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Introduction 

Metaheuristic algorithms have gained unexpectedly 

widespread popularity in recent years. Their proficiency in 

tackling several optimization challenges has resulted in this 

development [1]. Among the popular metaheuristic 

optimization algorithms in the literature are particle swarm 

optimization, genetic algorithms, differential evolution 

algorithms, and ant colony algorithms, as well as algorithms 

such as Grey Wolf Optimizer [2], Equilibrium Optimizer 

[3], Archimedes Optimization Algorithm [4], Spotted 

Hyena Optimizer [5], Aquila Optimizer [6], and Slime 

Mold Optimization Algorithm (SMA) [7], which were 

proposed in recent years. While each metaheuristic 

algorithm has distinct benefits, no method, according to the 

no-free lunch theorem, can handle all optimization 

problems. The performance of a metaheuristic algorithm is 

largely determined by its capacity for exploration and 

exploitation [8]. As a result, numerous scholars are 

continually proposing new algorithms and improving upon 

the original method. However, while having various 

appealing properties, it has been noted that these algorithms 

do not always perform as expected. The effectiveness of 

most metaheuristic optimization algorithms is dependent on 

the balance of two opposing aims, exploration and 

exploitation [9]. It is also called exploration and 

exploitation, diversification and intensification. Exploration 

guarantees that all areas of the solution domain are 

sufficiently investigated to provide an approximation of the 

global optimal solution. Exploitation directs the search 

effort toward the most effective solutions that have been 

found up to this point by exploring the environment for 

further options that are more effective. These two objectives 

are addressed by search algorithms that use local search 

techniques, global search approaches, or a combination of 

both local and global searches: these algorithms are 

frequently referred to as hybridization [10].  

Hybridization may take place in a variety of ways, including 

the following: 

• Starting the algorithm with one method and then 

applying the second technique to the final population 

generated with the first technique, 

• Merging the approach's distinctive operators into 

the other technique, 

• Using local search to enhance the answer 

identified by global search, and so on. 

The main motivation for the paper is to examine the 

performance of SMA and different hybrid SMAs in global 
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optimization problems. For this purpose, the leader SMA 

(LSMA) [11] and equilibrium SMA (ESMA) [12] methods 

suggested by Naik et al. were chosen. The performance of 

these three different methods has been examined in the 

current and widely used CEC2020 test suite. The CEC2020 

benchmark problems consist of 10 different optimization 

problems. These are unimodal functions, multimodal 

functions, hybrid functions, and composition functions. 

Furthermore, the performance of these methods was 

examined using different dimension values, and detailed 

analyses were carried out. Thus, the different capabilities of 

the methods obtained as a result of hybridization of a 

current optimization algorithm were compared with each 

other and with the original method in different types of 

problems, and a detailed examination was provided. 

The remainder of the paper is organized as follows: To 

begin with, Section 2 provides an overview of SMA, 

LSMA, and ESMA. Section 3 describes ten distinct 

functions drawn from the CEC2020 test functions. Section 

4 contains the experimental findings for the test functions. 

Finally, in Section 5, conclusions are stated and 

recommendations for further study are made. 

Slime Mould Algorithm 

In this section, SMA, and hybrid versions of SMA, LSMA, 

and ESMA, are explained and their mathematical 

expressions are given. 

Original Slime Mould Algorithm 

The mathematical notation of SMA consists of three steps. 

These are approach food, wrap food, and grabble food. In 

this section, the mathematical structure of SMA is briefly 

explained [13]. 

Approach Food: To describe slime mould's approaching 

behavior as a mathematical equation, the following 

contraction rule is proposed: 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊⃗⃗⃗ ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝
(1) 

where 𝑣𝑏⃗⃗ ⃗⃗  ⃗ is a [−𝑎, 𝑎] parameter, 𝑣𝑐⃗⃗⃗⃗  decreases linearly from 

1 to 0.  𝑡 indicates the current iteration, 𝑋𝑏⃗⃗ ⃗⃗  ⃗ denotes the 

region with the highest concentration of odor, 𝑋  denotes 

slime mould position, 𝑋𝐴⃗⃗ ⃗⃗  and 𝑋𝐵⃗⃗ ⃗⃗   represent two randomly 

chosen swarm members, and 𝑊⃗⃗⃗  represents slime mould 

weight. 

The following is the formula for the variable 𝑝: 

𝑝 = tanh|𝑆(𝑖) − 𝐷𝐹|    (2) 

where 𝑖 ∈ 1,2, … , 𝑛, 𝑆(𝑖) is the 𝑋 ’s fitness, and 𝐷𝐹 is the 

best fitness in all iterations. 

