo runs as pPB = P (TPB ≥ Tt).

2.3. Fiducial Approach (FA) Based Test. Li et al. [24] used the fiducial ap-
proach for testing the equality of several populations’ means under unequal vari-
ances. Let Yi ∼ χ2

(2) and Wi ∼ χ2
(2ni−2), and Si functions can be rewritten as

random samples:

Si =
aiWi

2(ni − 1)
, Xi(1) =

aiYi

2ni
+ bi (13)

Parameter estimations are obtained as follows by using the observed values of
(Xi(1), Si)

bi = Xi(1) −
(ni − 1)SiYi

niWi
, ai =

2(ni − 1)Si

Wi
(14)

Using Cochran test statistic, TFA can be written as in (15).

TFA =

k∑
i=1

fini

Sin2
iW

2
i

−

(∑k
i=1

fi
S2
i niWi

)2

∑k
i=1

ni

S2
i

(15)

where fi = (ni−1)(WiYi−2niWi). The rejection rule is H0 is in (2) rejected when
TPB > Tt. The p-value of the FA test is computed at least 10.000 Monte-Carlo
runs as pFA = P (TFA ≥ Tt).

3. Monte-Carlo Simulation Study

In this section, we provide some of our comprehensive simulation study results.
The GP, PB, and FA tests, as introduced in the previous subsections, are compared
in terms of penalized power and Type I error probability when the nominal level
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of the test is taken as α0 = 0.05 under different sample sizes and scale parameters.
The configuration of the outliers is determined similarly to the illustrative examples
in the next section. The first and third groups consist of outlier one each which is
five and three times higher than the group median, respectively in k = 3 groups
design while the second, third, and fourth groups consist of an outlier one each
which is one and a half times higher than the group median, respectively in k = 4
groups design.

It is known that Monte-Carlo simulation studies are used to compare the per-
formance of the tests in terms of power and Type I error probability. However, any
comparison of the powers is invalid when Type I error probabilities are different.
Cavus et al. [25] proposed the penalized power approach in (16) to compare the
power of the tests when Type I error probabilities are different.

γi =
1− βi√

1 + |1− αi

α0
|

(16)

where βi is Type II error rate, αi is Type I error of the test and α0 is the nominal
level. Penalized power adjusts the power function with the square root of the
percentile deviation between Type I error probability and the nominal level. Thus,
penalized power is used to compare the power of the tests in the simulation studies.
The simulations are performed for balanced and unbalanced designs with doex

package implemented by Cavus and Yazici [26] and Cavus and Yazici [27] in R, and
the results are based on 10.000 Monte-Carlo runs. The results of the simulations
are given in the following subsections.

3.1. Type I Error Probability Results. Table 1 shows the Type I error prob-
abilities of the tests under scale parameters 2 and 5 for small, moderate, and large
samples with and without outliers. The GP and FA test can not control Type I
error probability in small samples for α0 = 0.05 while the PB test controls Type
I error probability under unbalanced design ni = (5, 10, 15). The performance of
the PB test to control the Type I error probability is not similar in the presence
of outliers. It does not control the Type I error probability and shows a more
conservative performance than the design without outliers. The FA and GP test
generally has Type I errors close to each other and are more conservative than the
PB test. In the presence of outliers, the performance of the GP and FA tests are
affected negatively also and show more conservative performance. The PB test per-
forms better than the others in moderate and large samples and controls the error.
The performance of the GP and FA test is getting better in large and moderate
samples. The performance of the test on controlling the Type I error probability is
getting better when the number of groups (k) is increased. Even if the presence of
outliers negatively affects the performance of all tests to control the Type I error
probability, the increase in sample size eliminates this negative effect for GP and
PB tests.
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Table 1. Type I error probabilities for α0 = 0.05

without outliers with outliers

k ni ai bi GP PB FA GP PB FA

3 10, 10, 10 2, 2, 2 1, 1, 1 0.0061 0.0087 0.0010 0.0130 0.0100 0.0005
5, 5, 5 0.0065 0.0101 0.0014 0.0090 0.0095 0.0001

8, 10, 12 2, 2, 2 0.0068 0.0128 0.0021 0.0140 0.0030 0.0008
5, 5, 5 0.0083 0.0139 0.0025 0.0130 0.0030 0.0002

