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CEC2020 test functions were investigated together with the LSMA and ESMA methods proposed in recent
years. The results obtained are statistically analyzed and given in detail in the study.

Introduction

Metaheuristic algorithms have gained unexpectedly
widespread popularity in recent years. Their proficiency in
tackling several optimization challenges has resulted in this
development [1]. Among the popular metaheuristic
optimization algorithms in the literature are particle swarm
optimization, genetic algorithms, differential evolution
algorithms, and ant colony algorithms, as well as algorithms
such as Grey Wolf Optimizer [2], Equilibrium Optimizer
[3], Archimedes Optimization Algorithm [4], Spotted
Hyena Optimizer [5], Aquila Optimizer [6], and Slime
Mold Optimization Algorithm (SMA) [7], which were
proposed in recent years. While each metaheuristic
algorithm has distinct benefits, no method, according to the
no-free lunch theorem, can handle all optimization
problems. The performance of a metaheuristic algorithm is
largely determined by its capacity for exploration and
exploitation [8]. As a result, numerous scholars are
continually proposing new algorithms and improving upon
the original method. However, while having various
appealing properties, it has been noted that these algorithms
do not always perform as expected. The effectiveness of
most metaheuristic optimization algorithms is dependent on
the balance of two opposing aims, exploration and

exploitation [9]. It is also called exploration and
exploitation, diversification and intensification. Exploration
guarantees that all areas of the solution domain are
sufficiently investigated to provide an approximation of the
global optimal solution. Exploitation directs the search
effort toward the most effective solutions that have been
found up to this point by exploring the environment for
further options that are more effective. These two objectives
are addressed by search algorithms that use local search
techniques, global search approaches, or a combination of
both local and global searches: these algorithms are
frequently referred to as hybridization [10].

Hybridization may take place in a variety of ways, including
the following:

. Starting the algorithm with one method and then
applying the second technique to the final population
generated with the first technique,

. Merging the approach’s distinctive operators into
the other technique,

. Using local search to enhance the answer
identified by global search, and so on.

The main motivation for the paper is to examine the
performance of SMA and different hybrid SMAs in global
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optimization problems. For this purpose, the leader SMA
(LSMA) [11] and equilibrium SMA (ESMA) [12] methods
suggested by Naik et al. were chosen. The performance of
these three different methods has been examined in the
current and widely used CEC2020 test suite. The CEC2020
benchmark problems consist of 10 different optimization
problems. These are unimodal functions, multimodal
functions, hybrid functions, and composition functions.
Furthermore, the performance of these methods was
examined using different dimension values, and detailed
analyses were carried out. Thus, the different capabilities of
the methods obtained as a result of hybridization of a
current optimization algorithm were compared with each
other and with the original method in different types of
problems, and a detailed examination was provided.

The remainder of the paper is organized as follows: To
begin with, Section 2 provides an overview of SMA,
LSMA, and ESMA. Section 3 describes ten distinct
functions drawn from the CEC2020 test functions. Section
4 contains the experimental findings for the test functions.
Finally, in Section 5, conclusions are stated and
recommendations for further study are made.

Slime Mould Algorithm

In this section, SMA, and hybrid versions of SMA, LSMA,
and ESMA, are explained and their mathematical
expressions are given.

Original Slime Mould Algorithm

The mathematical notation of SMA consists of three steps.
These are approach food, wrap food, and grabble food. In
this section, the mathematical structure of SMA is briefly
explained [13].

Approach Food: To describe slime mould's approaching
behavior as a mathematical equation, the following
contraction rule is proposed:

X, + vb - (W X, —XB(t)),r <p

Xt+1)=
ve-X(t),r=p

)

where vb isa [—a, a] parameter, ¢ decreases linearly from
1 to 0. tindicates the current iteration,Yb’ denotes the
region with the highest concentration of odor, X denotes
slime mould position, )T/{ and E represent two randomly

chosen swarm members, and W represents slime mould
weight.