𝑣𝑏⃗⃗⃗⃗  is given below: 

𝑣𝑏⃗⃗⃗⃗ = [−𝑎, 𝑎]     (3) 

𝑎 = arctanh (−(
𝑡

max _𝑡
) + 1)   (4) 

𝑊⃗⃗⃗  formula is given below:  

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

{
1 + 𝑟 ∙ 𝑙𝑜𝑔 (

𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

1 − 𝑟 ∙ 𝑙𝑜𝑔 (
𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

  (5) 

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆)    (6) 

where 𝑆(𝑖) ranks in the top fifty percent of the population, 

𝑟 represents a random value in [0,1], 𝑏𝐹 denotes the best 

fitness in the current iteration phase, 𝑤𝐹 means the worst 

fitness value, 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 specifies the series of sorted 

fitness values. 

Wrap Food: The following equation may be used to update 

the position of slime mold: 

𝑋∗⃗⃗ ⃗⃗  = {

𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧              

𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊 ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) , 𝑟 < 𝑝          

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝                                                         

(7) 

where 𝑟𝑎𝑛𝑑 and 𝑟 stand for the random value in [0,1], and 

𝐿𝐵 and 𝑈𝐵 stand for the lower and upper search range 

limits. 

Grabble Food:  As the number of iterations rises, the value 

of 𝑣𝑏⃗⃗⃗⃗  varies at random between [−𝑎, 𝑎] and eventually 

approaches zero. The value of 𝑣𝑐⃗⃗⃗⃗  varies between [-1,1] and 

finally goes to zero.  

Leader Slime Mould Algorithm 

SMA's primary reliance on the population's two slime 

molds and best leader leads to poor exploitation when more 

convergence iterations are performed. To eliminate this 

situation, LSMA has been proposed [1]. 

According to [2], the updating rule of the SMA 

concentration for the 𝑖-th slime mould 𝑋𝑖(=

{𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑘}) for a 𝑘 dimensional issue from 𝑁 slime 

mould is as follows: 

𝑋∗⃗⃗ ⃗⃗  =

{

𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,       𝑟1 < 𝑧              

𝑋𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) + 𝑉𝑎 . (𝑊. 𝑋𝑅1 − 𝑋𝑅2),     𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 < 𝑝 

        𝑉𝑏 ∙ 𝑋𝑖(𝑡),       𝑟1 ≥ 𝑧 𝑎𝑛𝑑  𝑟2 ≥ 𝑝 

(8) 

and  

𝑋𝑖(1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵   (9) 

The 𝑟1 and 𝑟2 are random values in the range of 0 and 1; 𝑡 

is the current iteration, 𝑈𝐵 and 𝐿𝐵 upper and lower 

boundary of the search space, respectively, 𝑋𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡  is 

the global best concentration current iteration 𝑡, 𝑉𝑎 
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represents the velocity that is spread evenly throughout the 

interval, 𝑉𝑏 represents the velocity that goes from 1 to 0 in 

a linear fashion, 𝑊 represents the weight of the slime 

mould, 𝑋𝑅1 and 𝑋𝑅2 are the two types of slime mould that 

were chosen at random from the population of 𝑁, 𝑝 is the 

probability to determine the slime mould trajectory, 𝑧 is the 

elimination-and-dispersal rate which is fixed at 0:03 and 𝑖 ∈

1, 2, … , 𝑁. 

The performance of the 𝑖-th slime mould is determined by 

its current fitness 𝑓(𝑋𝑖) and by the fitness of the world's 

best concentration 𝑓(𝑋𝐿1), which is formulated as: 

𝑝 = tanh|𝑓(𝑋𝑖) − 𝑓(𝑋𝐿1)|    (10) 

Both the velocity 𝑉𝑎 and the velocity 𝑉𝑏 are equally 

distributed in the [−𝑎, 𝑎] and [−𝑏, 𝑏] ranges, respectively. 

The values of 𝑎 and 𝑏 are as follows: 

𝑎 = arctanh (− (
𝑡

𝑡𝑚𝑎𝑥 
) + 1)   (11) 

and  

𝑏 = 1 −
𝑡

𝑡𝑚𝑎𝑥 
     (12) 

The 𝑊 is calculated using the slime mould's local fitness 

value. Let's rank the 𝑁 slime mould's fitness value for the 

minimization issue in ascending order in iteration 𝑡.  

