Ikonion Journal of Mathematics

https://dergipark.org.tr/tr/pub/ikjm

Categorification of Algebras: 2-Algebras

İbrahim İlker Akça ${ }^{1}{ }^{(©)}$, Ummahan Ege Arslan ${ }^{2}$ (D)

Keywords
2-Categories,
Crossed Modules,
Homotopy

Abstract

This paper introduces a categorification of k-algebras called 2-algebras, where k is a commutative ring. We define the 2 -algebras as a 2 -category with single object in which collections of all 1-morphisms and all 2-morphisms are k-algebras. It is shown that the category of 2-algebras is equivalent to the category of crossed modules in commutative k-algebras.

Subject Classification (2020): 18F99, 18G30, 18G55, 13C60.

1. Introduction

The term "categorification" coined by Louis Crane refers to the process of replacing set theoretic concepts by category-theoretic analogues in mathematics. A categorified version of a group is a 2 -group. Internal categories in the category of groups are exactly the same as 2-groups. The Brown-Spencer theorem [3] thus constructs the associated 2-group of a crossed module given by Whitehead [11] to define an algebraic model for a "(connected) homotopy 2 -type". The fact that the composition in the internal category must be a group homomorphism implies that the "interchange law" must hold. This equation is in fact equivalent via the Brown-Spencer result to the Peiffer identity.

We will concerne in this paper exclusively with categorification of algebras. We will obtain analogous results in (commutative) algebras with regard to Porter's work [9]. He states that there is an equivalence of categories between the category of internal categories in the category of k-algebras and the category of crossed modules of commutative k-algebras. Since the internal category in the category of k-algebras is a categorification of k-algebras, this internal category will be called as "strict 2 -algebra" in this work. We define the strict 2 -algebra by means of 2 -module being a category in the category of modules as a 2 -category with single object in which collections of 1 -morphisms and 2 -morphisms are k-algebras and we denote the category of strict 2-algebras by 2Alg. Given a group G, it is known that automorphisms of G yield a 2-group. Analogous result in commutative algebras can be given that multiplications of C yield a strict 2 -algebra where C is a commutative R-algebra and R is a commutative k-algebra.

A crossed module $\mathscr{A}=(\partial: C \longrightarrow R)$ of commutative algebras is given by an algebra morphism $\partial: C \longrightarrow R$

[^0]together with an action of R on C such that the relations below hold for each $r \in R$ and each $c, c^{\prime} \in C$,
\[

$$
\begin{aligned}
\partial(r \cdot c) & =r \partial(c) \\
\partial(c) \cdot c^{\prime} & =c c^{\prime}
\end{aligned}
$$
\]

In this paper we show that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras.

2. Internal Categories and 2-categories

We begin by recalling internal categories as well as 2-categories. Ehresmann defined internal categories in [5], and by now they are an important part of category theory [4].

2.1. Internal categories

Definition 2.1. Let \mathbf{C} be any category. An internal category in \mathbf{C}, say \mathbf{A}, consists of:

- an object of objects $A_{0} \in \mathbf{C}$
- an object of morphisms $A_{1} \in \mathbf{C}$,
together with
- source and target morphisms $s, t: A_{1} \longrightarrow A_{0}$,
- an identity-assigning morphism $e: A_{0} \longrightarrow A_{1}$,
- a composition morphism $\circ: A_{1} \times A_{0} A_{1} \longrightarrow A_{1}$ such that the following diagrams commute, expressing the usual category laws:
- laws specifying the source and target of identity morphisms:

- laws specifying the source and target of composite morphisms:

- the associative law for composition of morphisms:

- the left and right unit laws for composition of morphisms:

Here, the pullback $A_{1} \times{ }_{A_{0}} A_{1}$ is defined via the square:

We denote this internal category with $A=\left(A_{0}, A_{1}, s, t, e, \circ\right)$.
Definition 2.2. Let \mathbf{C} be a category. Given internal categories A and A^{\prime} in \mathbf{C}, an internal functor between them, say $F: A \longrightarrow A^{\prime}$, consists of

- a morphism $F_{0}: A_{0} \longrightarrow A_{0}^{\prime}$,
- a morphism $F_{1}: A_{1} \longrightarrow A_{1}^{\prime}$
such that the following diagrams commute, corresponding to the usual laws satisfied by a functor:
- preservation of source and target:

- preservation of identity morphisms:

- preservation of composite morphisms:

Given two internal functors $F: A \longrightarrow A^{\prime}$ and $G: A^{\prime} \longrightarrow A^{\prime \prime}$ in some category \mathbf{C}, we define their composite $F G: A \longrightarrow A^{\prime \prime}$ by taking $(F G)_{0}=F_{0} G_{0}$ and $(F G)_{1}=F_{1} G_{1}$. Similarly, we define the identity internal functor in $\mathbf{C}, 1_{A}: A \longrightarrow A$ by taking $\left(1_{A}\right)_{0}=1_{A_{0}}$ and $\left(1_{A}\right)_{1}=1_{A_{1}}$.

Definition 2.3. Let \mathbf{C} be a category. Given two internal functors $F, G: A \longrightarrow A^{\prime}$ in \mathbf{C}, an internal natural transformation in \mathbf{C} between them, say $\theta: F \Longrightarrow G$, is a morphism $\theta: A_{0} \longrightarrow A_{1}^{\prime}$ for which the following diagrams commute, expressing the usual laws satisfied by a natural transformation:

- laws specifying the source and target of a natural transformation:

- the commutative square law:

Given an internal functor $F: A \longrightarrow A^{\prime}$ in \mathbf{C}, the identity internal natural transformation $1_{F}: F \Longrightarrow F$ in C is given by $1_{F}=F_{0} e$.

