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1. Introduction

The term “categorification” coined by Louis Crane refers to the process of replacing set theoretic concepts

by category-theoretic analogues in mathematics. A categorified version of a group is a 2-group. Internal

categories in the category of groups are exactly the same as 2-groups. The Brown-Spencer theorem [3] thus

constructs the associated 2-group of a crossed module given by Whitehead [11] to define an algebraic model

for a “(connected) homotopy 2-type”. The fact that the composition in the internal category must be a group

homomorphism implies that the “interchange law” must hold. This equation is in fact equivalent via the

Brown-Spencer result to the Peiffer identity.

We will concerne in this paper exclusively with categorification of algebras. We will obtain analogous re-

sults in (commutative) algebras with regard to Porter’s work [9]. He states that there is an equivalence of

categories between the category of internal categories in the category of k-algebras and the category of

crossed modules of commutative k-algebras. Since the internal category in the category of k-algebras is a

categorification of k-algebras, this internal category will be called as “strict 2-algebra” in this work. We de-

fine the strict 2-algebra by means of 2-module being a category in the category of modules as a 2-category

with single object in which collections of 1-morphisms and 2-morphisms are k-algebras and we denote the

category of strict 2-algebras by 2Alg . Given a group G , it is known that automorphisms of G yield a 2-group.

Analogous result in commutative algebras can be given that multiplications of C yield a strict 2-algebra

where C is a commutative R-algebra and R is a commutative k-algebra.

A crossed module A = (∂ : C −→ R) of commutative algebras is given by an algebra morphism ∂ : C −→ R
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together with an action · of R on C such that the relations below hold for each r ∈ R and each c,c
′ ∈C ,

∂(r · c) = r∂(c)

∂(c) · c
′ = cc

′
.

In this paper we show that the category of strict 2-algebras is equivalent to the category of crossed modules

in commutative algebras.

2. Internal Categories and 2-categories

We begin by recalling internal categories as well as 2-categories. Ehresmann defined internal categories in

[5], and by now they are an important part of category theory [4].

2.1. Internal categories

Definition 2.1. Let C be any category. An internal category in C, say A, consists of:

• an object of objects A0 ∈ C

• an object of morphisms A1 ∈ C,

together with

• source and target morphisms s, t : A1 −→ A0,

• an identity-assigning morphism e : A0 −→ A1,

• a composition morphism ◦ : A1 ×A0 A1 −→ A1 such that the following diagrams commute, expressing the

usual category laws:

• laws specifying the source and target of identity morphisms:

A0

1A0 &&NN
NNN

NNN
NNN

NN
e // A1

s
��

A0

A0

1A0 &&NN
NNN

NNN
NNN

NN
e // A1

t
��

A0

• laws specifying the source and target of composite morphisms:

A1 ×A0 A1

ρ1

��

◦ // A1

s

��
A1 s

// A0

A1 ×A0 A1

ρ2

��

◦ // A1

t

��
A1 t

// A0
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• the associative law for composition of morphisms:

A1 ×A0 A1 ×A0 A1

ρ2

��

◦ // A1 ×A0 A1

t

��
A1 ×A0 A1 t

// A0

• the left and right unit laws for composition of morphisms:

A0 ×A0 A1
e×A0 1A1//

ρ2
&&NN

NNN
NNN

NNN
A1 ×A0 A1

◦
��

A1 ×A0 A0
1A1×A0 e
oo

ρ1
xxppp

ppp
ppp

pp

A1

Here, the pullback A1 ×A0 A1 is defined via the square:

A1 ×A0 A1
ρ2 //

ρ1

��

A1

s
��

A1 t
// A0.

We denote this internal category with A = (A0, A1, s, t ,e,◦).