[𝑠𝑜𝑟𝑡𝑒𝑑𝑓𝑖𝑡𝑛𝑒𝑠𝑠 , 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡(𝑓)  (13) 

where 𝑓 = (𝑓𝑋1), 𝑓(𝑋2),… , 𝑓(𝑋𝑁)) 

The 𝑊 is then calculated as follows: 

𝑊( 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑙) =

{
1 + 𝑟3 ∙ 𝑙𝑜𝑔 (

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓(𝑙)

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡
+ 1) , 1 ≤ 𝑙 ≤

𝑁

2
  

1 − 𝑟3 ∙ 𝑙𝑜𝑔 (
𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓(𝑙)

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡
+ 1) ,

𝑁

2
≤ 𝑙 ≤ 𝑁

 (14) 

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡=𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(1)    (15) 

𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡=𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑁)   (16) 

The best concentration globally is designated as leader1 

(L1), while Leader2 (L2) and Leader3 (L3) stand for the 

second and third greatest concentrations, respectively. The 

model for the new updating rule of 𝑖th slime mould at 

iteration (𝑡 + 1) in LSMA is: 

𝑋𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,𝑤ℎ𝑒𝑛 𝑟1 < 𝑧        (17.a) 

𝑋𝑖(𝑡 + 1) = 𝑋𝐿1(𝑡) + 𝑉𝑎 . (𝑊.𝑋𝐿2 − 𝑋𝑅1) + (𝑊. 𝑋𝐿3 −

𝑋𝑅2),     𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 < 𝑝               (17.b) 

 𝑋𝑖(𝑡 + 1) = 𝑉𝑏 ∙ 𝑋𝑖(𝑡), 𝑤ℎ𝑒𝑛 𝑟1 ≥ 𝑧 𝑎𝑛𝑑  𝑟2 ≥ 𝑝   (17.c)

   

 

Equilibrium Optimizer Slime Mould Algorithm 

The search pattern of the SMA requires differential 

information between two random slime molds and the best 

slime mold, which may cause results to deviate from the 

optimum value. The equilibrium pools of the top potential 

solutions determine how EO searches.  

In order to increase integrate the equilibrium pool and 

augment the SMA's properties, Naik et al. suggested the 

ESMA.  

The air smell is how the slime mold finds the food. Assume 

there are 𝑁 slime molds, each of whose location is given by 

the vector 𝑋 = [𝑋 1, 𝑋 2, … , 𝑋 𝑁]
′. The 𝑖th slime mold's 

starting location vector is generated at random as Eq. (18): 

𝑋 𝑖(𝑡 = 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑖 = 1,2, … , 𝑁.   (18) 

where 𝑡 denotes the current iteration number, 𝑈𝐵 upper 

bound and 𝐿𝐵 lower bound. The new iteration in 𝑡 + 1 is 

modeled as in Eq. (19). 

𝑋𝑖⃗⃗  ⃗(𝑡 + 1) =

{

𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                                                        𝑟1 < 𝑧 

𝑋 𝐺𝑏𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. (𝑊⃗⃗⃗ . 𝑋 𝐴 − 𝑋 𝐵)          𝑟2 < 𝑝𝑖(𝑡) 𝑎𝑛𝑑 𝑟1 ≥ 𝑧  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑏 . 𝑋 𝑖(𝑡)                                         𝑟2 ≥ 𝑝𝑖(𝑡) 𝑎𝑛𝑑 𝑟1 ≥ 𝑧

(19) 

Here 𝑋 𝐺𝑏𝑒𝑠𝑡  is the global best value in the number of 

iterations. 𝑋 𝐴 and 𝑋 𝐵 are two randomly selected individuals 

in 𝑡 iterations. The 𝑟1 and 𝑟2 values are random variables 

that take values between 0 and 1. The 𝑧 value is 0.03, which 

is a constant. This number represents the likelihood that is 

used in the process of eradicating and dispersing the slime 

mold. 

The weighting factor for the slime mold at iteration 𝑡 is 

known as the 𝑊⃗⃗⃗  value, and it is determined using the local 

fitness value. The order of the fitness values in ascending 

order is done with [𝑠𝑜𝑟𝑡𝑓, 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥] =

𝑠𝑜𝑟𝑡 (𝑓), 𝑤ℎ𝑒𝑟𝑒 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁}. Thus, the value of 𝑤 

is calculated as in Eq. (20). 

𝑊⃗⃗⃗ (𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑗)) =

{
1 + 𝑟3. log (

𝑓𝐿𝑏𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡−𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1)    1 ≤ 𝑗 ≤

𝑁

2

1 − 𝑟3. log (
𝑓𝐿𝑏𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡−𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1) 

𝑁

2
< 𝑗 ≤ 𝑁

  (20) 

The 𝑟3 value is random variables that take values between 0 

and 1. 𝑓𝐿𝑤𝑜𝑟𝑠𝑡  and 𝑓𝐿𝑏𝑒𝑠𝑡 are the local worst (𝑓𝐿𝑤𝑜𝑟𝑠𝑡 =

𝑠𝑜𝑟𝑡𝑓(𝑁)) and best fitness (𝑓𝐿𝑏𝑒𝑠𝑡 = 𝑠𝑜𝑟𝑡𝑓(1) values, 

respectively, in the current iteration. The 𝑝𝑖  value is 

calculated as in Eq. (21). 𝑝𝑖  value with the help of other 

slime molds 𝑖. shows the decision probability of the 

trajectory of the slime mold. 

