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(Alınış / Received: 15.06.2016, Kabul / Accepted: 23.08.2016, Online Yayınlanma / Published Online: 08.09.2016)

Keywords
Machine learning,
Learning vector quantization,
Geometrical learning approach

Abstract: In this paper, a geometrical scheme is presented to show how to overcome
an encountered problem arising from the use of generalized delta learning rule within
competitive learning model. It is introduced a theoretical methodology for describing the
quantization of data via rotating prototype vectors on hyper-spheres.
The proposed learning algorithm is tested and verified on different multidimensional
datasets including a binary class dataset and two multiclass datasets from the UCI repos-
itory, and a multiclass dataset constructed by us. The proposed method is compared with
some baseline learning vector quantization variants in literature for all domains. Large
number of experiments verify the performance of our proposed algorithm with acceptable
accuracy and macro f1 scores.

Sınıflandırma Problemlerinin Çözümü için Destekleyici Öğrenmeli Vektör Nicemleme
Metodunun Geometrik Modifikasyonu

Anahtar Kelimeler
Makine öğrenmesi,
Destekleyici öğrenmeli vektör
nicemleme,
Geometrik öğrenme yaklaşımı

Özet: Bu çalışmada yarışmacı öğrenme modelinde kullanılan genelleştirilmiş delta
öğrenme kuralı ile ortaya çıkan problemin üstesinden gelmek için geometrik bir yak-
laşım önerilmiştir. Veri nicemlemesinin izah edilebilmesi için prototip vektörlerinin
hiper-küreler üzerinde döndürülmesi esasına dayalı teorik bir metodoloji geliştirilmiştir.
Önerilen öğrenme algoritması UCI veri havuzundan alınmış bir tanesi ikili sınıflandırma
veri seti ve iki tanesi çok sınıflı olan veri setleri ile bir tanesi tarafımızdan hazırlanan
çoklu sınıf veriseti üzerinde test edilmiş ve geçerliliği denetlenmiştir. Önerilen metot,
literatürde referans alınan bazı destekleyici öğrenmeli vektör nicemleme ağ varyasyonları
ile farklı alanlarda karşılaştırılmıştır. Çok sayıdaki deneysel çalışmalar, makul doğruluk
değerleri ve makro f1 skorları ile önerilen algoritmanın performansını doğrulamaktadır.

1. Introduction

For solving classification problems, numerous techniques
using a geometrical approach are presented in statisti-
cal learning theory [1–3]. Cabrelli et al. (2000) con-
structed Convex Recursive Deletion Regions (CoRD) that
are able to be classified by two-layer perceptron networks
[4]. Wang and Chaudhari (2004) designed Fast Cover-
ing Learning Algorithm (FCLA) for Boolean Neural Net-
works which separate input space by using the intersection
of a reference hyper-sphere and three concentric hyper-
spheres based on three different radii [5].
Shoujue and Jiangliang (2005) suggested a geometrical
learning algorithm using descriptive geometry. In this al-
gorithm, hyper-sausage units were presented as simple ge-
ometrical units for learning samples. Geometrical features
of high dimensional constructions of samples were investi-
gated by way of projections from high dimension to lower
dimension [6].
Bayro-Corrochano and Anana-Daniel introduce a new al-
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gorithm based on clifford geometric algebra. This method
is the generalization of the real and complex valued Sup-
port Vector Machines called the Clifford Support Vector
Machines (CSVM) [7].

Zhang et al. (2005) use the multinomial manifold for text
classification using Euclidean geometry [8].

Delogue et al. (2008) presented a new approach to clas-
sify patterns defined in a real domain by using linear pro-
gramming for determining Polyhedron of Minimal Vol-
ume. The authors used a constructive algorithm in order
to achieve a reduced computation complexity within the
multi-layer perceptron networks [9].

Liu et al. (2009) define a geometric method called scaled
convex hull (SCH) based on a theoretical approach [10].