5, 10, 15 2, 2, 2 0.0144 0.0436 0.0072 0.0120 0.0003 0.0009
5, 5, 5 0.0129 0.0439 0.0079 0.0070 0.0003 0.0008

30, 30, 30 2, 2, 2 0.0269 0.0407 0.0201 0.0410 0.0580 0.0310
5, 5, 5 0.0298 0.0462 0.0223 0.0330 0.0540 0.0280

24, 30, 36 2, 2, 2 0.0309 0.0453 0.0236 0.0440 0.0530 0.0260
5, 5, 5 0.0298 0.0450 0.0229 0.0350 0.0500 0.0210

15, 30, 45 2, 2, 2 0.0332 0.0487 0.0242 0.0380 0.0390 0.0220
5, 5, 5 0.0325 0.0528 0.0248 0.0350 0.0320 0.0150

50, 50, 50 2, 2, 2 0.0365 0.0473 0.0310 0.0480 0.0650 0.0440
5, 5, 5 0.0348 0.0455 0.0302 0.0432 0.0604 0.0360

40, 50, 60 2, 2, 2 0.0359 0.0493 0.0319 0.0490 0.0570 0.0360
5, 5, 5 0.0368 0.0498 0.0309 0.0470 0.0540 0.0320

25, 50, 75 2, 2, 2 0.0392 0.0494 0.0308 0.0460 0.0465 0.0320
5, 5, 5 0.0407 0.0512 0.0339 0.0430 0.0410 0.0283

4 10, 10, 10, 10 2, 2, 2, 2 1, 1, 1, 1 0.0054 0.0094 0.0007 0.0070 0.0100 0.0010
5, 5, 5, 5 0.0052 0.0090 0.0006 0.0060 0.0100 0.0010

7, 9, 11, 13 2, 2, 2, 2 0.0086 0.0165 0.0029 0.0070 0.0170 0.0030
5, 5, 5, 5 0.0083 0.0162 0.0027 0.0070 0.0170 0.0030

5, 8, 12, 15 2, 2, 2, 2 0.0120 0.0337 0.0059 0.0050 0.0360 0.0080
5, 5, 5, 5 0.0121 0.0332 0.0056 0.0050 0.0360 0.0080

30, 30, 30, 30 2, 2, 2, 2 0.0256 0.0404 0.0183 0.0270 0.0450 0.0220
5, 5, 5, 5 0.0252 0.0399 0.0180 0.0280 0.0460 0.0210

21, 27, 33, 39 2, 2, 2, 2 0.0320 0.0486 0.0218 0.0250 0.0430 0.0220
5, 5, 5, 5 0.0310 0.0481 0.0213 0.0280 0.0440 0.0220

15, 24, 36, 45 2, 2, 2, 2 0.0319 0.0489 0.0245 0.0260 0.0510 0.0300
5, 5, 5, 5 0.0314 0.0482 0.0241 0.0260 0.0520 0.0300

50, 50, 50, 50 2, 2, 2, 2 0.0317 0.0444 0.0273 0.0360 0.0490 0.0300
5, 5, 5, 5 0.0314 0.0442 0.0271 0.0360 0.0500 0.0320

35, 45, 55, 65 2, 2, 2, 2 0.0312 0.0443 0.0264 0.0330 0.0500 0.0320
5, 5, 5, 5 0.0310 0.0442 0.0261 0.0340 0.0520 0.0310

25, 40, 60 ,75 2, 2, 2, 2 0.0360 0.0492 0.0299 0.0290 0.0460 0.0320
5, 5, 5, 5 0.0350 0.0488 0.0295 0.0290 0.0450 0.0320

3.2. Penalized Power Results. Table 2 shows the results of penalized powers of
the tests in the case of k = 3 for several effect sizes and sample sizes. Recall from
Table 1 that the GP and FA tests are very conservative in terms of Type I error
probability, while the PB test successfully controls the Type I error probability.
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The penalized power results show that the PB test is more powerful than the GP
and FA test in most of the scenarios except the case of unbalanced small sample
size designs. In higher effect sizes for large samples, penalized power of the tests
are higher than 0.85. Also, their performances are better in unbalanced designs
than in balanced designs. The performance of the GP and PB tests is affected
negatively when the scale parameter is increased while the performance of the FA
test is positively affected without outliers. It is seen that the power of the tests
decreases in the case of θi = 5. For example, the power of the PB test is 0.99 in the
case of θi = 3 and 0.96 in θi = 5, it is the biggest difference between the tests. It
is concluded that the effect of the higher scale parameter on the PB test is higher
than the others. However, the penalized power of the PB test is the highest in
most of the scenarios followed by the GP test and the FA test. When the power
of the tests is evaluated according to whether there is an outlier or not, it is seen
that the GP and FA tests are higher in the case of outliers than in the case of no
outliers, and the contrary, the power of the PB test is lower. The result is that PB
is the uniformly most powerful test in the non-presence of an outlier, and GP is the
uniformly most powerful test in the case of an outlier.