𝑝𝑖 = 𝑡𝑎𝑛ℎ|𝑓(𝑋𝑖) − 𝑓𝐺𝑏𝑒𝑠𝑡|    (21) 
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Here, the 𝑖 value ranges from 1 to 𝑁, and 𝑋𝑖 shows the 

position of the slime molds in the 𝑖'th iteration. 𝑓𝐺𝑏𝑒𝑠𝑡, on 

the other hand, holds the best global best fitness value up to 

the current iteration. 

The 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑎 and 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑏 represent a step size relative to the 

uniform distribution in the     [−𝑎, 𝑎] and [−𝑏, 𝑏] ranges, 

respectively. 𝑎 and 𝑏 are calculated according to Eq. (22 

and 23). And the 𝑇 value indicates the maximum iteration. 

𝑎 = arctanh (− (
𝑡

𝑇
) + 1)     (22) 

𝑏 = 1 −
𝑡

𝑇
      (23) 

𝑋 𝐴 and 𝑋 𝐵 consist of two randomly selected individuals in 

the 𝑁 slime mold. This can create the problem of falling to 

the local minimum. Here, the ESMA method, which 

replaces 𝑋 𝐴 with a position vector from the balance pool 

consisting of the best four position vectors and takes into 

account the average position, has been developed. The 

individual elements of the equilibrium pool are defined as 

in Eq. (24).  

𝑋 𝑒𝑞(1) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(1))  

𝑋 𝑒𝑞(2) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(2))  

𝑋 𝑒𝑞(3) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(3))      (24) 

𝑋 𝑒𝑞(4) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(4))  

𝑋 𝑎𝑣𝑒 =
𝑋⃗ 𝑒𝑞(1)+𝑋⃗ 𝑒𝑞(2)+𝑋⃗ 𝑒𝑞(3)+𝑋⃗ 𝑒𝑞(4)

4
  

Equilibrium pool 𝑋 𝑒𝑞,𝑝𝑜𝑜𝑙 =

{𝑋 𝑒𝑞(1), 𝑋 𝑒𝑞(2), 𝑋 𝑒𝑞(3), 𝑋 𝑒𝑞(4), 𝑋 𝑒𝑞(𝑎𝑣𝑒)} is created using 5 

different vectors in Eq. (24). In ESMA, the position vector 

of the next 𝑋𝑖(𝑗 = 1,2,3, … , 𝑁 is modelled as in Eq. (25). 

𝑋 𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,𝑤ℎ𝑒𝑛 𝑟1 < 𝑧   (25) 

𝑋 𝑖(𝑡 + 1) = 𝑋 𝐺𝑏𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑎(𝑊⃗⃗⃗ . 𝑋 𝑒𝑞 + 𝑋 𝐵), 𝑤ℎ𝑒𝑛 𝑟2 <

𝑝𝑖(t) and 𝑟1 ≥ z    

𝑋 𝑖(𝑡 + 1) = 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑏 . 𝑋 𝑖(𝑡), 𝑤ℎ𝑒𝑛  𝑟2 ≥ 𝑝𝑖(t) and 𝑟1 ≥ z   

Results and Discussion 

In the study, IEEE Congress on Evolutionary Computation 

(CEC) 2020 test functions were selected to analyze the 

performance of SMA, LSMA, and ESMA methods [14]. 

The CEC2020 test functions consist of 10 different test 

functions. The first is the unimodal Shifted and Rotated 

Bent Cigar function. The second, third, and fourth functions 

are the multimodal functions Shifted and Rotated 

Schwefel's, Shifted and Rotated Lunacek bi-Rastrigin, and 

Expanded Rosenbrock's plus Griewangk's function, 

respectively [15]. In addition, there are 3 different hybrids 

and 3 different composition functions with 𝑁 values of 3, 4, 

and 5, respectively. The names and equations of these 

functions are listed in Table 1. Unimodal functions play a 

decisive role in the convergence performance of algorithms. 

Multimodal functions are used to see if there are problems 

with early convergence and local optimization in an 

algorithm. 