Nova and Estéves (2014) emphasize some advantages
of Learning Vector Quantization (LVQ) algorithms com-
pared with Multi Layer Perceptron (MLP) and Support
Vector Machine (SVM) [11]. The construction of LVQ
topology is simple because of fixed number of free param-
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eters as number of prototype vectors. Also, LVQ needs
fewer computational workload in comparison with MLP
and SVM. In LVQ, the prototype vectors are used to rep-
resent the classes in learning domain. However, the gener-
alized delta learning rule of LVQ may cause the prototype
vectors move far away from the center of the class, which
is referenced by the prototype vectors, after some itera-
tions.
In this study, we have developed a rigorous and quite gen-
eral framework via some reference hyper-spheres for clas-
sification problems to overcome the mentioned problem
with the generalized delta learning rule. The proposed ap-
proach follows quite naturally by changing the viewpoint
on the learning rule of well-known LVQ methods. The
main contributions of this study are partially to handle the
bottleneck of generalized delta learning rule, and to guar-
antee the learning. In addition, it is shown that while the
prototype vectors are converged or diverged to the input
vector, they can be moved on a curve instead of moving
linearly.
In the sequel, firstly, the Learning Vector Quantization is
introduced as a preliminary, and some variants of LVQs
are presented briefly. Then, the proposed method based
on geometrically heuristic approach to separate the input
space has been mentioned in detail. Finally, the experi-
mental results and some important issues about the pro-
posed learning approach have been discussed according
to the existing knowledge.

1.1. Some variants of Learning Vector Quantization

LVQ algorithm is firstly introduced by Kohonen as a
heuristic classification method [13], and other variants of
LVQs in the literature can be categorized according to
their learning rules [11, 12]. Generally, LVQ methods
are decomposed into 3 branches as heuristic methods (Ko-
honen LVQs), marjin maximization and likelihood ratio
maximization methods [11].
Learning Vector Quantization (LVQ) is used to gener-
ate the Kohonen codebook vectors that characterize the
classes in an input space. The network topology of LVQ
consists of three layers as an input layer, a Kohonen layer
and an output layer. Each neuron in the output layer indi-
cates a class of input space, and each class is referenced
by some vectors in the Kohonen layer. The main idea of
LVQ is that the class of an input vector x is specified by
the nearest Kohonen codebook vector.
Initially, each prototype vector is predefined or randomly
generated. First, given an input vector x belonging to the
training data set, the winning neuron is determined via
calculating Euclidean distance. The winning neuron is
the nearest prototype vector to the input vector, x. If the
topology of LVQ has totally M vectors in the Kohonen
layer, the winning vector, or in other words, the weight of
winning neuron is updated by the Kohonen learning rule
given in the Eq. (1.1).

wk(t +1) = wk(t)−λ (t)(x−wk(t)) (1.1)

where wk is the nearest prototype vector such that
k = arg min

1≤i≤M
{‖x−wi‖} [13]. In Eq. (1.1), λ is a con-

stant or monotonically decreased function defined as the
learning rate such that 0 < λ < 1 and t denotes the itera-
tion value or time. The version of LVQ is known as LVQ1.
In LVQ2 algorithm, the local and global winning neurons
as prototype vectors are determined, firstly [14]. While
the local winning vector, wl is the nearest vector to the in-
put vector x, which belongs to the same class with x, the
global winning vector, wg is the nearest vector to the input
among all prototype vectors. In this approach, the local
winner, wl is moved to closer to the input x using the Eq.

(1.2) when the condition min
(

dl
dg
,

dg

dl

)

> s is satisfied such

that dl = |x−wl |, dg = |x−wg| and s is arbitrary selected
relative window width. The idea is to fall the input x into
the relative window defined around the midplane of wl

and wg. Kohonen (1996) suggest that a relative window
width, s can be selected as a value between 0.2 and 0.3
[15]. Furthermore, the global winner, wg is moved away
from the input, x with the Eq. (1.3) under the same condi-
tions in the improved version of LVQ2 called as LVQ2.1.
However, this process can not guaranty the convergence.

wl(t +1) = wl(t)−λ (t)(x−wl(t)), (1.2)

wg(t +1) = wg(t)+λ (t)(x−wg(t)) (1.3)

where l = arg min
i1≤i≤im

{‖x−wi‖} such that the Kohonen

neurons indexed between i1 and im are in the same class
with x for m < n, and g = arg min

1≤ j≤n,
j 6∈{i1,...,im}

{‖x−w j‖}.

