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Abstract

The aim of our study is to obtain the spectrum, fine spectrum, approximate point spectrum, defect spectrum and compression spectrum of
triple repetitive double-band matrix over the cs sequence space. In addition, the spectrum and fine spectrum of the n-repetitive form were
investigated in the space of this matrix.
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1. Introduction

The spectral theory is a branch of summability theory, which is an important branch of functional analysis. Some important studies regarding
the recent developments in summability theory are [6], [8], [15], [20], [21] and [22]. The spectral theory extends the concept of eigenvalue
and eigenvector of matrix theory to the spectrum of operators in several spaces. While examining the operators’ spectrum, the fine separation
defined by Goldberg and another separation that does not need to be disjoint, approximate, defect, compression spectrum were examined.
Some studies on this topic are: The spectrum of the Cesàro operator is studied in [1]-[2] The spectrum of the B(r,s) operator is studied in
[5]-[11]. The spectrum of operator B(r,s, t) [18]-[7] was studied. The spectrum of the ∆ab is studied in [3]-[13]. The spectrum of the ∆uv is
studied in [16]-[14]. The spectrum of the U(a,0,b)is studied in [9], [10].
Let w, cs, bv denote the set of all sequences, convergent series, bounded variation sequences, respectively.

cs =

{
x = (xk) ∈ w : lim

n→∞

n

∑
k=1

xk exists

}

and

‖x‖cs = sup
n

∣∣∣∣∣ n

∑
k

xk

∣∣∣∣∣ .
cs is isomorphic to bv =

{
x = (xk) ∈ w :

∞

∑
k=1
|xk− xk+1| exists

}
with the norm ‖x‖bv =

∞

∑
k=1
|xk− xk+1| .

In [12], the spectrum and fine spectrum of the U(a0,a1,a2;b0,b1,b2) matrix in the c0 sequence space were examined. In this study, we will
examine the spectrum, fine spectrum and spectral decomposition of this matrix on the cs sequence space. We will also give the spectrum and
fine spectrum of the n-repetitive form of this matrix on the same space. For this purpose, we will first show that the matrix defines a limited
linear operator on the cs sequence space, and then calculate the approximate point spectrum, defect spectrum and compression spectrum
after performing the Golberg’s classification of the spectrum.
Let X and Y be the Banach spaces, and A : X→Y be a bounded linear operator. We denominate the range of A by R(A)= {y ∈ Y : y = Ax, x ∈ X},
and the domain of A.by D(A) = {x ∈ X : y = Ax}. We show the set of all bounded linear operators on X into itself.by B(X). Also let I be the
identity operator.
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2. Fine Spectrum

In this section, the spectra and fine spectra of the U(a0,a1,a2;b0,b1,b2) matrix will be calculated.
Let A : D(A)⊂ X → X be a bounded linear operator where X is a complex normed space. Let Aζ := ζ I−A for ζ ∈ C. A−1

ζ
is known as the

resolvent operator of A.
ζ ∈ C is a regular value of A such that
a) A−1

ζ
exists,

b) A−1
ζ

is continuous

c) A−1
ζ

is defined on a set which is dense in X ,
the set of all regular values is denoted by ρ(A,X). The set σ(A,X) = C\ρ(A,X) is called the spectrum of A.
The set σ(A,X) is union of three disjoint sets as follows:

a) The point spectrum σp(A,X) =
{

ζ ∈ C : A−1
ζ

does not exist
}

.
b) The continuous spectrum
σc(A,X) =

{
ζ ∈ C : A−1

ζ
is defined on a dense subspace of X and is discontinuous

}
c) The residual spectrum
σr(A,X) =

{
ζ ∈ C : A−1

ζ
exists and its domain of definition is not dense in X

}
.