2.2.2-categories

Definition 2.4. A 2-category \mathscr{G} consists of a class of objects G_{0} and for any pair of objects (A, B) a small category of morphisms $\mathscr{G}(A, B)$-with objects $G_{1}(A, B)$ and morphisms $G_{2}(A, B)$-, along with composition functors

$$
\text { - : } \mathscr{G}(A, B) \times \mathscr{G}(B, C) \longrightarrow \mathscr{G}(A, C)
$$

for every triple (A, B, C) of objects and identity functors from the terminal category to $\mathscr{G}(A, A)$

$$
i A: 1 \longrightarrow \mathscr{G}(A, A)
$$

for all objects A such that • is associative and

$$
F \bullet i_{B}=F=i_{A} \bullet F \quad \text { as well as } \quad \vartheta \bullet I_{i_{B}}=\vartheta=I_{i_{A}} \bullet \vartheta
$$

hold for all $F \in G_{1}(A, B)$ and $\vartheta \in G_{2}(A, B)$ where source and target morphisms are defined by

$$
\begin{array}{rlc}
& A \xrightarrow{F} B & \\
s: G_{1}(A, B) & \longrightarrow & G_{0} \\
F & \longmapsto & s(F)=A \\
t: G_{1}(A, B) & \longrightarrow & G_{0} \\
F & \longmapsto & t(F)=B
\end{array}
$$

for $F \in G_{1}(A, B)$ and

$$
\begin{array}{clc}
s: G_{2}(A, B) & \longrightarrow & G_{1} \\
\vartheta & \longmapsto & s(\vartheta)=F \\
t: G_{2}(A, B) & \longrightarrow & G_{0} \\
\vartheta & \longmapsto & t(\vartheta)=G
\end{array}
$$

for $\vartheta: F \longrightarrow G \in G_{2}(A, B)$. For all pairs of objects (A, B) elements of $G_{1}(A, B)$ are called 1-morphisms or 1cells of \mathscr{G} and elements of $G_{2}(A, B)$ are called 2-morphisms or 2-cells of \mathscr{G}. We write G_{1} and G_{2} for the classes of all 1-morphisms and 2-morphisms respectively.

There are two ways of composing 2-morphisms: using the composition \circ inside the categories $\mathscr{G}(A, B)$, called vertical composition, and using the morphism level of the functor \bullet, called horizontal composition. These compositions must be satisfy the following equation: for $\alpha, \alpha^{\prime} \in G_{2}(A, B)$ with $t(\alpha)=s\left(\alpha^{\prime}\right)$ and $\gamma, \gamma^{\prime} \in$ $G_{2}(B, C)$ with $t(\gamma)=s\left(\gamma^{\prime}\right)$

which is called "interchange law".

3. Constructions of Two-Algebras

In this section we will construct 2-algebras by categorification. We can categorify the notion of an algebra by replacing the equational laws by isomorphisms satisfying extra structure and properties we expect. In [2]

Baez and Crans introduce the Lie 2-algebra by means of the concept of 2-vector space defined as an internal category in the category of vector spaces by them. Obviously we get a new notion of "2-module" which can be considered as an internal category in the category of modules and we categorify the notion of an algebra.

3.1.2-Modules

A categorified module or " 2 -module" should be a category with structure analogous to that of a k-module, with functors replacing the usual k-module operations. Here we instead define a 2 -module to be an internal category in a category of k-modules Mod . Since the main component part of a k-algebra is a k-module, a 2-algebra will have an underlying 2-module of this sort. In this section we thus first define a category of these 2-modules.

In the rest of this paper, the terms a module and an algebra will always refer to a k-module and a k-algebra.
Definition 3.1. A 2-module is an internal category in Mod .
Thus, a 2-module M is a category with a module of objects M_{0} and a module of morphisms M_{1}, such that the source and target maps $s, t: M_{1} \longrightarrow M_{0}$, the identity assigning map $e: M_{0} \longrightarrow M_{1}$, and the composition map $\circ: M_{1} \times_{M_{0}} M_{1} \longrightarrow M_{1}$ are all module morphisms. We write a morphism as $a: x \longrightarrow y$ when $s(a)=x$ and $t(a)=y$, and sometimes we write $e(x)$ as 1_{x}.

The following proposition is given for the Vect vector space category in [2]. But we rewrite this proposition for Mod .

Proposition 3.2. It is defined a 2-module by specifying the modules M_{0} and M_{1} along with the source, target and identity module morphisms and the composition morphism \circ, satisfying the conditions of Definition 2.1. The composition map is uniquely determined by

$$
\begin{aligned}
\circ: M_{1} \times_{M_{0}} M_{1} & \longrightarrow M_{1} \\
(a, b) & \longmapsto \circ(a, b)=a \circ b=a+b-(e s)(b) .
\end{aligned}
$$

Proof.

First given modules M_{0}, M_{1} and module morphisms $s, t: M_{1} \longrightarrow M_{0}$ and $e: M_{0} \longrightarrow M_{1}$, we will define a composition operation that satisfies the laws in the definition of internal category, obtaining a 2-module.

Given $a, b \in M_{1}$ such that $t(a)=s(b)$, i.e.

$$
a: x \longrightarrow y \text { and } b: y \longrightarrow z
$$

we define their composite \circ by

$$
\begin{aligned}
\circ: \quad M_{1} \times_{M_{0}} M_{1} & \longrightarrow M_{1} \\
(a, b) & \longmapsto \circ(a, b)=a \circ b=a+b-(e s)(b) .
\end{aligned}
$$

We will show that with this composition o the diagrams of the definition of internal category commute. The triangles specifying the source and target of the identity-assigning morphism do not involve composition.

The second pair of diagrams commute since

$$
\begin{aligned}
s(a \circ b) & =s(a+b-(e s)(b)) \\
& =s(a)+s(b)-(s e)(s(b)) \\
& =s(a)+s(b)-s(b) \\
& =s(a)=x
\end{aligned}
$$

and since $t(a)=s(b)$,

$$
\begin{aligned}
t(a \circ b) & =t(a+b-(e s)(b)) \\
& =t(a)+t(b)-(t e)(s(b)) \\
& =t(a)+t(b)-s(b) \\
& =t(b)=z .
\end{aligned}
$$

The associative law holds for composition because module addition is associative. Finally the left and right unit laws are satisfied since given $a: x \longrightarrow y$,

$$
\begin{aligned}
e(x) \circ a & =e(x)+a-(e s)(a) \\
& =e(x)+a-e(x) \\
& =a
\end{aligned}
$$

and

$$
\begin{aligned}
a \circ e(y) & =a+e(y)-(e s)(e(y)) \\
& =a+e(y)-e(y) \\
& =a
\end{aligned}
$$