Kohonen (1990) proposed the third version of LVQ
which has the same process as in LVQ2.1 except that
g = arg min

1≤ j≤M

{‖x−w j‖} [13]. That means, the wl and wg

can fall in the same class. As a result, an extra weight
updating is applied using the Eq. (1.4) for k ∈ {l,g}.

wk(t +1) = wk(t)+ ελ (t)(x(t)−wk(t)), (1.4)

where ε ∈ (0,1) is a stabilizing constant factor. The value
of ε should reflect the width of the adjustment window
around the border between the classes of wl and wg. How-
ever, the problem of LVQ2.1 is still remained for LVQ3
algorithm [16].
Sato and Yamada (1995) suggested the Generalized Learn-
ing Vector Quantization (GLVQ) algorithm to minimize
the cost function, E to ensure the prototype vectors con-
tinue approximating the class distribution via the relative
distance difference defined in the Eq. (1.5)

µ(x) =
dl −dg

dl +dg

, (1.5)

where dl and dg are the distances between the input vector,
x and the prototype vectors wl and wg respectively, and
µ(x) is the classifier function [16]. To minimize the cost
function E = 1

2 ∑N
k=1 f (µ(xk)), the weights of the winning

vectors wl and wg are updated using the Eq. (1.6) based
on the steepest descent method such that N is the total
number of samples in the training data set.

wl = wl +λ
∂ f

∂ µ
dg

(dl +dg)2
(x−wl), (1.6)
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wg = wg −λ
∂ f

∂ µ
dl

(dl +dg)2
(x−wg) (1.7)

where dl = |x−wl |
2 and dg = |x−wg|

2. In GLVQ, the
convergence property of LVQ depends on the definition of
the cost function, and the function f (µ , t) can be selected
as the sigmoid function of 1/(1+ exp(−µt)).
In the optimized versions of LVQ1 and LVQ3, the pro-
cess are the same as LVQ1 and LVQ3 respectively, except
that each prototype vector has its own learning rate, λi for
1 ≤ i ≤ M. The optimal values of λi are determined by a
recursion function given in the Eq. (1.8).

λi(t) =
λi(t −1)

1+ s.λi(t −1)
(1.8)

where s = 1 if wi and x are in the same class, namely the
classification is correct, otherwise s =−1. Kohonen et al.
(1996) claim that the optimized version of LVQs provides
fast convergence, however it cannot be applied to LVQ2.1
because of divergency [15].
Hammer and Villmann (2002) presented Generalized Rel-
evance Learning Vector Quantization (GRLVQ) for en-
larging GLVQ [17]. In GRLVQ, the similarity measure
is an adaptive metric which uses the weighted counterpart
with relevance weights of the vectors as seen in the Eq.
(1.9).

dr(x,w) = ∑
i

ri(xi −wi)
2 (1.9)

where ri is relevance factor such that ri < 0 initially and
∑i ri = 1. It is obvious that the usage of relevance factors
allows the scaling of the input dimensions. Learning pro-
cess of GLVQ is done by stochastic gradient descent with
respect to the cost function E with the Eq. (1.10), and
the relevance learning is performed by adaptation of the
relevance weights again by gradient descent with the Eq.
(1.11) where ∂S denotes the stochastic gradient.

∂SE

∂wl

=
∂SE

∂dl

∂dl

∂wl

,
∂SE

∂wg

=
∂SE

∂dg

∂dg

∂wg

(1.10)

where

∂SE

∂dl

=
2dg. f

′(µ(w))

(dl +dg)2
,

∂SE

∂dg

=−
2dl . f

′(µ(w))

(dl +dg)2
.

ri = ri − εr
∂SE

∂ ri

(1.11)

where 0 < εr < 1, and ∂ES

∂ ri
=

2dg. f
′(µ(w))

(dl+dg)2
∂dl
∂ ri

−

2dl . f
′(µ(w))

(dl+dg)2
∂dg

∂ ri
.