Definition 2.2. Let C be a category. Given internal categories A and A′ in C, an internal functor between

them, say F : A −→ A′, consists of

• a morphism F0 : A0 −→ A′
0,

• a morphism F1 : A1 −→ A′
1

such that the following diagrams commute, corresponding to the usual laws satisfied by a functor:

• preservation of source and target:

A1

F1

��

s // A0

F0

��
A′

1 s′
// A′

0

A1

F1

��

t // A0

F0

��
A′

1 t ′
// A′

0

• preservation of identity morphisms:

A0

F0

��

e // A1

F1

��
A′

0 e ′
// A′

1
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• preservation of composite morphisms:

A1 ×A0 A1

◦

��

F1×A0 F1 // A′
1 ×A′

0
A′

1

◦′

��
A1 F1

// A′
1

Given two internal functors F : A −→ A′ and G : A′ −→ A′′ in some category C, we define their composite

FG : A −→ A′′ by taking (FG)0 = F0G0 and (FG)1 = F1G1. Similarly, we define the identity internal functor in

C, 1A : A −→ A by taking (1A)0 = 1A0 and (1A)1 = 1A1 .

Definition 2.3. Let C be a category. Given two internal functors F,G : A −→ A′ in C, an internal natural

transformation in C between them, say θ : F =⇒ G , is a morphism θ : A0 −→ A′
1 for which the following

diagrams commute, expressing the usual laws satisfied by a natural transformation:

• laws specifying the source and target of a natural transformation:

A0

F0
&&LL

LLL
LLL

LLL
LL

θ // A′
1

s′
��

A′
0

A′
0

G0
&&MM

MMM
MMM

MMM
MM

θ // A′
1

t ′

��
A0

• the commutative square law:

A1

△(F×tθ)

��

△(sθ×G) // A′
1 ×A′

0
A′

1

◦′

��
A′

1 ×A′
0

A′
1 ◦′

// A′
1

Given an internal functor F : A −→ A′ in C, the identity internal natural transformation 1F : F =⇒ F in C is

given by 1F = F0e.

2.2. 2-categories

Definition 2.4. A 2-category G consists of a class of objects G0 and for any pair of objects (A,B) a small

category of morphisms G (A,B)-with objects G1(A,B) and morphisms G2(A,B)-, along with composition

functors

• : G (A,B)×G (B ,C ) −→ G (A,C )

for every triple (A,B ,C ) of objects and identity functors from the terminal category to G (A, A)

i A : 1 −→G (A, A)
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for all objects A such that • is associative and

F • iB = F = i A •F as well as ϑ• IiB =ϑ= Ii A •ϑ

hold for all F ∈G1(A,B) and ϑ ∈G2(A,B) where source and target morphisms are defined by

A
F−→ B

s : G1(A,B) −→ G0

F 7−→ s(F ) = A

t : G1(A,B) −→ G0

F 7−→ t (F ) = B

for F ∈G1(A,B) and

A

F

��

G

BBBϑ

��

s : G2(A,B) −→ G1

ϑ 7−→ s(ϑ) = F

t : G2(A,B) −→ G0

ϑ 7−→ t (ϑ) =G

for ϑ : F −→ G ∈ G2(A,B). For all pairs of objects (A,B) elements of G1(A,B) are called 1-morphisms or 1-

cells of G and elements of G2(A,B) are called 2-morphisms or 2-cells of G . We write G1 and G2 for the classes

of all 1-morphisms and 2-morphisms respectively.

There are two ways of composing 2-morphisms: using the composition ◦ inside the categories G (A,B),

called vertical composition, and using the morphism level of the functor •, called horizontal composition.

These compositions must be satisfy the following equation: for α,α′ ∈G2(A,B) with t (α) = s(α′) and γ,γ′ ∈
G2(B ,C ) with t (γ) = s(γ′)

A
$$
77 FFB

α
��

α′
��

$$
77 FF

γ
��

γ′
��

C

(
α◦α′)• (

γ◦γ′)= (
α•γ)◦ (

α′ •γ′)
which is called “interchange law”.