The following is the formula for the variable p:
p = tanh|S(i) — DF| (2

where i € 1,2, ..., n, S(i) is the X’s fitness, and DF is the
best fitness in all iterations.

vb is given below:

vb = [—a,d] ©)

t

max _t

a = arctanh (— ( ) +1) 4)

W formula is given below:

W (Smellindex(1)) =
1+7-log (ZZ_SMELF) + 1) ,condition
P ()
1—r-log (l;i"ji;) + 1), others
Smelllndex = sort(S) (6)

where S(i) ranks in the top fifty percent of the population,
r represents a random value in [0,1], bF denotes the best
fitness in the current iteration phase, wF means the worst
fitness value, Smellindex specifies the series of sorted
fitness values.

Wrap Food: The following equation may be used to update
the position of slime mold:

rand - (UB — LB) + LB,rand < z
X =A% +vb (W KO -%0)r<p @)
ve-X(@t),r=p

where rand and r stand for the random value in [0,1], and
LB and UB stand for the lower and upper search range
limits.

Grabble Food: As the number of iterations rises, the value
of vb varies at random between [—a,a] and eventually
approaches zero. The value of v¢ varies between [-1,1] and
finally goes to zero.

Leader Slime Mould Algorithm

SMA's primary reliance on the population's two slime
molds and best leader leads to poor exploitation when more
convergence iterations are performed. To eliminate this
situation, LSMA has been proposed [1].

According to [2], the updating rule of the SMA
concentration for the i-th slime mould X;(=
{x},xZ, ..., xk}) for a k dimensional issue from N slime
mould is as follows:

X+ =
rand - (UB — LB) + LB,
Xciobatpest (t) + Voo (W. Xpq — Xgy),

n<z
n=zandr, <p

Vy Xi(t), m=zand r,=p
®)
and
X;(1) =7,.(UB — LB) + LB ©)

The r; and r, are random values in the range of 0 and 1; ¢t
is the current iteration, UB and LB upper and lower
boundary of the search space, respectively, X¢iopaigest 1S
the global best concentration current iteration t, V,
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represents the velocity that is spread evenly throughout the
interval, V,, represents the velocity that goes from 1 to 0 in
a linear fashion, W represents the weight of the slime
mould, Xz, and X, are the two types of slime mould that
were chosen at random from the population of N, p is the
probability to determine the slime mould trajectory, z is the
elimination-and-dispersal rate which is fixed at 0:03 and i €
12,..,N.

The performance of the i-th slime mould is determined by
its current fitness f (X;) and by the fitness of the world's
best concentration f(X,,), which is formulated as:

p = tanh|f (X)) — f (X, (10)

Both the velocity V, and the velocity V, are equally
distributed in the [—a, a] and [—b, b] ranges, respectively.
The values of a and b are as follows:

t

a = arctanh (— (tmax) +1) (11)
and
h=1-— (12)

tmax

The W is calculated using the slime mould's local fitness
value. Let's rank the N slime mould's fitness value for the
minimization issue in ascending order in iteration t.

[sortedﬁtness, sort,ndex] = sort(f) (13)

Wheref = (le):f(XZ)' 'f(XN))
The W is then calculated as follows:

W (sortimgex(D) =
1+71y: log ( fLocalBest—sortf (1)

1—r3-l0g(

<1<
2

+1),1
fLocalBest—fLocalWorst (14)
fLocalBest=soTtf (1) + 1)’ g <I<N

fLocaiBest=fLocalWorst

(15)

fLocalBest:sortedFitness (1)

(16)

fLocalWorst=sortedFitness (N)

The best concentration globally is designated as leaderl
(L1), while Leader2 (L2) and Leader3 (L3) stand for the
second and third greatest concentrations, respectively. The
model for the new updating rule of ith slime mould at

iteration (t + 1) in LSMA is:
X,(t+1)=r.(UB—-LB)+LB,whenr, <z (17.a)

Xi(t+ 1D =X1(0) + Vo (W. X5 — Xp) + (W. Xy 3 —
Xg2), m=zandr, <p (17.b)

X;(t+1) =V, X;(t), whenr, = zand r, = p (17.c)

Equilibrium Optimizer Slime Mould Algorithm

The search pattern of the SMA requires differential
information between two random slime molds and the best
slime mold, which may cause results to deviate from the
optimum value. The equilibrium pools of the top potential
solutions determine how EQ searches.