Seo and Obermayer (2003) derived a learning rule apply-
ing gradient descent on a cost function based on a likeli-
hood ratio in Soft Learning Vector Quantization (SLVQ)
[18]. In the improved version of SLVQ called Robust Soft
Learning Vector Quantization, the cost function is opti-
mized without the window rule. Biehl et al. (2007) exam-
ined the generalization ability of LVQ Algorithms with a
theoretical perspective [19].
In Generalized Matrix Learning Vector Quantization
(GMLVQ) algorithm, a parametric quadratic form of the

distance given in the Eq. (1.12) is used in the improved
version of GRLVQ [20].

dΛ(x,w) = (x−w)T Λ(x−w), (1.12)

where Λ is a quadratic, positive, semi-definite matrix.

Kaestner et al. (2012) suggested functional relevance
in learning vector quantization to reduce the free pa-
rameters for updating relevance factor [21]. In General-
ized Functional Relevance Learning Vector Quantization
(GFRLVQ), the relevance factor, ri is interpreted as a func-
tion of ri = r(ti) and it is defined as a linear combination
of some basis functions such as Gaussian or Lorentzian
type functions that have only single peak.

r(ti) = ∑
j

β jκ j(ω j, t j) (1.13)

where the basis functions κ j have few parameters ω j =
(ω j,1,ω j,2, . . . ,ω j,p)

T and β j > 0 and ∑ j β j = 1.

Hammer et al. (2014) extend the properties of LVQ by
applying the learning algorithm to similarity and dissimi-
larity data [22].

Hofmann et al. (2015) propose kernel robust soft LVQ
(RSLVQ) which is capable of classifying complex data
sets [23]. They describe a general gram matrix including
low rank approximations and how the models could be
implemented in this approach.

Bohnsack et al. (2016) improve LVQ method in order to
get the classification of matrix data based on matrix norms
[24]. In general learning algorithms are based on vectorial
approach, the contribution of the article is to work for ma-
trix norms.

The advances in the literature give us an idea to solve to
the mentioned problem of LVQ with evading the unjusti-
fiable workload. The idea is presented in the next section
in detail.

2. Learning Algorithm based on Rotating Kohonen
Codebook Vectors on Hyper-spheres

The geometric interpretation of the Kohonen rule is to de-
crease or increase the distance between the prototype vec-
tor, wi and the input vector, p according to the learning
rate, λ shown in Fig. 1. An unsolved problem is oc-
curred because of using the Kohonen learning rule, which
causes the divergence of Kohonen codebook vectors from
the boundary of the class as seen in the Fig. 1. Namely,
assuming that p belongs to the class, A, and w is to be a
prototype vector for the class, C. If w is the global winner,
then it is moved away from the vector, p according to gen-
eralized delta learning rule. Although it is not expected to
move away from the surrounding of the class C, when w
is diverged from p, it is also moved away from the class,
C, and it enters the domain of the class, B. To handle this
problem, we propose a new learning rule without relative
window parameter for learning vector quantization.
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O x
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A

B

C

p

w(t)

w(t +1)

Figure 1. The main bottleneck of delta learning rule for
adaptation of codebook vectors in LVQ.

In machine learning methods, unadjusted free parameters
without optimization cause unexpected test results, and
the optimization of free parameters is also a difficult task
in neural networks. In other words, less number of free
parameters means less workload. Buchala et al. (2005)
emphasize that the using of large number of free param-
eters lead to unsuccessful test results [25]. They con-
clude that the bad classification performance has occurred
when presenting irrelevant information by using consider-
able number of free parameters. Furthermore, Maeda and
Ishii (2009) mentioned about the phenomena known as
overfitting arise from too many parameters [26]. In vec-
tor quantization to avoid overfitting, reducing the effect-
ness of many free parameters is important. Denil et al.
(2013) propose a general purpose technique for decreas-
ing a number of free parameters in neural networks [27].
With this manner, Seo and Obermayer (2003) developed
Robust Soft Learning Vector Quantization method using a
cost function without the window rule for optimising the
vector quantization [18].
In this way, we developed a heuristic learning vector quan-
tization method removing the window width parameter,
which is initialized as a fixed and an arbitrary free param-
eter. The principal idea is to rotate the prototype vec-
tor, w onto a hypersphere whose center is the centroid
of the class represented by the winning prototype vec-
tor. The radius of the hypersphere is the distance between
the centroid of the class and the winning prototype vec-
tor. This hypersphere is not a free parameter, it is cal-
culated dynamically. We called the proposed method as
LVQRKV (Learning Vector Quantization with Rotating
Kohonen codebook Vectors).
Given a set of points (x1,x2, . . . ,xn) in n-dimensional
Euclidean space, a hypersphere, Sn−1 is represented by
∑n