From the above definitions, the following table is obtained;

1 2 3
A−1

ζ
exists A−1

ζ
exists A−1

ζ

and is continuous and is discontinuous does not exists
I R(ζ I−A) = X ζ ∈ ρ(A,X) – ζ ∈ σp(A,X)

II R(ζ I−A) = X ζ ∈ ρ(A,X) ζ ∈ σc(A,X) ζ ∈ σp(A,X)

III R(ζ I−A) 6= X ζ ∈ σr(A,X) ζ ∈ σr(A,X) ζ ∈ σp(A,X)

Table 1: Disjoint divisions of the spectra of a bounded linear operators.

The triangular double-band matrix U(a0,a1,a2;b0,b1,b2) is an infinite matrix of form

U(a0,a1,a2;b0,b1,b2) =



a0 b0 0 0 0 0 0 0 0 · · ·
0 a1 b1 0 0 0 0 0 0 · · ·
0 0 a2 b2 0 0 0 0 0 · · ·
0 0 0 a0 b0 0 0 0 0 · · ·
0 0 0 0 a1 b1 0 0 0 · · ·
0 0 0 0 0 a2 b2 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


(b0,b1 ,b2 6= 0). (2.1)

Lemma 2.1 ( [23] Stieglitz, Tietz). The matrix A = (ank) gives rise to a bounded linear operator T ∈ (cs;cs) from cs to itself if and only if

(i)
∞

∑
n=1

ank converges, for each k,

(ii) sup
N>0

∞

∑
k=1

∣∣∣∣ N
∑

n=0

(
ank−an,k−1

)∣∣∣∣< ∞,

Theorem 2.2. U(a0,a1,a2;b0,b1,b2) : cs→ cs is a bounded linear operator.

Proof. (i) Since

∑
n

ank =


a0, k = 0
b0 +a1, k = 3i−2
b1 +a2, k = 3i−1
b2 +a0, k = 3i

i = 1,2,3, . . .

it is clear.

(ii) Let BN
k =

N
∑

n=0

(
ank−an,k−1

)
and if we calculate BN

k then we have

N = 1 N = 2 N = 3 N = 4 N = 5 · · ·
k = 1 b0−a0+a1 b0−a0+a1 b0−a0+a1 b0−a0+a1 b0−a0+a1 · · ·
k = 2 −b0+b1−a1 −b0+b1−a1+a2 −b0+b1−a1+a2 −b0+b1−a1+a2 −b0+b1−a1+a2 · · ·
k = 3 −b1 −b1+b2−a2 −b1+b2−a2+a0 −b1+b2−a2+a0 −b1+b2−a2+a0 · · ·
k = 4 0 −b2 −b2+b0−a0 −b2+b0−a0+a1 −b2+b0−a0+a1 · · ·
k = 5 0 0 −b0 −b0+b1−a1 −b0+b1−a1+a2 · · ·
k = 6 0 0 0 −b1 −b1+b2−a2 · · ·

...
...

...
...

...
...

. . .
∞

∑
k=1

∣∣BN
k

∣∣ |a0| |a0| |a0| |a0| |a0| · · ·

.
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Therefore we have

BN
k =


0, N ≤ k−3
−bk−2, N = k−2
−bk−2 +bk−1−ak−1, N = k−1
−bk−2 +bk−1−ak−1 +ak, N ≥ k

.

Hence, since
∞

∑
k=1

∣∣BN
k

∣∣= |a0| we get

sup
N>0

∞

∑
k=1

∣∣∣∣∣ N

∑
n=0

(
ank−an,k−1

)∣∣∣∣∣= sup
N>0

∞

∑
k=1

∣∣∣BN
k

∣∣∣= |a0|< ∞

Thus U(a0,a1,a2;b0,b1,b2) : cs→ cs is a bounded linear operator.

Lemma 2.3 (Golberg [19, p.60]). T has a dense range if and only if T ∗ is 1-1.

Lemma 2.4 (Golberg [19, p.60]). T has a bounded inverse if and only if T ∗ is onto.

Theorem 2.5. σp(U (a0,a1,a2;b0,b1,b2) ,cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|}.