In order to increase integrate the equilibrium pool and
augment the SMA's properties, Naik et al. suggested the
ESMA.

The air smell is how the slime mold finds the food. Assume
there are N slime molds, each of whose location is given by
the vector X = [)?1,)?2, ,)?N]’. The ith slime mold's
starting location vector is generated at random as Eq. (18):

X(t=1)=7.UB—LB)+LB,i=12,..,N. (18)

where t denotes the current iteration number, UB upper
bound and LB lower bound. The new iteration in t + 1 is
modeled as in Eq. (19).

X(t+1) =
7,.(UB —LB) + LB
Xopese + stepq. (W. X, — Xg)
stepb.)?i(t)
(19)

n <z
r, <pt)andr =z

n2p®)andr =z

Here chest is the global best value in the number of

iterations. X, and X, are two randomly selected individuals
in t iterations. The r; and r, values are random variables
that take values between 0 and 1. The z value is 0.03, which
is a constant. This number represents the likelihood that is
used in the process of eradicating and dispersing the slime
mold.

The weighting factor for the slime mold at iteration t is
known as the W value, and it is determined using the local
fitness value. The order of the fitness values in ascending
order is done with [sortf,sortindex] =
sort (f),where f = {fi, f>, ..., fu}. Thus, the value of w
is calculated as in Eq. (20).

W(sortlndex(j)) =
1+ 3. log (beest_SOth ()

fLbest—fLworst

1—r3.10g(M+ 1) Y<j<nN

fLbest—fLworst

(20)

The r5 value is random variables that take values between 0
and 1. fiuorse and fi,es: are the local worst (fiuorse =
sortf(N)) and best fitness (fipest = sortf (1) values,
respectively, in the current iteration. The p; value is
calculated as in Eq. (21). p; value with the help of other
slime molds i. shows the decision probability of the
trajectory of the slime mold.

pi = tanh|f(X;) = fopest 1)
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Here, the i value ranges from 1 to N, and X; shows the
position of the slime molds in the i'th iteration. f;,es:, ON
the other hand, holds the best global best fitness value up to
the current iteration.

The step, and step, represent a step size relative to the
uniform distribution in the  [—a, a] and [—b, b] ranges,
respectively. a and b are calculated according to Eq. (22
and 23). And the T value indicates the maximum iteration.

a = arctanh (— (%) +1)

(22)

b=1- (23)

t
T
X, and X, consist of two randomly selected individuals in
the N slime mold. This can create the problem of falling to
the local minimum. Here, the ESMA method, which

replaces )?A with a position vector from the balance pool
consisting of the best four position vectors and takes into
account the average position, has been developed. The
individual elements of the equilibrium pool are defined as
in Eq. (24).

Xeqy = X(sortindex(1))

)_feq(z) = X(sortindex(2))
Xoq(3) = X(sortindex(3)) (24)
)_feq(@ = X(sortindex(4))
% = Xeqy+Xeqy+Xeq +Xeqw)
4
Equilibrium pool Xeqpool =

{Xeq1) Xeq(2y Xeq(y Xeq(ay Xeq(avey} 18 Created using 5
different vectors in Eq. (24). In ESMA, the position vector
of the next X;(j = 1,2,3, ..., N is modelled as in Eq. (25).
X,(t+1) =7.(UB—LB) + LB,whenr, <z (25)
fi(t +1) = )?Gbest + stepa(W. )?eq + )?B), whenr, <
pi®andr >z