We thus have a 2-module.
Given a 2-module M, we shall show that its composition must be defined by the formula given above. Suppose that (a, g) and $\left(a^{\prime}, g^{\prime}\right)$ are composable pairs of morphisms in M_{1}, i.e.

$$
a: x \longrightarrow y \text { and } b: y \longrightarrow z
$$

and

$$
a^{\prime}: x^{\prime} \longrightarrow y^{\prime} \text { and } b^{\prime}: y^{\prime} \longrightarrow z^{\prime}
$$

Since the source and target maps are module morphisms, $\left(a+a^{\prime}, b+b^{\prime}\right)$ also forms a composable pair, and since that the composition is module morphism

$$
\left(a+a^{\prime}\right) \circ\left(b+b^{\prime}\right)=a \circ b+a^{\prime} \circ b^{\prime}
$$

Then if (a, b) is a composable pair, i.e, $t(a)=s(b)$, we have

$$
\begin{aligned}
a \circ b & =\left(a+1_{M_{1}}\right) \circ\left(1_{M_{1}}+b\right) \\
& =(a+e(s(b)-s(b))) \circ(e(s(b)-s(b))+b) \\
& =(a-e(s(b))+e(s(b))) \circ(e(s(b))-e(s(b))+b) \\
& =(a \circ e(s(b)))+(-e(s(b))+e(s(b))) \circ(-e(s(b))+b) \\
& =a \circ e(s(b))+(-e(s(b)) \circ(-e(s(b))))+(e(s(b)) \circ b) \\
& =a-e(s(b))+b \\
& =a+b-e(s(b)) .
\end{aligned}
$$

This show that we can define \circ by

$$
\begin{aligned}
\circ: \quad M_{1} \times_{M_{0}} M_{1} & \longrightarrow M_{1} \\
(a, b) & \longmapsto \circ(a, b)=a \circ b=a+b-e(s(b)) .
\end{aligned}
$$

Corollary 3.3. For $b \in \operatorname{ker} s$, we have

$$
\begin{aligned}
a \circ b & =a+b-(e s)(b) \\
& =a+b .
\end{aligned}
$$

Definition 3.4. Let M and N be 2-modules, a 2-module functor $F: M \longrightarrow N$ is an internal functor in Mod from M to N. 2-modules and 2-module functors between them is called the category of 2-modules denoted by $\mathbf{2 M o d}$.

After we get the definition of a 2-module, we define the definition of a categorified algebra which is main concept of this paper.

3.2. Two-algebras

Definition 3.5. A weak 2-algebra consists of

- a 2-module A equipped with a functor $\bullet: A \times A \longrightarrow A$, which is defined by $(x, y) \mapsto x \bullet y$ and bilinear on objects and defined by $(f, g) \mapsto f \bullet g$ on morphisms satisfying interchange law, i.e.,

$$
\left(f_{1} \bullet g_{1}\right) \circ\left(f_{2} \bullet g_{2}\right)=\left(f_{1} \circ f_{2}\right) \bullet\left(g_{1} \circ g_{2}\right)
$$

- k-bilinear natural isomorphisms

$$
\begin{gathered}
\alpha_{x, y, z}:(x \bullet y) \bullet z \longrightarrow x \bullet(y \bullet z) \\
l_{x}: 1 \bullet x \longrightarrow x \\
r_{x}: x \bullet 1 \longrightarrow x
\end{gathered}
$$

such that the following diagrams commute for all objects $w, x, y, z \in A_{0}$.

A strict 2-algebra is the special case where $\alpha_{x, y, z}, l_{x}, r_{x}$ are all identity morphisms. In this case we have

$$
\begin{gathered}
(x \bullet y) \bullet z=x \bullet(y \bullet z) \\
1 \bullet x=x, x \bullet 1=x
\end{gathered}
$$

Strict 2-algebra is called commutative strict 2-algebra if $x \bullet y=y \bullet x$ for all objects $x, y \in A_{0}$ and $f \bullet g=g \bullet f$ for all morphisms $f, g \in A_{1}$.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomorphism between 2-algebras should preserve both the 2-module structure and the • functor.
Definition 3.6. Given 2-algebras A and A^{\prime}, a homomorphism

$$
F: A \longrightarrow A^{\prime}
$$

consists of

- a linear functor F from the underlying 2-module of A to that of A^{\prime}, and - a bilinear natural transformation

$$
F_{2}(x, y): F_{0}(x) \bullet F_{0}(y) \longrightarrow F_{0}(x \bullet y)
$$

- an isomorphism $F: 1^{\prime} \longrightarrow F_{0}(1)$ where 1 is the identity object of A and 1^{\prime} is the identity object of A^{\prime}, such that the following diagrams commute for $x, y, z \in A_{0}$,

Definition 3.7. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by

2Alg.

Therefore if $A=\left(A_{0}, A_{1}, s, t, e, \circ, \bullet\right)$ is a 2-algebra, A_{0} and A_{1} are algebras with this \bullet bilinear functor. Thus we can take that 2-algebra is a 2-category with a single object say $*$, and A_{0} collections of its 1-morphisms and A_{1} collections of its 2-morphisms are algebras with identity.

3.3. Multiplication Algebras yield a 2-algebra

In [8] Norrie developed Lue's work [6] and introduced the notion of an actor of crossed modules of groups where it is shown to be the analogue of the automorphism group of a group. In the category of commutative algebras the appropriate replacement for automorphism groups is the multiplication algebra $\mathscr{M}(C)$ of an algebra C which is defined by MacLane [7].

Let C be an associative (not necessarily unitary or commutative) R-algebra. We recall Mac Lane's construction of the R-algebra $\operatorname{Bim}(C)$ of bimultipliers of C [7].