3. Constructions of Two-Algebras

In this section we will construct 2-algebras by categorification. We can categorify the notion of an algebra

by replacing the equational laws by isomorphisms satisfying extra structure and properties we expect. In [2]
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Baez and Crans introduce the Lie 2-algebra by means of the concept of 2-vector space defined as an internal

category in the category of vector spaces by them. Obviously we get a new notion of “2-module”which can

be considered as an internal category in the category of modules and we categorify the notion of an algebra.

3.1. 2-Modules

A categorified module or “2-module”should be a category with structure analogous to that of a k−module,

with functors replacing the usual k−module operations. Here we instead define a 2-module to be an in-

ternal category in a category of k−modules Mod . Since the main component part of a k−algebra is a

k−module, a 2-algebra will have an underlying 2-module of this sort. In this section we thus first define

a category of these 2-modules.

In the rest of this paper, the terms a module and an algebra will always refer to a k−module and a k−algebra.

Definition 3.1. A 2-module is an internal category in Mod .

Thus, a 2-module M is a category with a module of objects M 0 and a module of morphisms M1, such that

the source and target maps s, t : M1 −→ M0, the identity assigning map e : M0 −→ M1, and the composition

map ◦ : M1×M0 M1 −→ M1 are all module morphisms. We write a morphism as a : x −→ y when s(a) = x and

t (a) = y , and sometimes we write e(x) as 1x .

The following proposition is given for the Vect vector space category in [2]. But we rewrite this proposition

for Mod .

Proposition 3.2. It is defined a 2-module by specifying the modules M0 and M1 along with the source, target

and identity module morphisms and the composition morphism ◦, satisfying the conditions of Definition

2.1. The composition map is uniquely determined by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b − (es)(b).

Proof.

First given modules M0, M1 and module morphisms s, t : M1 −→ M0 and e : M0 −→ M1, we will define a

composition operation that satisfies the laws in the definition of internal category, obtaining a 2-module.

Given a, b ∈ M1 such that t (a) = s(b) , i.e.

a : x −→ y and b : y −→ z

we define their composite ◦ by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b − (es)(b).

We will show that with this composition ◦ the diagrams of the definition of internal category commute. The

triangles specifying the source and target of the identity-assigning morphism do not involve composition.
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The second pair of diagrams commute since

s(a ◦b) = s(a +b − (es)(b))

= s(a)+ s(b)− (se)(s(b))

= s(a)+ s(b)− s(b)

= s(a) = x

and since t (a) = s(b),
t (a ◦b) = t (a +b − (es)(b))

= t (a)+ t (b)− (te)(s(b))

= t (a)+ t (b)− s(b)

= t (b) = z.

The associative law holds for composition because module addition is associative. Finally the left and right

unit laws are satisfied since given a : x −→ y,

e(x)◦a = e(x)+a − (es)(a)

= e(x)+a −e(x)

= a

and
a ◦e(y) = a +e(y)− (es)(e(y))

= a +e(y)−e(y)

= a.

We thus have a 2-module.

Given a 2-module M , we shall show that its composition must be defined by the formula given above. Sup-

pose that (a, g ) and (a′, g ′) are composable pairs of morphisms in M1, i.e.

a : x −→ y and b : y −→ z

and

a′ : x ′ −→ y ′ and b′ : y ′ −→ z ′.

Since the source and target maps are module morphisms, (a +a′,b +b′) also forms a composable pair, and

since that the composition is module morphism

(a +a′)◦ (b +b′) = a ◦b +a′ ◦b′.
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Then if (a,b) is a composable pair, i.e, t (a) = s(b), we have

a ◦b = (a +1M1 )◦ (1M1 +b)

= (a +e(s(b)− s(b)))◦ (e(s(b)− s(b))+b)

= (a −e(s(b))+e(s(b)))◦ (e(s(b))−e(s(b))+b)

= (a ◦e(s(b)))+ (−e(s(b))+e(s(b)))◦ (−e(s(b))+b)

= a ◦e(s(b))+ (−e(s(b))◦ (−e(s(b))))+ (e(s(b))◦b)

= a −e(s(b))+b

= a +b −e(s(b)).