Table 3 shows the results of penalized powers for k = 4. Unlike the results in
Table 2, the most powerful test is the PB, the second is GP and the last one is the
FA test in the presence and non-presence of outliers. The increase in the number of
groups affects the penalized power of the tests negatively in small samples in most
of the scenarios. Only the performance of the PB test is better than the case of
k = 3 in large samples and it is obtained that the least affected test is the PB test.

When the results given in Tables 2 and 3 are examined, the effect of the design
configurations such as the presence of outliers and the number of groups on the
performance of the tests differs. Therefore, when using tests, the reliability of their
results should be carefully examined.

4. Illustrative Examples

In this section, the GP, PB, and FA tests are applied to two real data examples
to compare their results in hypothesis testing.

Example 1. Data consists of the lifetimes of a component are different brands in
a refrigerator which is collected from a local factory in Turkey and it is available in
doex package in R as component data. It is known that the lifetime data generally
follows the exponential distribution. However, to make sure of this, the Cramer-von
Mises (CvM) goodness-of-fit test is used to test whether the data follows the two-
parameter exponential distribution. As a result of the CvM test, the p-value 0.6786
shows there is not enough evidence to reject the null hypothesis indicating that the
data follows a two-parameter exponential distribution at the 0.05 significance level.
The sample size of the data is n1 = 15, n2 = 49, n3 = 54, n4 = 12. The estimates

of the location parameters are b̂1 = 8.38, b̂2 = 8.40, b̂3 = 8.41, b̂4 = 8.62 and the
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Table 2. Penalized power results for k = 3

without outliers with outliers

ni ai bi GP PB FA GP PB FA

10, 10, 10 2, 2, 3 1, 1, 1 0.0101 0.0143 0.0021 0.0280 0.0193 0.0028
2, 2, 4 0.0254 0.0334 0.0055 0.0515 0.0432 0.0070
2, 2, 5 0.0429 0.0581 0.0097 0.0864 0.0648 0.0155

8, 10, 12 2, 2, 3 0.0245 0.0342 0.0039 0.0434 0.0150 0.0281
2, 2, 4 0.0622 0.0779 0.0096 0.1006 0.0358 0.0091
2, 2, 5 0.1181 0.1386 0.0177 0.1890 0.0746 0.0141

5, 10, 15 2, 2, 3 0.0559 0.1119 0.0147 0.0889 0.0028 0.0001
2, 2, 4 0.1590 0.2180 0.0265 0.2231 0.0042 0.0002
2, 2, 5 0.3010 0.3475 0.0413 0.3572 0.0106 0.0004

30, 30, 30 2, 2, 3 0.1610 0.2420 0.1253 0.2062 0.2748 0.1489
2, 2, 4 0.4997 0.6363 0.4303 0.5790 0.6685 0.4860
2, 2, 5 0.7297 0.8488 0.6697 0.8220 0.8718 0.7320

24, 30, 36 2, 2, 3 0.2444 0.3225 0.1755 0.3061 0.3418 0.1824
2, 2, 4 0.6301 0.7455 0.5232 0.7238 0.7653 0.5392
2, 2, 5 0.8083 0.9180 0.7411 0.8976 0.9285 0.7587

15, 30, 45 2, 2, 3 0.3307 0.4043 0.2160 0.3681 0.3023 0.1905
2, 2, 4 0.7178 0.8277 0.5868 0.7696 0.7360 0.5572
2, 2, 5 0.8447 0.9643 0.7630 0.8791 0.8800 0.7429

50, 50, 50 2, 2, 3 0.3808 0.4686 0.3422 0.4324 0.4323 0.3968
2, 2, 4 0.8119 0.9107 0.7675 0.8835 0.8068 0.8400
2, 2, 5 0.8812 0.9700 0.8447 0.9776 0.8761 0.9420