An element of $\operatorname{Bim}(C)$ is a pair (γ, δ) of R-linear mappings from C to C such that

$$
\begin{aligned}
& \gamma\left(c c^{\prime}\right)=\gamma(c) c^{\prime} \\
& \delta\left(c c^{\prime}\right)=c \delta\left(c^{\prime}\right)
\end{aligned}
$$

and

$$
c \gamma\left(c^{\prime}\right)=\delta(c) c^{\prime} .
$$

$\operatorname{Bim}(C)$ has an obvious R-module structure and a product

$$
(\gamma, \delta)\left(\gamma^{\prime}, \delta^{\prime}\right)=\left(\gamma \gamma^{\prime}, \delta^{\prime} \delta\right)
$$

the value of which is still in $\operatorname{Bim}(C)$.
Suppose that $\operatorname{Ann}(C)=0$ or $C^{2}=C$. Then $\operatorname{Bim}(C)$ acts on C by

$$
\begin{array}{lll}
\operatorname{Bim}(C) \times C & \rightarrow C ; & ((\gamma, \delta), c) \mapsto \gamma(c), \\
C \times \operatorname{Bim}(C) & \rightarrow C ; & (c,(\gamma, \delta)) \mapsto \delta(c)
\end{array}
$$

and there is a

$$
\begin{aligned}
\mu: & C
\end{aligned} \longrightarrow \operatorname{Bim}(C), ~=\left(\gamma_{c}, \delta_{c}\right)
$$

with

$$
\gamma_{c}(x)=c x \quad \text { and } \quad \delta_{c}(x)=x c
$$

Commutative case: we still assume $\operatorname{Ann}(C)=0$ or $C^{2}=C$. If C is a commutative R-algebra and $(\gamma, \delta) \in$ $\operatorname{Bim}(C)$, then $\gamma=\delta$. This is because for every $x \in C$:

$$
\begin{aligned}
x \delta(c) & =\delta(c) x=c \gamma(x)=\gamma(x) c \\
& =\gamma(x c)=\gamma(c x)=\gamma(c) x=x \gamma(c) .
\end{aligned}
$$

Thus $\operatorname{Bim}(C)$ may be identified with the R-algebra $\mathscr{M}(C)$ of multipliers of C. Recall that a multiplier of C is
a linear mapping $\lambda: C \longrightarrow C$ such that for all $c, c^{\prime} \in C$

$$
\lambda\left(c c^{\prime}\right)=\lambda(c) c^{\prime}
$$

Also $\mathscr{M}(C)$ is commutative as

$$
\lambda^{\prime} \lambda(x c)=\lambda^{\prime}(\lambda(x) c)=\lambda(x) \lambda^{\prime}(c)=\lambda^{\prime}(c) \lambda(x)=\lambda \lambda^{\prime}(c x)=\lambda \lambda^{\prime}(x c)
$$

for any $x \in C$. Thus $\mathscr{M}(C)$ is the set of all multipliers λ such that $\lambda \gamma=\gamma \lambda$ for every multiplier γ.
In [10] Porter states that automorphisms of a group G yield a 2-group. The appropriate analogue of this result in algebra case can be given. We claim that multiplications of an R-algebra C give a 2-algebra which is called a multiplication 2-algebra.

Let k be a commutative ring, R be a k-algebra with identity and C be a commutative R-algebra with $A n n(C)=$ 0 or $C^{2}=C$. Take $A_{0}=\mathscr{M}(C)$ and say 1-morphisms to the elements of A_{0}. We define the action of $\mathscr{M}(C)$ on C as follows:

$$
\begin{array}{ccc}
\mathscr{M}(C) \times C & \longrightarrow & C \\
(f, x) & \longmapsto & f \triangleright x=f(x) .
\end{array}
$$

Using the action of $\mathscr{M}(C)$ on C, we can form the semidirect product

$$
C \rtimes \mathscr{M}(C)=\{(x, f) \mid x \in C, f \in \mathscr{M}(C)\}
$$

with multiplication

$$
(x, f)\left(x^{\prime}, f^{\prime}\right)=\left(f \triangleright x^{\prime}+f^{\prime}>x+x^{\prime} x, f^{\prime} f\right)
$$

Take $A_{1}=C \rtimes \mathscr{M}(C)$ and say 2-morphisms to the elements of A_{1}. Therefore we get the following diagram for $(x, f) \in C \rtimes \mathscr{M}(C)$,

and we define the source, target and identity assigning maps as follows;

$$
\begin{array}{rlcccc}
s: C \rtimes \mathscr{M}(C) & \longrightarrow & \mathscr{M}(C) & t: C \rtimes \mathscr{M}(C) & \longrightarrow & \mathscr{M}(C) \\
(x, f) & \longmapsto s(x, f)=f & & (x, f) & \longmapsto & t(x, f)=M_{x} \cdot f
\end{array}
$$

and

$$
\begin{aligned}
e: \mathscr{M}(C) & \longrightarrow C \rtimes \mathscr{M}(C) \\
f & \longmapsto e(f)=(0, f)
\end{aligned}
$$

where $M_{x} \cdot f$ is defined by $\left(M_{x} \cdot f\right)(u)=x u+f(u)$ for $u \in C$.
There are two ways of composing 2-morphisms: vertical and horizontal composition. Now we define this compositions.

For $(x, f),\left(y, f^{\prime}\right) \in C \rtimes \mathscr{M}(C)$

the horizontal composition is defined by

$$
(x, f) \cdot\left(y, f^{\prime}\right)=\left(f^{\prime}(x)+f(y)+x y, f^{\prime} f\right)
$$

thus we have

and

$$
\begin{aligned}
t\left(f^{\prime}(x)+f(y)+x y, f^{\prime} f\right) & =M_{f^{\prime}(x)+f(y)+x y} \cdot f^{\prime} f \\
& =\left(M_{y} \cdot f^{\prime}\right)\left(M_{x} \cdot f\right)
\end{aligned}
$$

The vertical composition is defined by

$$
(x, f) \circ\left(x^{\prime}, M_{x} \cdot f\right)=\left(x^{\prime}+x, f\right)
$$

for $(x, f),\left(x^{\prime}, M_{x} \cdot f\right) \in C \rtimes \mathscr{M}(C)$ with $t(x, f)=s\left(x^{\prime}, M_{x} \cdot f\right)=M_{x} \cdot f$.
It remains to satisfy the interchange law, i.e.