On the other hand, hybrid and composition functions, are 

used to determine the performance of algorithms' ability to 

avoid local optima and their balance between discovery and 

exploitation, as they have many local optima. Experiments 

in the study were carried out on a computer with the 

Windows 10 operating system, 32 GB RAM, and a CPU of 

Intel (R) core i9-10900k (3.7 GHz). In the study, the special 

parameters of the SMA, LSMA, and ESMA algorithms 

were taken exactly the same as in the original articles. In 

order to make a fair evaluation under equal conditions, the 

number of iterations was 1000 and all experiments were run 

20 times. In addition, the performances of the algorithms in 

3 different dimension values were compared by taking the 

dimension as 5, 10 and 20. 

Hybrid Functions 

𝐹(𝑥) = 𝑔1(𝑀1𝑧1) + 𝑔2(𝑀2𝑧2) + ⋯ 𝑔𝑁(𝑀𝑁𝑧𝑁) + 𝐹
∗(𝑥) 

𝐹(𝑥):Hybrid function 

𝑔𝑖(𝑥): 𝑖
𝑡ℎ basic function used to construct the hybrid 

function 

𝑁: Number of basic functions 

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑁] 

𝑧1 = [ 

𝑦 = 𝑥 − 𝑜𝑖 , 𝑆 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(1: 𝐷) 

𝑝𝑖 =Used to control the percentage of 𝑔𝑖(𝑥) 

𝑛𝑖 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑎𝑠𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∑𝑛𝑖 = 𝐷

𝑁

𝑖=1

 

𝑛1 = ⌈𝑝1𝐷⌉, 𝑛2 = ⌈𝑝2𝐷⌉, … , 𝑛𝑁−1 = ⌈𝑝𝑁−1𝐷⌉,  

𝑛𝑁 = 𝐷 −∑𝑛𝑖

𝑁−1

𝑖=1

 

Composition Functions 

𝐹(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]} + 𝐹

∗

𝑁

𝑖=1

 

𝐹(𝑥): Composition function 

𝑔𝑖(𝑥): 𝑖
𝑡ℎ basic function used to construct the composition 

function 

𝑁: Number of basic functions 

𝑜𝑖 :  New shifted optimum position for each 𝑔𝑖(𝑥), define 

the global and local optima' s position 

𝑏𝑖𝑎𝑠𝑖 : defines which optimum is global optimum 𝜎𝑖: used 

to control each 𝑔𝑖(𝑥)
′ s coverage range, a small 𝜎𝑖 gives a 

narrow range for that 𝑔𝑖(𝑥) 
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𝜆𝑖: used to control each 𝑔𝑖(𝑥)' s height 

𝑤𝑖 : weight value for 𝑔𝑖(𝑥), calculated as below: 

𝑤𝑖 =
1

√∑ (𝑥𝑗 − 𝑜𝑗)
2𝐷

𝑗=1

𝑒𝑥𝑝 (−
∑ (𝑥𝑗 − 𝑜𝑗)

2𝐷
𝑗=1

2𝐷𝜎İ
2 ) 

Then normalize the weight 𝜔𝑖 = 𝑤𝑖/∑ 𝑤𝑖
𝑛
𝑖=1  

So when 𝑥 = 𝑜𝑖, 𝜔𝑗 = {
1, 𝑗 = 𝑖
0, 𝑗 ≠ 𝑖

  for 𝑗 =

1, 2, … , 𝑁, 𝑓(𝑥) = 𝑏𝑖𝑎𝑠𝑖 + 𝑓
∗

Table 1. CEC’2020 test functions and equations 

No Function Name Equation Fi* 

F1 
Shifted and Rotated Bent 

Cigar Function 

𝐹1 = 𝑥1
2 + 106∑𝑥𝑖

2

𝐷

𝑖=2

 

𝐹1(𝑀(𝑥 − 𝑜1)) + 𝐹1
∗ 

100 

F2 
Shifted and Rotated 

Schwefel’s Function 

𝑓(𝑥) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

 

𝑧𝑖 = 𝑥𝑖 + 4.209687462275036𝑒 + 002 

𝑔(𝑧𝑖)

=

{
 
 

 
 𝑧𝑖𝑠𝑖𝑛 (|𝑧𝑖|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

500 −𝑚𝑜𝑑(𝑧𝑖 , 500))sin (√|500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)| −
(𝑧𝑖 − 500)

2

10000𝑑
     𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500)sin (√|𝑚𝑜𝑑|𝑧𝑖|, 500) − 500| −
(𝑧𝑖 + 500)

2

10000𝑑
     𝑖𝑓 𝑧𝑖 < −500

 