X;(t + 1) = step,. X;(t),when 1, = p;(t) and 1, > z

Results and Discussion

In the study, IEEE Congress on Evolutionary Computation
(CEC) 2020 test functions were selected to analyze the
performance of SMA, LSMA, and ESMA methods [14].
The CEC2020 test functions consist of 10 different test
functions. The first is the unimodal Shifted and Rotated
Bent Cigar function. The second, third, and fourth functions
are the multimodal functions Shifted and Rotated
Schwefel's, Shifted and Rotated Lunacek bi-Rastrigin, and
Expanded Rosenbrock's plus Griewangk's function,
respectively [15]. In addition, there are 3 different hybrids
and 3 different composition functions with N values of 3, 4,

and 5, respectively. The names and equations of these
functions are listed in Table 1. Unimodal functions play a
decisive role in the convergence performance of algorithms.
Multimodal functions are used to see if there are problems
with early convergence and local optimization in an
algorithm.

On the other hand, hybrid and composition functions, are
used to determine the performance of algorithms' ability to
avoid local optima and their balance between discovery and
exploitation, as they have many local optima. Experiments
in the study were carried out on a computer with the
Windows 10 operating system, 32 GB RAM, and a CPU of
Intel (R) core i19-10900k (3.7 GHz). In the study, the special
parameters of the SMA, LSMA, and ESMA algorithms
were taken exactly the same as in the original articles. In
order to make a fair evaluation under equal conditions, the
number of iterations was 1000 and all experiments were run
20 times. In addition, the performances of the algorithms in
3 different dimension values were compared by taking the
dimension as 5, 10 and 20.

Hybrid Functions

F(x) = g1(M121) + g,(My25) + -+ gy(Myzy) + F*(x)
F (x):Hybrid function

gi(x):i*" basic function used to construct the hybrid
function

N: Number of basic functions

Z = (24,25, -, Zy]

zy =

y =x—0;,S =randperm(1: D)

p; =Used to control the percentage of g;(x)

N
n; = Dimension for each basic function Z n;=D
i=1

ny = [p1D],n, = [p,D], ..., ny—1 = [pn-1D],

Composition Functions
N

F(x) = ) {w/[4g:(x) + bias;]} + F*

i=1

F (x): Composition function

g;(x): it" basic function used to construct the composition

function

N: Number of basic functions

o0;: New shifted optimum position for each g;(x), define
the global and local optima' s position

bias;: defines which optimum is global optimum o;: used
to control each g;(x)’ s coverage range, a small g; gives a
narrow range for that g;(x)
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A;: used to control each g;(x)" s height

Then normalize the weight w; = w;/ Y=, w;