$$
\begin{aligned}
{\left[(x, f) \circ\left(x^{\prime}, M_{x} \cdot f\right)\right] \bullet\left[\left(y, f^{\prime}\right) \circ\left(y^{\prime}, M_{y} \cdot f^{\prime}\right)\right]=} & {\left[(x, f) \bullet\left(y, f^{\prime}\right)\right] } \\
& \circ\left[\left(x^{\prime}, M_{x} \cdot f\right) \bullet\left(y^{\prime}, M_{y} \cdot f^{\prime}\right)\right] .
\end{aligned}
$$

Evaluating the two sides separately, we get

$$
\begin{aligned}
\text { LHS } & =\left(x^{\prime}+x, f\right) \bullet\left(y^{\prime}+y, f^{\prime}\right) \\
& =\left(f^{\prime}\left(x^{\prime}+x\right)+f\left(y^{\prime}+y\right)+\left(x^{\prime}+x\right)\left(y^{\prime}+y\right), f^{\prime} f\right) \\
& =\left(f^{\prime}\left(x^{\prime}\right)+f^{\prime}(x)+f\left(y^{\prime}\right)+f(y)+x^{\prime} y^{\prime}+x^{\prime} y+x y^{\prime}+x y, f^{\prime} f\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\text { RHS }= & \left(f^{\prime}(x)+f(y)+x y, f^{\prime} f\right) \circ\left(\left(M_{y} \cdot f^{\prime}\right)\left(x^{\prime}\right)\right. \\
& \left.+\left(M_{x} \cdot f\right)\left(y^{\prime}\right)+x^{\prime} y^{\prime},\left(M_{y} \cdot f^{\prime}\right)\left(M_{x} \cdot f\right)\right) \\
= & \left(f^{\prime}(x)+f(y)+x y+\left(M_{y} \cdot f^{\prime}\right)\left(x^{\prime}\right)+\left(M_{x} \cdot f\right)\left(y^{\prime}\right)+x^{\prime} y^{\prime}, f^{\prime} f\right) \\
= & \left(f^{\prime}(x)+f(y)+x y+y x^{\prime}+f^{\prime}\left(x^{\prime}\right)+x y^{\prime}+f\left(y^{\prime}\right)+x^{\prime} y^{\prime}, f^{\prime} f\right)
\end{aligned}
$$

LHS and RHS are equal, thus interchange law is satisfied. Therefore we get a 2 -algebra consists of the R algebra C as single object and the R-algebra A_{0} of 1-morphisms and the R-algebra A_{1} of 2-morphisms.

4. Crossed modules and 2-algebras

Crossed modules have been used widely and in various contexts since their definition by Whitehead [11] in his investigations of the algebraic structure of relative homotopy groups. We recalled the definition of crossed modules of commutative algebras given by Porter [10].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together with a commutative action of R on C and a morphism

$$
\partial: C \longrightarrow R
$$

such that for all $c \in C, r \in R$

$$
\mathrm{CM} 1) \partial(r>c)=r \partial c \text {. }
$$

This is a crossed R-module if in addition for all $c, c^{\prime} \in C$

$$
\mathrm{CM} 2) \partial c c^{\prime}=c c^{\prime} .
$$

The last condition is called the Peiffer identity. We denote such a crossed module by (C, R, ∂).
A morphism of crossed modules from (C, R, ∂) to $\left(C^{\prime}, R^{\prime}, \partial^{\prime}\right)$ is a pair of k-algebra morphisms $\phi: C \longrightarrow C^{\prime}, \psi$: $R \longrightarrow R^{\prime}$ such that

$$
\partial^{\prime} \phi=\psi \partial \quad \text { and } \quad \phi(r>c)=\psi(r) \downarrow(c) .
$$

Thus we get a category $\mathbf{X M o d}_{k}$ of crossed modules (for fixed k).

Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, inc $: I \longrightarrow R$ which is a crossed module. Conversely given an arbitrary R-module $\partial: C \longrightarrow R$ one easily sees that the Peiffer identity implies that ∂C is an ideal in R.
2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero mor-
phism $0: M \rightarrow R$ sending everything in M to the zero element of R is a crossed module. Conversely: If (C, R, ∂) is a crossed module, $\partial(C)$ acts trivially on ker ∂, hence ker ∂ has a natural $R / \partial(C)$-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules. Both aspects are important.
3. Let be $\mathscr{M}(C)$ multiplication algebra. Then $(C, \mathscr{M}(C), \mu)$ is multiplication crossed module. $\mu: C \rightarrow \mathscr{M}(C)$ is defined by $\mu(r)=\delta_{r}$ with $\delta_{r}\left(r^{\prime}\right)=r r^{\prime}$ for all $r, r^{\prime} \in C$, where δ is multiplier $\delta: C \rightarrow C$ such that for all $r, r^{\prime} \in C, \delta\left(r r^{\prime}\right)=\delta(r) r^{\prime}$. Also $\mathscr{M}(C)$ acts on C by $\delta>r=\delta(r)$.(See [1] for details).

In [10] Porter states that there is an equivalence of categories between the category of internal categories in the category of k-algebras and the category of crossed modules of commutative k-algebras. In the following theorem, we will give a categorical presentation of this equivalence.

Theorem 4.1. The category of crossed modules $\mathbf{X M o d}{ }_{k}$ is equivalent to that of 2-algebras, 2Alg.

Proof.

Let $A=\left(A_{0}, A_{1}, s, t, e, \circ, \bullet\right)$ be a 2-algebra consisting of a single object say $*$ and an algebra A_{0} of 1-morphisms and an algebra A_{1} of 2-morphisms. For $x, y \in A_{0}$ and $f: x \rightarrow y \in A_{1}$, we get the following diagram

We define s, t morphisms $s: A_{1} \longrightarrow A_{0}, s(f)=x, t: A_{1} \longrightarrow A_{0}, t(f)=y$ and e morphism $e: A_{0} \longrightarrow A_{1}$ for $x \in A_{0}, e(x): x \longrightarrow x \in A_{1}$.