This show that we can define ◦ by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b −e(s(b)).

Corollary 3.3. For b ∈ ker s, we have

a ◦b = a +b − (es)(b)

= a +b.

Definition 3.4. Let M and N be 2-modules, a 2-module functor F : M −→ N is an internal functor in Mod

from M to N . 2-modules and 2-module functors between them is called the category of 2-modules denoted

by 2Mod.

After we get the definition of a 2-module, we define the definition of a categorified algebra which is main

concept of this paper.

3.2. Two-algebras

Definition 3.5. A weak 2-algebra consists of

· a 2-module A equipped with a functor • : A × A −→ A, which is defined by (x, y) 7→ x • y and bilinear on

objects and defined by ( f , g ) 7→ f • g on morphisms satisfying interchange law, i.e.,

( f1 • g1)◦ ( f2 • g2) = ( f1 ◦ f2)• (g1 ◦ g2)

· k−bilinear natural isomorphisms

αx,y,z : (x • y)• z −→ x • (y • z)

lx : 1•x −→ x

rx : x •1 −→ x

such that the following diagrams commute for all objects w, x, y, z ∈ A0.

((w •x)• y)• z

αw,x,y•1z

��

αw•x,y,z// (w •x)• (y • z)
αw,x,y•z

((RR
RRR

RRR
RRR

RR

(w • (x • y))• z
αw,x•y,z

// w • ((x • y)• z)
1w•αx,y,z

// w • (x • (y • z))
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(x •1)• y

rx•1y &&MM
MMM

MMM
MMM

αx,1,y // x • (1• y)

1x•ly

��
x • y

A strict 2-algebra is the special case where αx,y,z , lx , rx are all identity morphisms. In this case we have

(x • y)• z = x • (y • z)

1•x = x, x •1 = x

Strict 2-algebra is called commutative strict 2-algebra if x • y = y • x for all objects x, y ∈ A0 and f • g = g • f

for all morphisms f , g ∈ A1.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomor-

phism between 2-algebras should preserve both the 2-module structure and the • functor.

Definition 3.6. Given 2-algebras A and A′, a homomorphism

F : A −→ A′

consists of

· a linear functor F from the underlying 2-module of A to that of A′, and

· a bilinear natural transformation

F2(x, y) : F0(x)•F0(y) −→ F0(x • y)

· an isomorphism F : 1′ −→ F0(1) where 1 is the identity object of A and 1′ is the identity object of A′,

such that the following diagrams commute for x, y, z ∈ A0,

(F (x)•F (y))•F (z)

αF (x),F (y),F (z)

��

F2•1 // F (x • y)•F (z)
F2 // F ((x • y)• z)

F (αx,y,z )

��
F (x)• (F (y)•F (z))

1•F2

// F (x)•F (y • z)
F2

// F (x • (y • z)).

1′ •F (x)

F0•1
��

l ′F (x) // F (x)

F (1)•F (x)
F2

// F (1•x).

F (lx )

OO

F (x)•1′

1•F0

��

r ′
F (x) // F (x)

F (x)•F (1)
F2

// F (x •1).

F (rx )

OO

Definition 3.7. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by
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2Alg .

Therefore if A = (A0, A1, s, t ,e,◦,•) is a 2-algebra, A0 and A1 are algebras with this • bilinear functor. Thus we

can take that 2-algebra is a 2-category with a single object say ∗, and A0 collections of its 1-morphisms and

A1 collections of its 2-morphisms are algebras with identity.

3.3. Multiplication Algebras yield a 2-algebra

In [8] Norrie developed Lue’s work [6] and introduced the notion of an actor of crossed modules of groups

where it is shown to be the analogue of the automorphism group of a group. In the category of commutative

algebras the appropriate replacement for automorphism groups is the multiplication algebra M (C ) of an

algebra C which is defined by MacLane [7].