w;: weight value for g;(x), calculat low: 1, j=i .
. weight value for g;(x), calculated as belo So  when x=o, wf:oj'qti for j=
1 szl(x' - 0.)2 — i * '
W, = ————————exp _% 1,2,...,N,f(X)—blaSi+f
D 2 ZDO'I
j=1(xj - Oj)
Table 1. CEC’2020 test functions and equations
No  Function Name Equation Fi*
D
i F1=x}+10° Z 2
F1 Sr_ufted and .Rotated Bent xi ' X 100
Cigar Function i=2
F1(M(x — 0,)) + F1*
D
F(x) = 418.9829 X D — Z 9(z)
i=1
z; = x; + 4.209687462275036¢ + 002
9(z)
1
, z.sm(|z.|i), if |z] < 500
2 Shifted and Rotatfad i i i 1100
Schwefel’s Function ) (z; —500)% |
= 500 — mod(z;,500))sin (JISOO —mod(z;,500)| = ———— if z; > 500
10000d
z; + 500)?
L(mod(lziI,SOO) —500)sin (y/|mod|z, 500) — 500] —W if z;, < =500
1000(x — o, ;
D D D
f(x) = min (ZG‘ —Uo)%,dD + SZ(J& - u0)2> +10 <D - Z cos (an))
i=1 i=1 i=1
2
Ho—d 1
=25y = |——s=1—-————,d=1
, Ho H s 2VD 12082
F3 Shifted and Rotated Lunacek 10(x — 0) x; 700
bi-Rastrigin Function y = Tx—l = 2sign(x})y; + po, fori =1,2,...,D
‘ 100
z= (& — o)
600(x — 04 .
D-1
F100) = Z(looocz — )2+ (= 1))
) i=1
Fa Expanded Rosenbr(_)ck s plus D 2 D N 1900
Griewangk’s Function f2(x) = Z i HCOS (_‘) +1
& 4000 1 ! Vi
i= i=
f4= fz(fl(xyxz)) + f2(f1(x2,x3)) +ot fz(fl(xn—pxo)) + fz(fl(xn;x1)) + f4
. . N =3,p=1[0.3,03,04]
F5 I-(lly\/lb_rlt?i))Functlon ! gl: Modified Schwefel's Function, g2: Rastrigin's Function 1700
g3:High Conditioned Elliptic Function f3
. . N =4,p=10.2,02,03,0.3]
F6 ?l\i/ti”:) Function 2 gl: Expanded Schaf fer Function, g2: HGBat Function 1600
g3: Rosenbrock's Function, g4: Modified Schwefel sFunction
N =5,p =[0.1,0.2,0.2,0.2,0.3]
7 Hybrid Function 3 gl: Expanded Schaf fer Function, g2: HGBat Function 2100
(N=5) g3: Rosenbrock's Function, g4: Modified Schwefel's Function
g5: High Conditioned Elliptic Function
F8 Composition Function 1 N = 3,0 =[10,20,30],4 = [1,10, 1], bias = [0, 100, 200] 2200
(N=3) gl: Rastrigin's Function , g2: Griewank's Function, g3: Modified Schwefel's Function
Composition Function 2 N = 4,0 =[10,20,30,40],2 = [10,1e — 6,10, 1], bias = [0,100, 200, 300]
F9 N _p4) g1l: Ackley's Function, g2: High Conditioned Elliptic Function 2400
- g3: Griewank's Function, g4: Rastrigin's Function
o . N =5,0 =[10,20,30,40,50],1 = [10,1, 10, 1e — 6,1], bias = [0, 100,200, 300, 400]
Composition Function 3 Ly . . ' .
F10 gl:Rastrigin's Function, g2: Happycat Function, g3: Ackley's Function 2500

(N=5)

g4: Discus Function, g5: Rosenbrock's Function
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Table 2, Table 3 and Table 4 show the results according to Metrics

dimensions 5, 10, and 20, respectively. Average (Avg.),
standard deviation (Std.) and minimum (Min.) values are

Functions
Alg. Avg. Std. Min.

LSMA 1.60E+03 2.99E-01 1.60E+03

given in the tables. In addition, for ease of reading, the best ESMA 1.60E+03 2.43E-01 1.60E+03
values found in each test function are made in bold.