The s, t and e morphisms are algebra morphisms and we have

$$
\begin{aligned}
s e(x) & =s(e(x))=x=I d_{A_{0}}(x) \\
t e(x) & =t(e(x))=x=I d_{A_{0}}(x)
\end{aligned}
$$

We define

$$
\operatorname{Ker} s=H=\left\{f \in A_{1} \mid s(f)=I d_{A_{0}}\right\} \subseteq A_{1}
$$

and $\partial=\left.t\right|_{H}$ algebra homomorphism by $\partial: H \longrightarrow A_{0}, \partial(h)=t(h)$. We have semidirect product Ker $s \rtimes A_{0}=$ $\left\{(h, x) \mid h \in \operatorname{Ker} s, x \in A_{0}\right\}$ with multiplication $(h, x) \bullet\left(h^{\prime}, x^{\prime}\right)=\left(x \bullet h^{\prime}+x^{\prime} \bullet h+h^{\prime} \bullet h, x \bullet x^{\prime}\right)$ where action of A_{0} on Kers is defined by $x \rightarrow h=e(x) \bullet h$. For each $f \in A_{1}$, we can write $f=n+e(x)$ where $n=f-e s(f) \in \operatorname{Ker} s$ and $x=s(f)$. Suppose $f^{\prime}=n^{\prime}+e\left(x^{\prime}\right)$. Then

$$
\begin{aligned}
f \bullet f^{\prime} & =(n+e(x)) \bullet\left(n^{\prime}+e\left(x^{\prime}\right)\right) \\
& =n \bullet n^{\prime}+n \bullet e\left(x^{\prime}\right)+e(x) \bullet n^{\prime}+e(x) \bullet e\left(x^{\prime}\right) \\
& =e\left(x^{\prime}\right) \bullet n+e(x) \bullet n^{\prime}+n \bullet n^{\prime}+e\left(x \bullet x^{\prime}\right) \\
& =x^{\prime} \bullet n+x \bullet n^{\prime}+n \bullet n^{\prime}+e\left(x \bullet x^{\prime}\right) .
\end{aligned}
$$

There is a map

$$
\begin{array}{cccc}
\phi: & A_{1} & \longrightarrow & \operatorname{Ker} s \rtimes A_{0} \\
& n+e(x) & \longmapsto & \phi(n+e(x))=(n, x) .
\end{array}
$$

Now

$$
\begin{aligned}
\phi\left(f \bullet f^{\prime}\right) & =\phi\left(x^{\prime} \bullet n+x \bullet n^{\prime}+n \bullet n^{\prime}+e\left(x \bullet x^{\prime}\right)\right) \\
& =\left(x^{\prime} \bullet n+x \bullet n^{\prime}+n \bullet n^{\prime}, x \bullet x^{\prime}\right) \\
& =(n, x) \bullet\left(n^{\prime}, x^{\prime}\right) \\
& =\phi(f) \bullet \phi\left(f^{\prime}\right)
\end{aligned}
$$

so ϕ is a homomorphism. Also, there is an obvious inverse

$$
\begin{array}{rccc}
\phi^{-1}: \quad \operatorname{Ker} s \rtimes A_{0} & \longrightarrow & A_{1} \\
(n, x) & \longmapsto & \phi^{-1}(n, x)=n+e(x)
\end{array}
$$

which is also a homomorphism. Hence ϕ is an isomorphism and we have established that Ker $s \rtimes A_{0} \simeq A_{1}$. Since A is a 2-algebra and Ker $s \rtimes A_{0} \simeq A_{1}$, we can define algebra morphisms

$$
\begin{array}{rlrl}
s: \quad \operatorname{Ker} s \rtimes A_{0} & \longrightarrow A_{0} & t: \quad \operatorname{Ker} s \rtimes A_{0} & \longrightarrow A_{0} \\
(h, x) & \longmapsto s(h, x)=x & & (h, x) \\
& \longmapsto t(h, x)=\partial(h)+x
\end{array}
$$

and

$$
\begin{aligned}
e: \quad A_{0} & \longrightarrow \operatorname{Ker} s \rtimes A_{0} \\
x & \longmapsto e(x)=(0, x)
\end{aligned}
$$

and for $t(h, x)=s\left(h^{\prime}, \partial(h)+x\right)=\partial(h)+x$ we define

$$
\begin{array}{rll}
\circ: \quad \operatorname{Ker} s \rtimes A_{0} \times_{s} \operatorname{Ker} s \rtimes A_{0} & \longrightarrow \operatorname{Ker} s \rtimes A_{0} \\
\left((h, x),\left(h^{\prime}, \partial(h)+x\right)\right) & \longmapsto\left(h^{\prime}+h, x\right)
\end{array}
$$

which is vertical composition;

$$
(h, x) \circ\left(h^{\prime}, \partial(h)+x\right)=\left(h^{\prime}+h, x\right) .
$$

For $(h, x),(g, y) \in \operatorname{Ker} s \rtimes A_{0}$, horizontal composition is defined by

$$
\begin{aligned}
(h, x) \bullet(g, y) & =(x \bullet g+y \bullet h+g \bullet h, x \bullet y) \\
& =(e(x) \bullet g+e(y) \bullet h+g \bullet h, x \bullet y) .
\end{aligned}
$$

Thus we have

CM1)

$$
\begin{aligned}
\partial(x \bullet h) & =\partial(e(x) \bullet h) \\
& =\partial(e(x)) \bullet \partial(h) \\
& =(t e)(x) \bullet \partial(h) \\
& =x \bullet \partial(h) .
\end{aligned}
$$

Also by interchange law we have

$$
\begin{aligned}
{[(h, x) \bullet(g, y)] \circ\left[\left(h^{\prime}, \partial(h)+x\right) \bullet\left(g^{\prime}, \partial(g)+y\right)\right]=} & {\left[(h, x) \circ\left(h^{\prime}, \partial(h)+x\right)\right] } \\
\bullet & \left.\bullet(g, y) \circ\left(g^{\prime}, \partial(g)+y\right)\right] .
\end{aligned}
$$