Proof. Let ζ be an eigenvalue of the operator U (a0,a1,a2;b0,b1,b2). Then there exists x 6= θ = (0,0,0, ...) in cs such that
U (a0,a1,a2;b0,b1,b2)x = ζ x. Then we obtain

x3n = dnx0,

x3n+1 =
ζ −a0

b0
dnx0,

x3n+2 =
(ζ −a0)(ζ −a1)

b0b1
dnx0,

, n≥ 0

where d =
(ζ −a0)(ζ −a1)(ζ −a2)

b0b1b2
. Thus we get

∞

∑
n=0

xn = x0 + x1 + x2 + · · ·+ xn + · · ·

=

(
1+

ζ −a0

b0
+

(ζ −a0)(ζ −a1)

b0b1

)
x0

∞

∑
n=0

dn

∞

∑
n=0

dn is absolutely convergent if and only if |d|< 1. Since absolutely convergent every series is convergent series, (xn)∈ cs. So x = (xn)∈ cs

if and only if |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|. Therefore
σp(U (a0,a1,a2;b0,b1,b2) ,cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|}.

As it is known, if T ∈ B(cs) is represented with a matrix A , then the adjoint operator T ∗ ∈ B(cs∗=̃bv) and At is its matrix representation.

Theorem 2.6. σp(U (a0,a1,a2;b0,b1,b2)
∗ ,cs∗=̃bv) = /0.

Proof. Let ζ be an eigenvalue of the operator U (a0,a1,a2;b0,b1,b2)
∗. Then there exists x 6= θ = (0,0,0, ...) in bv such that

U (a0,a1,a2;b0,b1,b2)
∗ x = ζ x. Then, we obtain

a0x0 = ζ x0

b0x0 +a1x1 = ζ x1

b1x1 +a2x2 = ζ x2

b2x2 +a0x3 = ζ x3

...

n = 3k, b0xn +a1xn+1 = ζ xn+1 (2.2)

n = 3k+1, b1xn +a2xn+1 = ζ xn+1

n = 3k+2, b2xn +a0xn+1 = ζ xn+1

Let xk be the first non-zero of sequence (xn). Let n = 3k. If xn = xk−1 satistify in (2.2) then from b0xk−1 +a1xk = ζ xk, we have a1 = ζ .
Again from (2.2), we get for a1 = ζ , b0xk = 0 which implies xk = 0 as b0 6= 0,a contradiction.Similarly, if n = 3k+1 and n = 3k+2 we
obtain a contradiction. Hereby, σp(

(
∆ab

3
)∗

,cs∗ ∼= bv) = /0.

Theorem 2.7. σr(U (a0,a1,a2;b0,b1,b2) ,cs) = /0.

Proof. Owing to σr(A,X) = σp(A∗,X∗)\σp(A,X), we get required result from Theorems 2.5 and 2.6.



100 Konuralp Journal of Mathematics

We know that the inverse of an upper triangular matrix is also an upper triangular matrix. So if we calculate



a0−ζ b0 0 0 0 · · ·
0 a1−ζ b1 0 0 · · ·
0 0 a2−ζ b2 0 · · ·
0 0 0 a0−ζ b0 · · ·
0 0 0 0 a1−ζ · · ·
...

...
...

...
...

. . .





c00 c01 c02 c03 c04 · · ·
0 c11 c12 c13 c14 · · ·
0 0 c22 c23 c24 · · ·
0 0 0 c33 c34 · · ·
0 0 0 0 c44 · · ·
...

...
...

...
...

. . .



=



1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .


,

the inverse matrix of (U (a0,a1,a2;b0,b1,b2)−ζ I) will be

C =



1
a0−ζ

− b0
(a0−ζ )(a1−ζ )

b0b1
(a0−ζ )(a1−ζ )(a2−ζ )

− b0b1b2

(a0−ζ )2(a1−ζ )(a2−ζ )

b2
0b1b2

(a0−ζ )2(a1−ζ )2(a2−ζ )
· · ·

0 1
a1−ζ

− b1
(a1−ζ )(a2−ζ )

b1b2
(a0−ζ )(a1−ζ )(a2−ζ )

− b0b1b2

(a0−ζ )(a1−ζ )2(a2−ζ )
· · ·

0 0 1
a2−ζ

− b2
(a0−ζ )(a2−ζ )

b0b2
(a0−ζ )(a1−ζ )(a2−ζ )

· · ·
0 0 0 1

a0−ζ
− b0

(a0−ζ )(a1−ζ )
· · ·

0 0 0 0 1
a1−ζ

· · ·
...

...
...

...
...

. . .


Theorem 2.8. σ(U (a0,a1,a2;b0,b1,b2) ,cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|} .

Proof. First, we prove that (U (a0,a1,a2;b0,b1,b2)−ζ I)−1 exists and is in (cs,cs) for |b0| |b1| |b2|< |ζ −a0| |ζ −a1| |ζ −a2| and then we
show that the operator (U (a0,a1,a2;b0,b1,b2)−ζ I) is not invertible for |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2| .
Let ζ /∈ {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|}. Since bn 6= 0, n = 0,1,2 we get an 6= ζ , n = 0,1,2.
Hence, since (U (a0,a1,a2;b0,b1,b2)−ζ I) is a upper triangle, (U (a0,a1,a2;b0,b1,b2)−ζ I)−1 is exists. Let (U (a0,a1,a2;b0,b1,b2)−
ζ I)−1 =C, then from Lemma 2.1, we get

cnk =


0 , n > k

1
an−ζ

k−n−1
∏

v=0
(−1)k−n bk−1−v

ak−v−ζ
, n≤ k

where we assume
−1
∏

v=0

bk−1−t
ak−t−ζ

= 1.

Now, we have to (U (a0,a1,a2;b0,b1,b2)−ζ I)−1 ∈ (cs,cs). Since the matrix is triangular, condition (i) of Lemma 2.1 is clear.

cnk− cn,k−1 =
1

an−ζ

(
k−n−1

∏
v=0

bk−1−v

ak−v−ζ
−

k−n−2

∏
v=0

(−1)k−n−1 bk−2−v

ak−v−1−ζ

)

=
(−1)k−n

an−ζ

((
bn

an+1−ζ
+1
) k−n−2

∏
v=0

bk−2−v

ak−v−1−ζ

)

=
A
s3

(−1)k−n

an−ζ

(
bn

an+1−ζ
+1
)

sk−n

where s =
(

b0b1b2
(a0−ζ )(a1−ζ )(a2−ζ )

) 1
3 and

A =



k = 3i k = 3i−1 k = 3i−2

n = 3 j
∣∣∣ b1b0
(a2−ζ )(a1−ζ )

∣∣∣ ∣∣∣ b0
a1−ζ

∣∣∣ 1

n = 3 j−1
∣∣∣ b1b0b2
(a2−ζ )(a1−ζ )(a0−ζ )

∣∣∣ ∣∣∣ b0b2
(a1−ζ )(a0−ζ )

∣∣∣ ∣∣∣ b2
a0−ζ

∣∣∣
n = 3i−2

∣∣∣∣ b2
1b0b2

(a2−ζ )2(a1−ζ )(a0−ζ )

∣∣∣∣ ∣∣∣ b1b0b2
(a2−ζ )(a1−ζ )(a0−ζ )

∣∣∣ ∣∣∣ b2b1
(a0−ζ )(a2−ζ )