SMA 1.01E+04 8.46E+03 2.28E+03
F7 LSMA 5.93E+03 4.41E+03 2.65E+03

Table 2. dim 5 ESMA 535E+03 4.81E+03 2.17E+03
R SMA  2.39E+03 3.13E+02 2.20E+03
Functions  Ajq. - . F8 LSMA 2.38E+03 2.46E+02 2.24E+03
— 5A1\|lzg'03 - 32:5 — 2'!"'5”-02 ESMA 2.38E+03 2.48E+02 2.30E+03
olE+ SS9+ 2oE+ + + +
Pl LSVA GOIEWS SSOEW3 ISEW® g SWA 2756400 GAOEA0 27403
ESMA 520E+03 5.80E+03 1.04E+02 ESMA 275E+03 5.82E+01 2.50E+03
SMA ~ 1.22E+03 1.02E+02  1.13E+03 SMA  2.94E+03 3.16E+01 290E+03
F2 LSMA ~ 1.21E+03  8.38E+01  1.11E+03 F10 LSMA 293E+03 262E+01 2.90E+03
ESMA 124E+03 101E+02 1.13E+03 ESMA 293E+03 2.67E+01 2.90E+03
SMA  7.08E+02 1.79E+00 7.05E+02
F3 LSMA 7.09E+02 2.16E+00 7.03E+02 ,
ESMA 7.07E+02 2.42E+00 7.02E+02 Table 4. dim 20
SMA  1.90E+03 131E-01 1.90E+03 _ Metrics
F4 LSMA 1.90E+03 1.38E-01  1.90E+03 Functions  plg. VG Sid v
E;“QA 1325182 13;;%11 1';’85:82 SMA  6.31E+03 4.10E+03 1.46E+02
F5 LSMA 183E+03 6.83E+01 1.71E+03 F1 LSMA ~ S.07E+03  4.12E+03  1.49E+02
EOMA  171E+038 959400 170E+03 ESMA 7.85E+03 3.81E+03 2.91E+02
VA LE0ET03 2.3E.0l  L60EI03 SMA  194E+03 2.74E+02 1.54E+03
" LSMA  160E+03 314001  160E+03 F2 LSMA 295E+03 6.14E+02 2.02E+03
EoMA  LOOE+03 227001  160E+03 ESMA 1.93E+03 3.06E+02 1.50E+03
SMA  6.55E+04 0.00E+00 6.55E+04 SMA = 7528402 1.00E+01  7.38E+02
. USMA  65E+04  0.00E400 6 55E+04 F3 LSMA 7.88E+02 1.96E+01 7.53E+02
ESMA 655E+04 0.00E+00 6.55E+04 ESMA 7.40E+02 971E+00 7.31E+02
SMA 2 31E+07 6285500 3205403 SMA  1.90E+03 1.06E+00 1.90E+03
F8 LSMA 2.20E+03 5-66E+OO 2-20E+03 F4 LSMA ~ L90E+03  142E+00  1.90E+03
ESMA 223E+03 3.87E+01 2.20E+03 ESMA 190E+03 101E+00 190E+03
A 5t 0 I TIErOl 2.t0EToa SMA  4.22E+05 3.18E+05 1.81E+04
- USMA 2560403 B4E+01  2.50E403 F5 LSMA 434E+05 2.64E+05 8.05E+04
ESMA 258E+03 A417E+01 2.50E+403 ESMA 3.38E+05 232E+05 4.29E+04
! : : . +i . + . +
F10 VNl o ESMA 2.05E+03 0.00E+00 _2.05E+03
' ' ' SMA  4.20E+05 3.66E+05 5.40E+03
F7 LSMA 200E+05 2.35E+05 1.08E+04
Table 3. dim 10 ESMA 191E+05 2.06E+05 5.41E+03
R SMA  324E+03 1.12E+03 2.30E+03
Functions  ajg. - F8 LSMA 3.30E+03 1.28E+03 2.30E+03
— 1A8‘ég-03 - ;Ed — S“S'E”-OZ ESMA 294E+03 1.16E+03 2.30E+03
. + . + . + ] + ] + ] +
F1 LSMA 703E+03 493E+03 1026402 g A 2 oErts Toaiol o eamron
ESMA 637E+03 4.72E+03 3.01E+02 ESMA 285E+03 162E+01 2.82E+03
SMA ~ 166E+03 238E+02 1.23E+03 SMA  293E+03 28lE+01 2.91E+03
F2 LSMA ~ 1.69E+03  2.12E+02  1.24E+03 F10 LSMA 293E+03 3.06E+01 2.91E+03
ESMA 164F+03 1.59E+02 1.33F+03 ESMA 2.91E+03 1.10E+00 2.91E+03
SMA  7.29E+02 8.05E+00 7.15E+02
F3 LSMA 7.30E+02 1.04E+01 7.16E+02
Ef/mA I;nggg iggggf 1519(7):(())2 When Table 2 is e_zxamined, it is seen tha_t the met_hods give
Fa LSMA 1O0E+03 725E-01 190E+03 the same average in 4 o_f the 10 test functions. While LSMA
ESMA 190E+03 514E-01  190E403 gave the_best average in 3 functions, ESMA gave the best
SMA 7 98E+03  G.ALE+03  LBGEF03 average in 2 _functlons. SMA, on the other hand, gave the
F5 LSMA 10LE+04 663E+03 2 50E+03 best average in on_ly one fur_1ct|0n. 'I_'he convergence curve
ESMA 173E+04 182E+04 1.90E403 ar_1d boxplot grgphlcs accordlng to Dimension 5 are given in
F6 SMA  L60E+03 2.70E-01 160Er03  igurelandFigure 2, respectively.