Therefore, evaluating the two sides of this equation gives:

$$
\begin{aligned}
\text { LHS }= & (x \vee g+y \bullet h+g \bullet h, x \bullet y) \\
& \circ\left((\partial(h)+x) \bullet g^{\prime}+(\partial(g)+y) \bullet h^{\prime}+g^{\prime} \bullet h^{\prime},(\partial(h)+x) \bullet(\partial(g)+y)\right) \\
= & \left((\partial(h)+x) \bullet g^{\prime}+(\partial(g)+y) \bullet h^{\prime}+g^{\prime} \bullet h^{\prime}+x \bullet g+y \bullet h+g \bullet h, x \bullet y\right) \\
= & \left(\partial(h) \bullet g^{\prime}+e(x) \bullet g^{\prime}+\partial(g) \bullet h^{\prime}\right. \\
& \left.+e(y) \bullet h^{\prime}+g^{\prime} \bullet h^{\prime}+e(x) \bullet g+e(y) \bullet h+g \bullet h, x \bullet y\right) \\
R H S= & \left(h^{\prime}+h, x\right) \bullet\left(g^{\prime}+g, y\right) \\
= & \left(x \bullet\left(g^{\prime}+g\right)+y \bullet\left(h^{\prime}+h\right)+\left(g^{\prime}+g\right) \bullet\left(h^{\prime}+h\right), x \bullet y\right) \\
= & \left(e(x) \bullet g^{\prime}+e(x) \bullet g+e(y) \bullet h^{\prime}+e(y) \bullet h+g^{\prime} \bullet h^{\prime}+g^{\prime} \bullet h+g \bullet h^{\prime}+g \bullet h, x \bullet y\right) .
\end{aligned}
$$

Since the two sides are equal, we know that their first components must be equal, so we have

$$
\partial(h) \triangleright g^{\prime}+\partial(g) \triangleright h^{\prime}=h \bullet g^{\prime}+g \bullet h^{\prime}
$$

and

$$
\begin{aligned}
h \bullet g^{\prime}+g \bullet h^{\prime} & =\partial(h) \vee g^{\prime}+\partial(g)>h^{\prime} \\
& =\partial(h+g)>\left(g^{\prime}+h^{\prime}\right)-\partial(h)>h^{\prime}-\partial(g) \triangleright g^{\prime} \\
& =\partial(h+g)>\left(g^{\prime}+h^{\prime}\right)-\left(h \bullet h^{\prime}+g \bullet g^{\prime}\right),
\end{aligned}
$$

thus

$$
\begin{aligned}
\partial(h+g) \triangleright\left(g^{\prime}+h^{\prime}\right) & =h \bullet g^{\prime}+g \bullet h^{\prime}+\left(h \bullet h^{\prime}+g \bullet g^{\prime}\right) \\
& =(h+g) \bullet\left(h^{\prime}+g^{\prime}\right)
\end{aligned}
$$

and writing $(h+g)=l,\left(h^{\prime}+g^{\prime}\right)=l^{\prime} \in K e r s$, we get

$$
\partial(l) \triangleright l^{\prime}=l \bullet l^{\prime}
$$

which is the Peiffer identity as required. Hence ($\operatorname{Ker} s, A_{0}, \partial$) is a crossed module.
Let $\mathscr{A}=\left(A_{0}, A_{1}, s, t, e, \circ, \bullet\right)$ and $\mathscr{A}^{\prime}=\left(A_{0}^{\prime}, A_{1}^{\prime}, s^{\prime}, t^{\prime}, e^{\prime}, \circ^{\prime}, \bullet^{\prime}\right)$ be 2-algebras and $F=\left(F_{0}, F_{1}\right): \mathscr{A} \longrightarrow \mathscr{A}^{\prime}$ be a 2algebra morphism. Then $F_{0}: A_{0} \longrightarrow A_{0}^{\prime}$ and $F_{1}: A_{1} \longrightarrow A_{1}^{\prime}$ are the k-algebra morphisms. We define $f_{1}=$
$\left.F_{1}\right|_{\text {Kers }}:$ Kers \longrightarrow Kers $^{\prime}$ and $f_{0}=F_{0}: A_{0} \longrightarrow A_{0}^{\prime}$. For all $a \in \operatorname{Kers}$ and $x \in A_{0}$,

$$
\begin{aligned}
f_{0} \partial(a) & =F_{0} t(a) \\
& =t^{\prime} F_{1}(a) \\
& =\partial^{\prime} f_{1}(a)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{1}(x-a) & =F_{1}(e(x) a) \\
& =F_{1}(e(x)) F_{1}(a) \\
& =e^{\prime} F_{0}(x) F_{1}(a) \\
& =e^{\prime} f_{0}(x) f_{1}(a) \\
& =f_{0}(x)>f_{1}(a) .
\end{aligned}
$$

Thus (f_{1}, f_{0}) map is a crossed module morphism (Kers, $\left.A_{0}, \partial\right) \longrightarrow\left(\operatorname{Ker~}^{\prime}, A_{0}^{\prime}, \partial^{\prime}\right)$. So we have a functor

$$
\Gamma: \mathbf{2 A l g} \longrightarrow \mathbf{X M o d}_{k}
$$

Conversely, let (G, C, ∂) be a crossed module of algebras. Therefore there is an algebra morphism $\partial: G \rightarrow C$ and an action of C on G such that

CM1) $\partial(x>g)=x \partial(g)$,
CM2) $\partial(g) \downarrow g^{\prime}=g g^{\prime}$.
Since C acts on G, we can form the semidirect product $G \rtimes C$ as defined by

$$
G \rtimes C=\{(g, c) \mid g \in G, c \in C\}
$$

with multiplication

$$
(g, c)\left(g^{\prime}, c^{\prime}\right)=\left(c \triangleright g^{\prime}+c^{\prime}-g+g^{\prime} g, c c^{\prime}\right)
$$

and define maps $s, t: G \rtimes C \rightarrow C$ and $e: C \rightarrow G \rtimes C$ by $s(g, c)=c, t(g, c)=\partial(g)+c$ and $e(c)=(0, c)$. These maps are clearly algebra morphisms.