i=1(xi − ci)
2 = r2 where x is the input vector, c is the

center and r is the radius of Sn−1.
In this paper, initially, we construct two different refer-
ence hyperspheres. One of the hyperspheres has the input
vector p as the center point and |pw| as the radius where
w is the winning prototype vector. The other hypersphere
is formed by the midpoint between the prototype vector w
and a centroid of a class, ie. mA as a center and |wmA|

as the diameter. In training stage, the hyperspheres are
constructed dynamically at each iteration. In other words,
these hyperspheres are generated for each input vector.
On account of the fact that an n-dimensional Euclidean
space is analogous to the spherical coordinate system, the
coordinates of w consist of a radial coordinate ρ = |w|,
and n−1 angular coordinates α1,α2, . . . ,αn−1 where αn−1

ranges over [0,2π) radians and the other angles range over
[0,π] radians. Then, the coordinates of the vector w are
formulated as

w1 = ρ cos(α1),
w2 = ρ sin(α1)cos(α2),

...
wn−1 = ρ sin(α1)sin(α2) · · ·sin(αn−2)cos(αn−1)



















(2.1)
and

wn = ρ sin(α1)sin(α2) · · ·sin(αn−2)sin(αn−1). (2.2)

Now, if the vector w is rotated by ∆α radian around the α1-
axis, w is moved to a new point w(t +1) with the angular
coordinate α1 = α1 − s∆α where s specifies the direction
of the rotation and t is the iteration value. If s = 1, w
is rotated about α1-axis in a clockwise direction, and if
s =−1 then the direction is counterclockwise.
If the inverse transforms are applied, the angular coordi-
nates of w can be written as seen in Eq. (2.3) and Eq.
(2.4).

αi = arccot





wi
√

∑n
j=i+1 w2

j



 (2.3)

for 1 ≤ i < n−1, and

αn−1 = 2arccot





√

w2
n−1 +w2

n +wn−1

wn



. (2.4)

Euclidean coordinate of w(t +1) is recalculated again by
the Eq. (2.1) and Eq. (2.2). This process guarantees that
w converges both of the centroid of the class and the in-
put. In Fig. 2, w(t + 1) is an interior point of the hy-
persphere, so |pw(t + 1)| < |pw(t)|. On the other hand,
|mAw(t + 1)| < |mAw(t)| because the longest chord is
passed through the center of the hypersphere. Also, it is
obvious that w(t + 1) is still on the hypersphere whose
center is c because the length of diameter is not changed
during the process.
Moreover, if w is the global winner, then it is diverged
from the input vector p belonging to the class, A, and it
is converged to the centroid of the other class, B in the
proposed algorithm. Therefore, the global winner vector,
w is rotated onto hypersphere whose center is the mid-
point between the prototype vector, w and the centroid
of the class, B and radius is |cw| as seen in Fig. 3. In
this case, w(t + 1) must be outside of the hypersphere
whose center is the input vector, x and radius is the |pw|
after rotation. The learning is guaranteed again, because
|mBw(t +1)|< |mBw(t)| and |pw(t +1)|> |pw(t)|.
Then, the gradient descent algorithm is applied for updat-
ing α1 angular parameter with respect to the cost function
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E using generalized delta learning rule as in Eq. (2.5).

α1 = α1 −λ
∂E

∂α1
(2.5)

O x

y

r1α1
w(t)

w(t +1)

r2

mA

c(t)

p

Figure 2. If w(t +1) is inside of the hyper sphere whose
center is p and radius is |pw|, the rotating process guar-
antees the learning.