666



DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

When Table 3 is examined, it is seen that the methods give
the same average in 2 of the 10 test functions. It was seen
that LSMA and ESMA gave the best average in 3 functions.
While ESMA gave the best average in 4 functions, SMA
gave the best average in 1 of them. The convergence curve
and boxplot graphics according to Dimension 10 are given
in Figure 3 and Figure 4, respectively.

When Table 4 is examined, it is seen that the methods give
the same average in 2 of the 10 test functions. While ESMA
gave the best average in 7 functions, LSMA gave the best
result in only 1 of them. The convergence curve and boxplot
graphics according to Dimension 20 are given in Figure 5
and Figure 6, respectively.

In Table 5, the algorithm or algorithms that give the best
value for each test function in different dimensions
according to the average value are given. When Table 5 is
examined, it is seen that the performance of the methods
varies according to the dimension in unimodal functions. In
multimodal functions, it was seen that ESMA achieved a
better mean value. It has been observed that ESMA gives
relatively better results than other methods in hybrid
functions. Considering the composite functions, LSMA
gave the best average value when the dimension was taken
as 5. When the dimension is taken as 10, it is seen that the
performances of LSMA and ESMA are the same. Finally, it

is seen that ESMA gives better performance when the
dimension is taken as 20. In the light of these experimental
results, it has been seen that the ESMA method outperforms
the other methods, SMA and LSMA, in CEC2020
functions.

Table 5. Best algorithm or algorithms according to the
average value

Functions Dimension Dimension Dimension
®) (10) (20)
f1 SMA ESMA LSMA
2 LSMA ESMA ESMA
3 ESMA ESMA ESMA
f4 ALL ALL ALL
5 ESMA SMA ESMA
16 ALL ALL ALL
7 ALL ESMA ESMA
LSMA and
f8 LSMA ESMA ESMA
LSMA and
9 LSMA ESMA ESMA
LSMA and
f10 ALL ESMA ESMA
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Figure 1. Convergence curve of the compared methods when dimension 5
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Figure 3. Convergence curve of the compared methods when dimension 10
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Figure 5. Convergence curve of the compared methods when dimension 10
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Figure 6. Boxplot of the compared methods when dimension 2

Conclusions

Metaheuristic methods have been used successfully in the
literature for solving different problems. As the literature
studies show, there is no method that gives the best
performance for each problem. This increases the interest of
the researchers in this subject. For this reason, it is aimed to
find the best method by suggesting different hybrid versions
of the newly introduced methods to the literature. In this
study, performance analyses were made by running
different hybrid versions of the SMA method, which has
been proposed in recent years, in the CEC 2020 test
functions under equal conditions. The experimental results
showed that ESMA performed better than the standard
SMA and LSMA. This study is significant both for making
it easier for researchers to access one of the most recent
metaheuristic optimization algorithms, SMA, and its
variants, as well as for assisting them in selecting the best
algorithm by providing a preliminary idea about the
performance of metaheuristic algorithms that they can use
in their studies.
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