For $t(g, c)=s\left(g^{\prime}, \partial(g)+c\right)=\partial(g)+c$, we define composition

$$
\begin{array}{lll}
\circ: & (G \rtimes C)_{t} \times_{s}(G \rtimes C) & \longrightarrow(G \rtimes C) \\
& \left((g, c),\left(g^{\prime}, \partial(g)+c\right)\right) & \longmapsto\left(g+g^{\prime}, c\right),
\end{array}
$$

for $(g, c),(h, d) \in G \rtimes C$ and $(g, c),\left(g^{\prime}, \partial(g)+c\right) \in G \rtimes C$, following equations give horizontal and vertical composition respectively.

$$
(g, c) \bullet(h, d)=(c \triangleright h+d \triangleright g+g h, c d)
$$

$$
(g, c) \circ\left(g^{\prime}, \partial(g)+c\right)=\left(g+g^{\prime}, c\right)
$$

Finally, since it must be that \circ is an algebra morphism and by the crossed module conditions, interchange law is satisfied. Therefore we have constructed a 2 -algebra $\mathscr{A}=(C, G \rtimes C, s, t, e, \circ, \bullet)$ consists of the single object say $*$ and the k-algebra C of 1 -morphisms and the k-algebra $G \rtimes C$ of 2-morphisms. Let (G, C, ∂) and $\left(G^{\prime}, C^{\prime}, \partial^{\prime}\right)$ be crossed modules and $f=\left(f_{1}, f_{0}\right):(G, C, \partial) \longrightarrow\left(G^{\prime}, C^{\prime}, \partial^{\prime}\right)$ be a crossed module morphism. We define

$$
\begin{array}{rlcc}
F_{1}: & G \rtimes C & \longrightarrow & G^{\prime} \rtimes C^{\prime} \\
(g, c) & \longmapsto & F_{1}(g, c)=\left(f_{1}(g), f_{0}(c)\right)
\end{array}
$$

and

$$
\begin{array}{rlcc}
F_{0}: & C & \longrightarrow & C^{\prime} \\
c & \longmapsto & F_{0}(c)=f_{0}(c)
\end{array}
$$

Then

$$
\begin{aligned}
& s^{\prime} F_{1}(g, c)=s^{\prime}\left(f_{1}(g), f_{0}(c)\right) \\
& =f_{0}(c) \\
& =F_{0}(c) \\
& =F_{0} s(g, c) \text {, } \\
& t^{\prime} F_{1}(g, c)=t^{\prime}\left(f_{1}(g), f_{0}(c)\right) \\
& =\partial^{\prime} f_{1}(g)+f_{0}(c) \\
& =f_{0} \partial(g)+f_{0}(c) \\
& =F_{0}(\partial(g)+c) \\
& =F_{0} t(g, c) \text {, } \\
& e^{\prime} F_{0}(c)=\left(0, f_{0}(c)\right) \\
& =F_{1}(0, c) \\
& =F_{1} e(c), \\
& F_{1}\left((g, c) \circ\left(g^{\prime}, c^{\prime}\right)\right)=F_{1}\left(g+g^{\prime}, c\right) \\
& =\left(f_{1}\left(g+g^{\prime}\right), f_{0}(c)\right) \\
& =\left(f_{1}(g)+f_{1}\left(g^{\prime}\right), f_{0}(c)\right) \\
& =\left(f_{1}(g), f_{0}(c)\right) \circ\left(f_{1}\left(g^{\prime}\right), f_{0}\left(c^{\prime}\right)\right) \\
& =F_{1}(g, c) \circ F_{1}\left(g^{\prime}, c^{\prime}\right) \text {, } \\
& F_{1}((g, c) \bullet(h, d)) \quad=\quad F_{1}(c>h+d>g+g h, c d) \\
& =\left(f_{1}(c>h)+f_{1}(d>g)+f_{1}(g h), f_{0}(c d)\right) \\
& =\left(f_{0}(c)>f_{1}(h)+f_{0}(d)>f_{1}(g)+f_{1}(g) f_{1}(h), f_{0}(c) f_{0}(d)\right) \\
& =\left(f_{1}(g), f_{0}(c)\right) \bullet\left(f_{1}(h), f_{0}(d)\right) \\
& =F_{1}(g, c) \cdot F_{1}(h, d)
\end{aligned}
$$

for all $(g, c) \in G \rtimes C$ and $c \in C$. Therefore $F=\left(F_{1}, F_{0}\right)$ is a 2-algebra morphism from $(C, G \rtimes C, s, t, e, \circ, \bullet)$ to $\left(C^{\prime}, G^{\prime} \rtimes C^{\prime}, s^{\prime}, t^{\prime}, e^{\prime}, \circ^{\prime}, \bullet^{\prime}\right)$. Thus we get a functor

$$
\Psi: \mathbf{X M o d}_{k} \longrightarrow \mathbf{2 A l g} .
$$

References

[1] Arvasi Z, Ege U. Annihilators, Multipliers and Crossed Modules, Applied Categorical Structures, 2003; 11: 487-506.
[2] Baez J.C, Crans A.S. Higher Dimensional Algebra VI: Lie 2-Algebras, Theory and Applications of Categories, 2004; 12: (15), 492-538.
[3] Brown R. Spencer C. G-groupoids, Crossed modules and the Fundamental Groupoid of a Topological Group, Proc. Kon. Ned. Akad.v. Wet, 1976; 79: 296-302.
[4] Borceux F. Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
[5] Ehresmann C. Categories structures, Ann. Ec. Normale Sup. 1963; 80.
[6] Lue A.S.T. Semi-Complete Crossed Modules and Holomorphs of Groups, Bull. London Math. Soc., 1979; 11; 8-16.
[7] Mac Lane S. Extension and Obstructures for Rings, Illinois Journal of Math. 1958; 121; 316-345.
[8] Norrie K.J. Actions and Automorphisms of Crossed Modules, Bull. Soc. Math. France. 1990; 118; 129146.
[9] Porter T. Some Categorical Results in the Theory of Crossed Modules in Commutative Algebras, Journal of Algebra, 1987; 109; 415-429.
[10] Porter T. The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology, http://ncatlab.org/timporter/files/menagerie10.pdf
[11] Whitehead JHC. Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 1949: 55; 231-245 and 453456.

[^0]: ${ }^{1}$ iakca@ogu.edu.tr (Corresponding Author); ${ }^{2}$ uege@ogu.edu.tr
 ${ }^{1,2}$ Department of Mathematics and Computer Sciences, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey Article History: Received: 03.10.2022 - Accepted: 23.12.2022 - Published: 27.02.2023