O x

y

r1
α1

w(t)

r2

w(t +1)
mB

c(t)

p

Figure 3. If w(t + 1) is outside of the hyper sphere
whose center is p and radius is |pw|. The rotating pro-
cess guarantees the learning.

The cost function, E in Eq. 2.5 is essentially defined as
similar with the cost function in the GLVQ [16]. The only
difference occurs in the definition of the classifier function
µ(p) as seen in Eq. 2.6.

µ(p) =
α1l −α1g

α1l +α1g

, (2.6)

where α1l and α1g are the angles between the input vector
p and the prototype vectors wl and wg respectively. In this
case, the learning rule given in Eq. 2.5 turns into the Eq.

2.7 and 2.8 such that f is the sigmoid function for local
and global winner respectively.

α1l = α1l −2λ
∂ f

∂ µ
α1g

(α1l +α1g)2
, (2.7)

α1g = α1g +2λ
∂ f

∂ µ
α1l

(α1l +α1g)2
(2.8)

Eq. 2.7 reduces the angle between the input vector p
and the local winning prototype vector wl , while Eq 2.8
increases the angle between the input vector p and the
global winning prototype vector wg.
It is easily appreciable that it is enough to change the an-
gular coordinate α1 only by means of rotation. Because,
while rotating w(t) onto the hyperspheres, w(t + 1) must
be inside or outside of the hyper sphere.

3. Results

In this study, we apply the proposed method to four differ-
ent data sets, which three of them were quoted from UCI
repository[28, 32]. These datasets are Iris Flowers, Breast
Cancer Diagnosis and Optical Digit Recognition. In the
last experience, we have created a corpus constructed by
documents quoted from Turkish news.
The corpus consists of four categories as “economy", “arts
and culture", “health and fitness", and “sports" as over-
lapped classes. So, the corpora have totally 300 Turkish
documents for training and testing operations. In prepro-
cessing, all unnecessary characters such as punctuation
marks are removed from the documents. All capital letters
are converted to lower case and only one space character
is allowed between two consecutive words. After the fre-
quencies of tokens as word monogram in all documents
have been computed in feature extraction stage, the doc-
uments have been represented as column vectors which
contain frequencies using bag-of-words model. Kohonen
layer of the network for all methods consists of 50 neurons
for each class. Text categorization task is the most sophis-
ticated experiment in our study, on the account of having
the feature vectors with 400 attributes for each documents.
The feature vectors are constructed using the frequencies
of 100 most common high frequency words in each class.
Then, we apply our method on the corpus for observing
the performance of the proposed method on text catego-
rization.
In training stage, the class cluster mean initialization is
made to obtain the initial values of the weights of proto-
type vectors in competitive Kohonen layer. In this way, all
methods start to train with the same weights for making
more accurate and reliable comparisons among the meth-
ods. All methods have the same topology. Namely, the
neurons in the competitive Kohonen layer are divided into
NC class having the same number of neurons, and corre-
spond to an output layer neuron for each method. Fur-
thermore, all networks are trained using the identical sam-
ples in same order, and also the monotonically decreasing
learning rate is selected as 0.5 at the beginning of train-
ing stage to compare LVQRKV with the baseline models
LVQ and other variants of LVQ. The constant stabilizing
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factor ε is chosen as 10−3 in the methods using the stabi-
lizer. The maximum number of epochs is selected as 300
in all experiments. The relative window width is selected
as 0.2 in the methods requiring the generation of a window
for updating weights.

Table 1. Performance analysis on different four datasets
with the learning rate λ as 0.5 according to 10-fold cross
validation.

Mean Mean

Datasets Method Accuracy F-measure

Iris Flower

LVQ1 0.9391 ± 0.0561 0.9070 ± 0.0884
LVQ2 0.9342 ± 0.0572 0.8997 ± 0.0896
LVQ2.1 0.9342 ± 0.0572 0.8997 ± 0.0896
LVQ3 0.9350 ± 0.0559 0.9007 ± 0.0880
OLVQ1 0.9366 ± 0.0558 0.9034 ± 0.0875
OLVQ3 0.9333 ± 0.0564 0.8985 ± 0.0884
GLVQ 0.9342 ± 0.0554 0.8998 ± 0.0867
RLVQ 0.9416 ± 0.0560 0.9110 ± 0.0876
GRLVQ 0.9235 ± 0.0772 0.8825 ± 0.1227
LVQRKV 0.9333 ± 0.0570 0.8986 ± 0.0890