40, 50, 60 2, 2, 3 0.4722 0.5521 0.4015 0.5069 0.4842 0.3836
2, 2, 4 0.8448 0.9522 0.8029 0.9356 0.8860 0.8158
2, 2, 5 0.8821 0.9921 0.8549 0.9881 0.9347 0.8812

25, 50, 75 2, 2, 3 0.5582 0.6071 0.4440 0.5831 0.5263 0.3910
2, 2, 4 0.8840 0.9662 0.8103 0.9343 0.9276 0.8077
2, 2, 5 0.9063 0.9937 0.8489 0.9593 0.9593 0.8532

10, 10, 10 5, 5, 6 1, 1, 1 0.0215 0.0234 0.0164 0.0133 0.0111 0.0007
5, 5, 8 0.0298 0.0321 0.0266 0.0266 0.0200 0.0042
5, 5, 10 0.0419 0.0436 0.0369 0.0385 0.0422 0.0070

8, 10, 12 5, 5, 6 0.0356 0.0367 0.0349 0.0121 0.0071 0.0003
5, 5, 8 0.0651 0.0642 0.0622 0.0447 0.0172 0.0028
5, 5, 10 0.1046 0.1051 0.1023 0.0932 0.0394 0.0084

5, 10, 15 5, 5, 6 0.0221 0.0631 0.0094 0.0256 0.0002 0.0001
5, 5, 8 0.0726 0.1325 0.0171 0.0997 0.0007 0.0003
5, 5, 10 0.1577 0.2186 0.0266 0.1994 0.0063 0.0005

30, 30, 30 5, 5, 6 0.1509 0.1628 0.1329 0.0587 0.0991 0.0458
5, 5, 8 0.4060 0.4592 0.3732 0.2531 0.3791 0.1975
5, 5, 10 0.5755 0.6553 0.5404 0.5425 0.6908 0.4783

24, 30, 36 5, 5, 6 0.0758 0.0868 0.0742 0.0789 0.1090 0.0477
5, 5, 8 0.2967 0.3371 0.2831 0.3552 0.4340 0.2426
5, 5, 10 0.5172 0.5825 0.4921 0.6718 0.7910 0.5234

15, 30, 45 5, 5, 6 0.0886 0.1306 0.0588 0.1157 0.0866 0.0467
5, 5, 8 0.4225 0.4979 0.2934 0.4481 0.3798 0.2316
5, 5, 10 0.7141 0.8159 0.5891 0.7481 0.7022 0.5307

50, 50, 50 5, 5, 6 0.2984 0.3276 0.2862 0.1058 0.1314 0.0848
5, 5, 8 0.6130 0.6734 0.5938 0.5366 0.5741 0.4347
5, 5, 10 0.6634 0.7277 0.6399 0.8419 0.8389 0.7866

40, 50, 60 5, 5, 6 0.1163 0.1323 0.1123 0.1233 0.1299 0.0771
5, 5, 8 0.4950 0.5549 0.4724 0.6313 0.6350 0.4956
5, 5, 10 0.6630 0.7370 0.6277 0.9188 0.9160 0.7914

25, 50, 75 5, 5, 6 0.1498 0.1752 0.1097 0.1760 0.1445 0.0958
5, 5, 8 0.6815 0.7300 0.5755 0.7024 0.6379 0.5091
5, 5, 10 0.8951 0.9605 0.8291 0.9122 0.8920 0.7883
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Table 3. Penalized power results for k = 4

without outliers with outliers

ni ai bi GP PB FA GP PB FA

10, 10, 10, 10 2, 2, 2, 3 1, 1, 1, 1 0.0086 0.0130 0.0016 0.0102 0.0134 0.0021
2, 2, 2, 4 0.0149 0.0262 0.0028 0.0146 0.0283 0.0049
2, 2, 2, 5 0.0227 0.0406 0.0050 0.0175 0.0402 0.0063

7, 9, 11, 13 2, 2, 2, 3 0.0196 0.0319 0.0037 0.0117 0.3182 0.0050
2, 2, 2, 4 0.0554 0.0687 0.0075 0.0263 0.0651 0.0100
2, 2, 2, 5 0.1074 0.1142 0.0112 0.0703 0.1086 0.0122