∣∣∣
. (2.3)
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So,

∞

∑
k=0

∣∣∣∣∣ N

∑
n=1

A
s3

1
an−ζ

(
bn

an+1−ζ
+1
)
(−s)k−n

∣∣∣∣∣ ≤ A
s3

2
max
m=0

∣∣∣∣ 1
am−ζ

∣∣∣∣ 2
max
m=0

∣∣∣∣ bm

am+1−ζ
+1
∣∣∣∣ ∞

∑
k=0

|s|k
(

1− 1

|s|N+1

)
1− 1
|s|

=

(
|s|N+1−1

)
R

|s|−1

∞

∑
k=0
|s|k+1

=
R |s|

(|s|−1)2

(
1−|s|N+1

|s|N+1

)

marked here as
A
s3 max2

m=0

∣∣∣ 1
am−ζ

∣∣∣max2
m=0

∣∣∣ bm
am+1−ζ

+1
∣∣∣= R. Thus we get

sup
N>0

∞

∑
k=1

∣∣∣∣∣ N

∑
n=0

(
cnk− cn,k−1

)∣∣∣∣∣ ≤ R |s|
(|s|−1)2 sup

N>0

1−|s|N+1

|s|N+1

= sup
N>0

(
1

|s|N+1 −1

)

if |s|> 1, then sup
N>0

(
1

|s|N+1 −1

)
< ∞. So condition (ii) of Lemma 2.1 proven.

Consequently, if |b2| |b1| |b0|< |a2−ζ | |a1−ζ | |a0−ζ |, then (U (a0,a1,a2;b0,b1,b2)−ζ I)−1 ∈ (cs,cs). Hereby, the operator
(U (a0,a1,a2;b0,b1,b2)−ζ I) is not invertible for |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|. So
σ(U (a0,a1,a2;b0,b1,b2) ,cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|} .

Theorem 2.9. σc(U (a0,a1,a2;b0,b1,b2) ,cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2|= |b0| |b1| |b2|}

Proof. Owing to σ(A,X) is the disjoint union of σp(A,X), σr(A,X) and σc(A,X), thence

σc(A,X) = σ(A,X)\
(
σp(A,X)∪σr(A,X)

)
.

By Theorem 2.5 and Theorem 2.7, we get required result.

3. Subdivision of the Spectrum

In this section, another spectral decomposition of the U (a0,a1,a2;b0,b1,b2) matrix will be calculated. The spectrum σ(A,X) is divided into
three sets that need not be discrete as follows:
a) The approximate point spectrum of A the set as

σap(A,X) := {ζ ∈ C : there exists a Weyl sequence for ζ I−A}

If there exists a sequence (xn) in X such that ‖xn‖= 1 and ‖Axn‖→ 0 as n→ ∞ then (xn) is called Weyl sequence for A.
b) The defect spectrum of A is the set as

σδ (A,X) := {ζ ∈ σ(A,X) : ζ I−A is not surjective}

c) The compression spectrum of A the set as

σco(A,X) = {ζ ∈ C : R(ζ I−A) 6= X}

Proposition 1 ([4], Proposition 1.3). The spectra and subspectra of an operator A ∈ B(X) and its adjoint A∗ ∈ B(X∗) are related by the
following relations:
(a) σ(A∗,X∗) = σ(A,X),
(b) σc(A∗,X∗)⊆ σap(A,X),
(c) σap(A∗,X∗) = σδ (A,X),
(d) σδ (A

∗,X∗) = σap(A,X),
(e) σp(A∗,X∗) = σco(A,X),
(f) σco(A∗,X∗)⊇ σp(A,X),
(g) σ(A,X) = σap(A,X)∪σp(A∗,X∗) = σp(A,X)∪σap(A∗,X∗).

Goldberg’s Classification of Spectrum
If A ∈ B(X), then there are three cases for R(A):
(I) R(A) = X , (II) R(A) = X , but R(A) 6= X , (III) R(A) 6= X
and three cases for A−1:
(1) A−1 exists and continuous, (2) A−1 exists but discontinuous, (3) A−1 does not exist.
If these cases are combined in all possible ways, nine different states are created. These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3
(see [19]).
σ(A,X) can be divided into subdivisions I2σ(A,X) = /0, I3σ(A,X), II2σ(A,X), II3σ(A,X), III1σ(A,X), III2σ(A,X), III3σ(A,X).
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1 2 3
A−1

ζ
exists A−1

ζ
exists A−1

ζ

and is continuous and is continuous does not exists
I R(Aζ ) = X ζ ∈ ρ(A,X) - ζ ∈ σap(A,X)