Breast
Cancer

LVQ1 0.9437 ± 0.0131 0.9437 ± 0.0133
LVQ2 0.9505 ± 0.0145 0.9504 ± 0.0145
LVQ2.1 0.9505 ± 0.0145 0.9504 ± 0.0145
LVQ3 0.9449 ± 0.0171 0.9448 ± 0.0173
OLVQ1 0.9479 ± 0.0089 0.9479 ± 0.0090
OLVQ3 0.9468 ± 0.0122 0.9467 ± 0.0123
GLVQ 0.9491 ± 0.0131 0.9490 ± 0.0132
RLVQ 0.9280 ± 0.0197 0.9279 ± 0.0202
GRLVQ 0.9377 ± 0.0248 0.9376 ± 0.0254
LVQRKV 0.9468 ± 0.0169 0.9467 ± 0.0171

Optical
Digit
Recognition

LVQ1 0.9840 ± 0.0103 0.9190 ± 0.0545
LVQ2 0.9824 ± 0.0103 0.9115 ± 0.0532
LVQ2.1 0.9824 ± 0.0103 0.9115 ± 0.0532
LVQ3 0.9837 ± 0.0101 0.9179 ± 0.0532
OLVQ1 0.9811 ± 0.0113 0.9059 ± 0.0546
OLVQ3 0.9808 ± 0.0118 0.9045 ± 0.0563
GLVQ 0.9801 ± 0.0122 0.9011 ± 0.0584
RLVQ 0.8700 ± 0.1313 0.3101 ± 0.3111
GRLVQ 0.9619 ± 0.0197 0.8065 ± 0.1065
LVQRKV 0.9821 ± 0.0112 0.9103 ± 0.0560

Text
Categorization

LVQ1 0.8072 ± 0.0644 0.6061 ± 0.1476
LVQ2 0.8081 ± 0.0587 0.6061 ± 0.1293
LVQ2.1 0.8081 ± 0.0587 0.6061 ± 0.1293
LVQ3 0.8118 ± 0.0536 0.6151 ± 0.1216
OLVQ1 0.7810 ± 0.1076 0.5420 ± 0.2063
OLVQ3 0.8090 ± 0.0580 0.6102 ± 0.1262
GLVQ 0.7917 ± 0.0682 0.5758 ± 0.1436
RLVQ 0.8125 ± 0.0735 0.6241 ± 0.1390
GRLVQ 0.7653 ± 0.0653 0.5240 ± 0.1329
LVQRKV 0.8088 ± 0.0548 0.6084 ± 0.1254

Eventually, we split the original sample sets randomly into
10 equal size subsamples for applying 10-fold cross vali-
dation. In all experiments, one of single subsample set
is retained as the validation data for testing, and other re-
maining instances are used for training the model. This
process is carried out 10 times to obtain more robust result
in testing. Finally, the average of accuracy and f -measure
scores of all tests with standard deviation are calculated.
In this work, the datasets have been used for comparing
the performance of the proposed method with some vari-
ants of learning vector quantization methods as seen in
Table 1.

4. Discussion and Conclusion

In machine learning, the methods for solving classifica-
tion problem vary widely. The question is which method

is suitable for a specific domain. Actually, each method
has own pros and cons. Recent researches focus on devel-
oping new methods including less free parameter to reach
the solution of the classification problem faster and faster.
In our study, we suggest a new algorithm based on ge-
ometrical approach called as LVQRKV that handles out
the bottleneck of the Kohonen’s generalized delta learn-
ing rule. We apply the proposed method to four different
datasets, and the proposed method is compared with the
baseline learning vector quantization methods on various
experiments as classification of iris flower, breast cancer
recognition, optical recognition of handwritten digits and
text categorization. The experiments show that LVQRKV
is suitable for both multidimensional and overlapped clas-
sification problems.
The obtained results from the large number of experi-
ments verify the performance of our proposed algorithm.
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