𝐹2(𝑥) = 𝑓 (𝑀(
1000(𝑥 − 𝑜2

100
)) + 𝐹2∗ 

1100 

F3 
Shifted and Rotated Lunacek 

bi-Rastrigin Function 

𝑓(𝑥) = 𝑚𝑖𝑛 (∑(𝑥̂𝑖 − 𝜇0)
2, 𝑑

𝐷

𝑖=1

𝐷 + 𝑠∑(𝑥̂𝑖 − 𝜇0)
2

𝐷

𝑖=1

) + 10(𝐷 −∑cos (2𝜋𝑧𝑖)̂

𝐷

𝑖=1

) 

𝜇0 = 2.5, 𝜇1 = √
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2√𝐷 + 20 − 8.2
, 𝑑 = 1 

𝑦 =
10(𝑥 − 𝑜)

100
,
𝑥𝑖
𝑥𝑖
= 2𝑠𝑖𝑔𝑛(𝑥𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐷 

𝑧 =⋀ (𝑥 − 𝜇0
100

 
) 

𝐹3(𝑥) = 𝑓 (𝑀(
600(𝑥 − 𝑜3

100
)) + 𝐹3∗ 

700 

F4 
Expanded Rosenbrock’s plus 

Griewangk’s Function 

𝑓1(𝑥) = ∑(100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)

𝐷−1

𝑖=1

 

𝑓2(𝑥) =∑
𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)

𝐷

𝑖=1

𝐷

𝑖=1

+ 1 

𝑓4 = 𝑓2(𝑓1(𝑥1, 𝑥2)) + 𝑓2(𝑓1(𝑥2, 𝑥3)) + ⋯+ 𝑓2(𝑓1(𝑥𝐷−1, 𝑥𝐷)) + 𝑓2(𝑓1(𝑥𝐷, 𝑥1)) + 𝑓4
∗ 

1900 

F5 
Hybrid Function 1 

 (N = 3) 

𝑁 = 3, 𝑝 = [0.3, 0.3, 0.4] 

𝑔1:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔3:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓3 

1700 

F6 
Hybrid Function 2  

(N = 4) 

𝑁 = 4, 𝑝 = [0.2, 0.2, 0.3, 0.3] 

𝑔1:𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝐺𝐵𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔3: 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

1600 

F7 
Hybrid Function 3  

(N = 5) 

𝑁 = 5, 𝑝 = [0.1, 0.2, 0.2, 0.2, 0.3] 

𝑔1:𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝐺𝐵𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔3:𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔5:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

2100 

F8 
Composition Function 1 

 (N = 3) 

𝑁 = 3, 𝜎 = [10, 20, 30], 𝜆 = [1, 10, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200] 

𝑔1: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑔2: 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔3:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
2200 

F9 
Composition Function 2 

 (N = 4) 

𝑁 = 4, 𝜎 = [10, 20, 30, 40], 𝜆 = [10, 1𝑒 − 6, 10, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200, 300] 

𝑔1: 𝐴𝑐𝑘𝑙𝑒𝑦′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔3:𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

2400 

F10 
Composition Function 3  

(N = 5) 

𝑁 = 5, 𝜎 = [10, 20, 30, 40, 50], 𝜆 = [10, 1, 10, 1𝑒 − 6, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200, 300, 400] 

𝑔1:𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2: 𝐻𝑎𝑝𝑝𝑦𝑐𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔3: 𝐴𝑐𝑘𝑙𝑒𝑦′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔4: 𝐷𝑖𝑠𝑐𝑢𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔5: 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

2500 
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Table 2, Table 3 and Table 4 show the results according to 

dimensions 5, 10, and 20, respectively. Average (Avg.), 

standard deviation (Std.) and minimum (Min.) values are 

given in the tables. In addition, for ease of reading, the best 

values found in each test function are made in bold. 

Table 2. dim 5 

Functions 
 

Alg. 
Metrics 

Avg. Std. Min. 