ζ ∈ σap(A,X) ζ ∈ σap(A,X)

II R(Aζ ) = X ζ ∈ ρ(A,X) ζ ∈ σδ (A,X) ζ ∈ σδ (A,X)

ζ ∈ σap(A,X) ζ ∈ σap(A,X)

III R(Aζ ) 6= X ζ ∈ σδ (A,X) ζ ∈ σδ (A,X) ζ ∈ σδ (A,X)

ζ ∈ σco(A,X) ζ ∈ σco(A,X) ζ ∈ σco(A,X)

Table 2: Subdivisions of the spectra of a bounded linear operators.

Theorem 3.1. Iσ(U (a0,a1,a2;b0,b1,b2) ,cs) = /0.

Proof. For ζ ∈ Iσ(U (a0,a1,a2;b0,b1,b2) ,cs), we should show that U (a0,a1,a2;b0,b1,b2)− ζ I is onto. Let y = (yn) ∈ cs be such that
(U (a0,a1,a2;b0,b1,b2)−ζ I)x = y for x = (xn).Then

(a0−ζ )x0 +b0x1 = y0

(a1−ζ )x1 +b1x2 = y1

(a2−ζ )x2 +b2x3 = y2

...

(an−ζ )xn +bnxn+1 = yn.

Calculating xk, we get

xn =
1

bn−1

(
yn−1 +

n−2

∑
k=1

yk

n−k−1

∏
u=1

ζ −an−u

bn−u−1

)
+ x0

n

∏
u=1

ζ −an−u

bn−u
, n = 1,2,3, . . .

We have to show that x = (xk) ∈ cs and setting d =
(ζ −a0)(ζ −a1)(ζ −a2)

b0b1b2

since
n−k−1

∏
u=1

ζ −an−u

bn−u−1
= Md

k−n−1

3 and
n
∏

u=1

ζ −an−u

bn−u
= Nd

n
3 where M and N are constants similar to (2.3)

xn =
1

bn−1
yn−1 +

1
bn−1

n−2

∑
k=1

ykMd
k−n−1

3 + x0Nd
n
3 , n = 1,2,3, . . .

Now suppose y = (en−1) = (0,0, . . . ,0,1,0, . . .) then we get

xn =
1

bn−1

(
1+1.M.d

0
3

)
+ x0.N.d

n
3

xn =
1

bn−1
(1+M)+ x0.N.d3 −→ 1

limn−→∞ bn−1
(1+M) 6= 0.

Hence since ∑xn divergent, (xn) /∈ cs. Therefore ζ ∈ C doesn’t satisfies Golberg’s condition I. So
Iσ(U (a0,a1,a2;b0,b1,b2) ,cs) = /0.

Corollary 3.2. II3σ(U(a0,a1,a2;b0,b1,b2),cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|}.

Proof. (U(a0,a1,a2;b0,b1,b2)−ζ I)∗ is injective from Theorem 2.6. So from Lemma 2.3 U(a0,a1,a2;b0,b1,b2)−ζ I has a dense range.
Thus for ζ ∈ σ(U(a0,a1,a2;b0,b1,b2),cs), ζ ∈ Iσ(U(a0,a1,a2;b0,b1,b2), `p) or ζ ∈ IIσ(U(a0,a1,a2;b0,b1,b2),cs).
ζ ∈ IIσ(U(a0,a1,a2;b0,b1,b2),cs) is gotten from Theorem 2.9.
Also, if |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|, then ζ ∈ 3σ(U(a0,a1,a2;b0,b1,b2),cs) from Theorem 2.9. Hence
II3σ(U(a0,a1,a2;b0,b1,b2),cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2|< |b0| |b1| |b2|} .

Corollary 3.3. III1σ(U(a0,a1,a2;b0,b1,b2),cs) = III2σ(U(a0,a1,a2;b0,b1,b2),cs) = /0.