5, 8, 12, 15 2, 2, 2, 3 0.0417 0.0651 0.0090 0.0224 0.0707 0.0103
2, 2, 2, 4 0.1214 0.1242 0.0133 0.0783 0.1149 0.0154
2, 2, 2, 5 0.2425 0.1924 0.0177 0.1784 0.1829 0.0243

30, 30, 30, 30 2, 2, 2, 3 0.1254 0.2023 0.0893 0.1191 0.2011 0.0880
2, 2, 2, 4 0.4084 0.5593 0.3302 0.4063 0.5987 0.3226
2, 2, 2, 5 0.6623 0.8024 0.5852 0.6728 0.8552 0.6108

21, 27, 33, 39 2, 2, 2, 3 0.2598 0.3147 0.1527 0.2490 0.3175 0.1457
2, 2, 2, 4 0.6636 0.7661 0.4834 0.6385 0.7258 0.4931
2, 2, 2, 5 0.8200 0.9441 0.7182 0.7928 0.9075 0.7229

15, 24, 36, 45 2, 2, 2, 3 0.3263 0.3573 0.1700 0.3041 0.3584 0.1656
2, 2, 2, 4 0.7321 0.8051 0.5376 0.7052 0.8178 0.5628
2, 2, 2, 5 0.8416 0.9591 0.7532 0.8104 0.9693 0.7885

50, 50, 50, 50 2, 2, 2, 3 0.3099 0.4026 0.2720 0.3394 0.4455 0.2974
2, 2, 2, 4 0.7457 0.8605 0.7083 0.7919 0.9158 0.7428
2, 2, 2, 5 0.8467 0.9413 0.8191 0.8785 0.9861 0.8383

35, 45, 55, 65 2, 2, 2, 3 0.4899 0.5281 0.3750 0.4941 0.5520 0.3918
2, 2, 2, 4 0.8284 0.9155 0.7753 0.8396 0.9650 0.8094
2, 2, 2, 5 0.8508 0.9459 0.8213 0.8630 0.9990 0.8566

25, 40, 60 75 2, 2, 2, 3 0.5669 0.5865 0.4151 0.5412 0.5725 0.4347
2, 2, 2, 4 0.8643 0.9664 0.8084 0.8299 0.9439 0.8309
2, 2, 2, 5 0.8770 0.9878 0.8415 0.8391 0.9622 0.8574

10, 10, 10, 10 5, 5, 5, 6 1, 1, 1, 1 0.0058 0.0077 0.0008 0.0051 0.0111 0.0007
5, 5, 5, 8 0.0102 0.0154 0.0017 0.0123 0.0149 0.0028
5, 5, 5, 10 0.0149 0.0262 0.0028 0.0145 0.0290 0.0049

7, 9, 11, 13 5, 5, 5, 6 0.0099 0.0196 0.0026 0.0080 0.0209 0.0028
5, 5, 5, 8 0.0254 0.0381 0.0045 0.0139 0.0388 0.0057
5, 5, 5, 10 0.0554 0.0686 0.0075 0.0293 0.0667 0.0100

5, 8, 12, 15 5, 5, 5, 6 0.0160 0.0406 0.0060 0.0094 0.0477 0.0081
5, 5, 5, 8 0.0539 0.0758 0.0098 0.0340 0.0786 0.0117
5, 5, 5, 10 0.1207 0.1244 0.0133 0.0834 0.1131 0.0154

30, 30, 30, 30 5, 5, 5, 6 0.0356 0.0649 0.0255 0.0408 0.0692 0.0326
5, 5, 5, 8 0.1697 0.2679 0.1265 0.1608 0.2780 0.1209
5, 5, 5, 10 0.4089 0.5607 0.3302 0.4100 0.6100 0.3222

21, 27, 33, 39 5, 5, 5, 6 0.0703 0.1044 0.0413 0.0691 0.0992 0.0440
5, 5, 5, 8 0.3486 0.4173 0.2074 0.3508 0.4204 0.2113
5, 5, 5, 10 0.6680 0.7676 0.4840 0.6558 0.7370 0.4963

15, 24, 36, 45 5, 5, 5, 6 0.0828 0.1161 0.0473 0.0723 0.1108 0.0532
5, 5, 5, 8 0.4269 0.4626 0.2380 0.4035 0.4696 0.2484
5, 5, 5, 10 0.7331 0.8067 0.5380 0.7069 0.8109 0.5654