F1 

SMA 4.51E+03 5.33E+03 1.23E+02 

LSMA 6.01E+03 5.59E+03 1.54E+02 

ESMA 5.20E+03 5.80E+03 1.04E+02 

F2 

SMA 1.22E+03 1.02E+02 1.13E+03 

LSMA 1.21E+03 8.38E+01 1.11E+03 

ESMA 1.24E+03 1.01E+02 1.13E+03 

F3 

SMA 7.08E+02 1.79E+00 7.05E+02 

LSMA 7.09E+02 2.16E+00 7.03E+02 

ESMA 7.07E+02 2.42E+00 7.02E+02 

F4 

SMA 1.90E+03 1.31E-01 1.90E+03 

LSMA 1.90E+03 1.38E-01 1.90E+03 

ESMA 1.90E+03 1.31E-01 1.90E+03 

F5 

SMA 1.72E+03 1.25E+01 1.70E+03 

LSMA 1.83E+03 6.83E+01 1.71E+03 

ESMA 1.71E+03 9.52E+00 1.70E+03 

F6 

SMA 1.60E+03 2.53E-01 1.60E+03 

LSMA 1.60E+03 3.14E-01 1.60E+03 

ESMA 1.60E+03 2.27E-01 1.60E+03 

F7 

SMA 6.55E+04 0.00E+00 6.55E+04 

LSMA 6.55E+04 0.00E+00 6.55E+04 

ESMA 6.55E+04 0.00E+00 6.55E+04 

F8 

SMA 2.21E+03 6.28E+00 2.20E+03 

LSMA 2.20E+03 5.66E+00 2.20E+03 

ESMA 2.23E+03 3.87E+01 2.20E+03 

F9 

SMA 2.58E+03 4.51E+01 2.50E+03 

LSMA 2.56E+03 5.14E+01 2.50E+03 

ESMA 2.58E+03 4.17E+01 2.50E+03 

F10 

SMA 2.85E+03 1.32E-02 2.85E+03 

LSMA 2.85E+03 1.06E+01 2.80E+03 

ESMA 2.85E+03 1.13E-02 2.85E+03 

Table 3. dim 10 

Functions 
 

Alg. 
Metrics 

Avg. Std. Min. 

F1 

SMA 7.18E+03 4.57E+03 9.55E+02 

LSMA 7.03E+03 4.93E+03 1.02E+02 

ESMA 6.37E+03 4.72E+03 3.01E+02 

F2 

SMA 1.66E+03 2.38E+02 1.23E+03 

LSMA 1.69E+03 2.12E+02 1.24E+03 

ESMA 1.64E+03 1.59E+02 1.33E+03 

F3 

SMA 7.29E+02 8.05E+00 7.15E+02 

LSMA 7.30E+02 1.04E+01 7.16E+02 

ESMA 7.28E+02 8.23E+00 7.17E+02 

F4 

SMA 1.90E+03 4.50E-01 1.90E+03 

LSMA 1.90E+03 7.25E-01 1.90E+03 

ESMA 1.90E+03 5.14E-01 1.90E+03 

F5 

SMA 7.98E+03 6.41E+03 1.86E+03 

LSMA 1.01E+04 6.63E+03 2.50E+03 

ESMA 1.73E+04 1.82E+04 1.90E+03 

F6 SMA 1.60E+03 2.70E-01 1.60E+03 

Functions 
 

Alg. 
Metrics 

Avg. Std. Min. 

LSMA 1.60E+03 2.99E-01 1.60E+03 

ESMA 1.60E+03 2.43E-01 1.60E+03 

F7 

SMA 1.01E+04 8.46E+03 2.28E+03 

LSMA 5.93E+03 4.41E+03 2.65E+03 

ESMA 5.35E+03 4.81E+03 2.17E+03 

F8 

SMA 2.39E+03 3.13E+02 2.20E+03 

LSMA 2.38E+03 2.46E+02 2.24E+03 

ESMA 2.38E+03 2.48E+02 2.30E+03 

F9 

SMA 2.76E+03 9.43E+00 2.74E+03 

LSMA 2.75E+03 8.60E+00 2.74E+03 

ESMA 2.75E+03 5.82E+01 2.50E+03 

F10 

SMA 2.94E+03 3.16E+01 2.90E+03 

LSMA 2.93E+03 2.62E+01 2.90E+03 

ESMA 2.93E+03 2.67E+01 2.90E+03 

Table 4. dim 20 

Functions 
 

Alg. 
Metrics 

Avg. Std. Min. 