Proof. Since σr(A,X) = III1σ(A,X)∪ III2σ(A,X) from Table 1 and Table 2, the result is obtained by Theorem 2.8 and Theorem 2.7.

Corollary 3.4. I3σ(U(a0,a1,a2;b0,b1,b2),cs) = III3σ(U(a0,a1,a2;b0,b1,b2),cs) = /0.

Proof. Since σp(A,X) = I3σ(A,X)∪ II3σ(A,X)∪ III3σ(A,X) from Table 1 and Table 2, the result is obtained by Theorem 2.5 and Theorem
2.9.

Theorem 3.5. The following spectral decompositions are valid:
(a) σap(U(a0,a1,a2;b0,b1,b2),cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|},
(b) σδ (U(a0,a1,a2;b0,b1,b2),cs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|},
(c) σco(U(a0,a1,a2;b0,b1,b2),cs) = /0.
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Proof. (a) From Table 2, we obtain

σap(A,X) = σ(A,X)\III1σ(A,X).

And so σap(U(a0,a1,a2;b0,b1,b2),cs) = {ζ ∈ C : |ζ −a| ≤ |b|} from Corollary 3.3.
(b) From Table 2, we obtain

σδ (A,X) = σ(A,X)\I3σ(A,X).

So using Theorems 2.8 and 2.9, the result is gotten.
(c) By Proposition 1 (e), we obtain

σp(A∗,X∗) = σco(A,X).

Using Theorem 2.6, the result is gotten.

Corollary 3.6. The following spectral decompositions are valid:
(a) σap(U(a0,a1,a2;b0,b1,b2)

∗,cs∗ ∼= bs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|} ,
(b) σδ (U(a0,a1,a2;b0,b1,b2)

∗,cs∗ ∼= bs) = {ζ ∈ C : |ζ −a0| |ζ −a1| |ζ −a2| ≤ |b0| |b1| |b2|}.

Proof. By Proposition 1 (c) and (d), we obtain

σap(U(a0,a1,a2;b0,b1,b2)
∗,cs∗ ∼= bv) = σδ (U(a0,a1,a2;b0,b1,b2),cs)

and

σδ (U(a0,a1,a2;b0,b1,b2)
∗,cs∗ ∼= bv) = σap(U(a0,a1,a2;b0,b1,b2),cs).

from Theorem 3.5 (a) and (b), the results are gotten.

4. Results

We can generalize our operator

U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1) =



a0 b0 0 0 0 0 0 0 0 · · ·
0 a1 b1 0 0 0 0 0 0 · · ·

0 0
. . . b2

. . . 0 0 0 0 · · ·
0 0 0 an−1 bn−1 0 0 0 0 · · ·
0 0 0 0 a0 b0 0 0 0 · · ·
0 0 0 0 0 a1 b1 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


where b0,b1, . . . ,bn−1 6= 0.

Theorem 4.1. The following results are provided where D =

{
ζ ∈ C :

n−1
∏

k=0

∣∣∣∣ζ −ak

bk

∣∣∣∣≤ 1
}

. Also D̊ be the interior of the set D and ∂D be

the boundary of the set D

1. σp(U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1),cs) = D̊,
2. σp(U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1)

∗,cs∗ ∼= bv) = /0,
3. σr(U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1),cs) = /0,
4. σc(U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1),cs) = ∂D,
5. σ(U(a0,a1, . . . ,an−1;b0,b1, . . . ,bn−1),cs) = D.

5. Conclusion

There is a large literature on the spectrum and fine spectrum of certain linear operators represented by particular limitation matrices over
some sequence spaces. In this article, the spectrum, fine spectrum, and approximate point spectrum, defect spectrum, and compression
spectrum of the triple repetitive double-band matrix on the cs sequence space are calculated as subdivisions of the spectrum. Additionally,
the spectrum and fine spectrum of the n-repetitive form in the cs sequence space of this matrix are also given. This is the development of the
spectrum of an infinite matrix over a sequence space in the usual sense.
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