50, 50, 50, 50 5, 5, 5, 6 0.0707 0.1042 0.0590 0.0830 0.1240 0.0728
5, 5, 5, 8 0.4171 0.5298 0.3764 0.4498 0.5810 0.3999
5, 5, 5, 10 0.7452 0.8605 0.7103 0.7910 0.9260 0.7554
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estimates of the scale parameters are â1 = 1.47, â2 = 1.60, â3 = 1.82, â4 = 1.80,
respectively. It is clearly seen that the scale parameters are different. The lifetimes
of the brands are given in Figure 1. The boxplots show that the groups referenced
as Brands 2-4 consist of outliers. These outliers are higher than one and a half times
higher than the medians. Testing the mean lifetimes of the components under scale
parameters, GP, PB, and FA tests are performed by using the doex.
The p-value of the GP, PB, and FA tests are 0.6807, 0.7471, and 0.7545, respec-
tively. Thus, there is no evidence to reject the null hypothesis at α0 = 0.05 and
concluded that the mean lifetimes of the components produced by different brands
are not different. It is seen that the PB test can control the Type I error probability
very close to the nominal level, in the unbalanced moderate, low-scale parameter
and outlier design in Table 1. Therefore, it can be said that the results obtained in
this example are reliable.

Example 2. In this example, the equality of mean agricultural income of the
geographical regions in Turkey is considered. Agricultural incomes of the Central
Anatolia (CA), Eastern Anatolia (EA), and Southeastern Anatolia (SA) regions in
2017 are considered and the data is obtained from the Turkish Statistical Insti-
tute Database. The Cramer-von Mises (CvM) goodness-of-fit test is used to test
whether the data follows the two-parameter exponential distribution. As a result
of the CvM test, the p-value 0.4005 shows there is not enough evidence to reject
the null hypothesis indicating that the data follows a two-parameter exponential
distribution at the 0.05 significance level. The number of city in the geographical
regions are nCA = 13, nEA = 14, and nSA = 9. The estimates of the location

parameters are b̂CA = 0.7503, b̂EA = 0.3649, b̂SA = 0.5811, and the estimates of
the scale parameters are âCA = 2.2122, âEA = 1.0558, âSA = 1.7988, respectively.
The agricultural income of the geographical regions in Turkey is given in Figure 2.
The boxplots show that the groups referenced as CA and SA consist of outliers.
The outlier in the geographical region of CA is five times higher than the median
while the outlier in the geographical region of SA is three times higher than its
median. Testing the mean income of the geographical regions under unequal scale
parameters, GP, PB, and FA tests are performed.
The p-value of the GP, PB, and FA tests are 0.0816, 0.0881, and 0.1489, respec-
tively. Thus, there is enough evidence to reject the null hypothesis at α0 = 0.10
and concluded that the mean incomes of the geographical regions are not differ-
ent according to the results of the GP and PB test. In Table 2, the GP and PB
tests are more powerful than the FA test, that’s why it can be said that the re-
sults of these two tests are more reliable than the FA test in the presence of outliers.
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Figure 1. Lifetime of the components in years

Figure 2. Agricultural income of the geographical regions in Turkey
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5. Results and Conclusions

The generalized p-value, parametric bootstrap, and fiducial approach-based test
proposed by Malekzadeh and Jafari [18] can be used for complete data. The perfor-
mance of the tests was compared in terms of Type I error probability and penalized
power for complete data and the most powerful test is determined. The results are
obtained in balanced and unbalanced designs for small, moderate, and large sam-
ples in the presence of outliers. The simulation results clearly show that the PB
test is superior to the others to control the Type I error probability and penalized
power in most of the cases. Only in the presence of outliers, the GP test is more
powerful than the PB test in k = 3 group designs. There are also some interesting
results obtained such as the negative effect of the balanced designs and higher scale
parameters on the performance of the tests. Moreover, illustrative examples are
given to perform the tests on a real data example. It is concluded that the life-
times of the components are not statistically significant. In this study, the PB test
is obtained as a powerful test for testing the equality of exponentially distributed
populations’ means under unequal scale parameters and it can be safely used in
reliability analysis, modeling extreme events, sequential analysis, and income in-
equality.
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