F1 

SMA 6.31E+03 4.10E+03 1.46E+02 

LSMA 5.07E+03 4.12E+03 1.49E+02 

ESMA 7.85E+03 3.81E+03 2.91E+02 

F2 

SMA 1.94E+03 2.74E+02 1.54E+03 

LSMA 2.95E+03 6.14E+02 2.02E+03 

ESMA 1.93E+03 3.06E+02 1.50E+03 

F3 

SMA 7.52E+02 1.00E+01 7.38E+02 

LSMA 7.88E+02 1.96E+01 7.53E+02 

ESMA 7.46E+02 9.71E+00 7.31E+02 

F4 

SMA 1.90E+03 1.06E+00 1.90E+03 

LSMA 1.90E+03 1.42E+00 1.90E+03 

ESMA 1.90E+03 1.01E+00 1.90E+03 

F5 

SMA 4.22E+05 3.18E+05 1.81E+04 

LSMA 4.34E+05 2.64E+05 8.05E+04 

ESMA 3.38E+05 2.32E+05 4.29E+04 

F6 

SMA 2.05E+03 0.00E+00 2.05E+03 

LSMA 2.05E+03 0.00E+00 2.05E+03 

ESMA 2.05E+03 0.00E+00 2.05E+03 

F7 

SMA 4.20E+05 3.66E+05 5.40E+03 

LSMA 2.00E+05 2.35E+05 1.08E+04 

ESMA 1.91E+05 2.06E+05 5.41E+03 

F8 

SMA 3.24E+03 1.12E+03 2.30E+03 

LSMA 3.30E+03 1.28E+03 2.30E+03 

ESMA 2.94E+03 1.16E+03 2.30E+03 

F9 

SMA 2.86E+03 1.62E+01 2.84E+03 

LSMA 2.86E+03 1.93E+01 2.84E+03 

ESMA 2.85E+03 1.62E+01 2.82E+03 

F10 

SMA 2.93E+03 2.81E+01 2.91E+03 

LSMA 2.93E+03 3.06E+01 2.91E+03 

ESMA 2.91E+03 1.10E+00 2.91E+03 

 

When Table 2 is examined, it is seen that the methods give 

the same average in 4 of the 10 test functions. While LSMA 

gave the best average in 3 functions, ESMA gave the best 

average in 2 functions. SMA, on the other hand, gave the 

best average in only one function. The convergence curve 

and boxplot graphics according to Dimension 5 are given in 

Figure 1 and Figure 2, respectively. 
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When Table 3 is examined, it is seen that the methods give 

the same average in 2 of the 10 test functions. It was seen 

that LSMA and ESMA gave the best average in 3 functions. 

While ESMA gave the best average in 4 functions, SMA 

gave the best average in 1 of them. The convergence curve 

and boxplot graphics according to Dimension 10 are given 

in Figure 3 and Figure 4, respectively. 

When Table 4 is examined, it is seen that the methods give 

the same average in 2 of the 10 test functions. While ESMA 

gave the best average in 7 functions, LSMA gave the best 

result in only 1 of them. The convergence curve and boxplot 

graphics according to Dimension 20 are given in Figure 5 

and Figure 6, respectively. 

In Table 5, the algorithm or algorithms that give the best 

value for each test function in different dimensions 

according to the average value are given. When Table 5 is 

examined, it is seen that the performance of the methods 

varies according to the dimension in unimodal functions. In 

multimodal functions, it was seen that ESMA achieved a 

better mean value. It has been observed that ESMA gives 

relatively better results than other methods in hybrid 

functions. Considering the composite functions, LSMA 

gave the best average value when the dimension was taken 

as 5. When the dimension is taken as 10, it is seen that the 

performances of LSMA and ESMA are the same. Finally, it 

is seen that ESMA gives better performance when the 

dimension is taken as 20. In the light of these experimental 

results, it has been seen that the ESMA method outperforms 

the other methods, SMA and LSMA, in CEC2020 

functions. 

Table 5. Best algorithm or algorithms according to the 

average value 

Functions 
Dimension 

(5) 

Dimension 

(10) 

Dimension 

(20) 

f1 SMA ESMA LSMA 

f2 LSMA ESMA ESMA 

f3 ESMA ESMA ESMA 

f4 ALL ALL ALL 

f5 ESMA SMA ESMA 

f6 ALL ALL ALL 

f7 ALL ESMA ESMA 

f8 LSMA 
LSMA and 

ESMA 
ESMA 

f9 LSMA 
LSMA and 

ESMA 
ESMA 

f10 ALL 
LSMA and 

ESMA 
ESMA 

 

 

 

Figure 1. Convergence curve of the compared methods when dimension 5 
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Figure 2. Boxplot of the compared methods when dimension 5 

 
 

Figure 3. Convergence curve of the compared methods when dimension 10 
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Figure 4. Boxplot of the compared methods when dimension 10 

 

Figure 5. Convergence curve of the compared methods when dimension 10 
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Figure 6. Boxplot of the compared methods when dimension 2

Conclusions 

Metaheuristic methods have been used successfully in the 

literature for solving different problems. As the literature 

studies show, there is no method that gives the best 

performance for each problem. This increases the interest of 

the researchers in this subject. For this reason, it is aimed to 

find the best method by suggesting different hybrid versions 

of the newly introduced methods to the literature. In this 

study, performance analyses were made by running 

different hybrid versions of the SMA method, which has 

been proposed in recent years, in the CEC 2020 test 

functions under equal conditions. The experimental results 

showed that ESMA performed better than the standard 

SMA and LSMA. This study is significant both for making 

it easier for researchers to access one of the most recent 

metaheuristic optimization algorithms, SMA, and its 

variants, as well as for assisting them in selecting the best 

algorithm by providing a preliminary idea about the 

performance of metaheuristic algorithms that they can use 

in their studies. 
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