Let C be an associative (not necessarily unitary or commutative) R-algebra. We recall Mac Lane’s construc-

tion of the R-algebra Bim(C ) of bimultipliers of C [7].

An element of Bim(C ) is a pair (γ,δ) of R-linear mappings from C to C such that

γ(cc ′) = γ(c)c ′

δ(cc ′) = cδ
(
c ′

)
and

cγ
(
c ′

)= δ(c)c ′.

Bim(C ) has an obvious R-module structure and a product

(γ,δ)(γ′,δ′) = (γγ′,δ′δ),

the value of which is still in Bim(C ).

Suppose that Ann(C ) = 0 or C 2 =C . Then Bim(C ) acts on C by

Bim(C )×C → C ; ((γ,δ),c) 7→ γ(c),

C ×Bim(C ) → C ; (c, (γ,δ)) 7→ δ(c)

and there is a
µ : C −→ Bim(C )

c 7−→ (γc ,δc )

with

γc (x) = cx and δc (x) = xc.

Commutative case: we still assume Ann(C ) = 0 or C 2 = C . If C is a commutative R-algebra and (γ,δ) ∈
Bim(C ), then γ= δ. This is because for every x ∈C :

xδ(c) = δ(c)x = cγ(x) = γ(x)c

= γ(xc) = γ(cx) = γ(c)x = xγ(c).

Thus Bim(C ) may be identified with the R-algebra M (C ) of multipliers of C . Recall that a multiplier of C is
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a linear mapping λ : C −→C such that for all c,c ′ ∈C

λ(cc ′) =λ(c)c ′.

Also M (C ) is commutative as

λ′λ(xc) =λ′(λ(x)c) =λ(x)λ′(c) =λ′(c)λ(x) =λλ′(cx) =λλ′(xc)

for any x ∈C . Thus M (C ) is the set of all multipliers λ such that λγ= γλ for every multiplier γ.

In [10] Porter states that automorphisms of a group G yield a 2-group. The appropriate analogue of this

result in algebra case can be given. We claim that multiplications of an R-algebra C give a 2-algebra which

is called a multiplication 2-algebra.

Let k be a commutative ring, R be a k-algebra with identity and C be a commutative R-algebra with Ann(C ) =
0 or C 2 =C . Take A0 =M (C ) and say 1-morphisms to the elements of A0. We define the action of M (C ) on

C as follows:
M (C )×C −→ C

( f , x) 7−→ f ▶ x = f (x).

Using the action of M (C ) on C , we can form the semidirect product

C ⋊M (C ) = {(x, f )|x ∈C , f ∈M (C )}

with multiplication

(x, f )(x ′, f ′) = ( f ▶ x ′+ f ′ ▶ x +x ′x, f ′ f ).

Take A1 = C ⋊M (C ) and say 2-morphisms to the elements of A1. Therefore we get the following diagram

for (x, f ) ∈C ⋊M (C ),

C

f

��

g

BBC(x, f )

��

and we define the source, target and identity assigning maps as follows;

s : C ⋊M (C ) −→ M (C ) t : C ⋊M (C ) −→ M (C )

(x, f ) 7−→ s(x, f ) = f (x, f ) 7−→ t (x, f ) = Mx · f

and

e : M (C ) −→ C ⋊M (C )

f 7−→ e( f ) = (0, f )

where Mx · f is defined by (Mx · f )(u) = xu + f (u) for u ∈C .

There are two ways of composing 2-morphisms: vertical and horizontal composition. Now we define this

compositions.
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For (x, f ), (y, f ′) ∈C ⋊M (C )

C

f

��

Mx · f

BBC(x, f )

��

f ′

��

My · f ′

BB(y, f ′)

��

C

the horizontal composition is defined by

(x, f )• (y, f ′) = ( f ′(x)+ f (y)+x y, f ′ f ),

thus we have

C

f ′ f

$$

(My · f ′)(Mx · f )

:: C(y, f ′)•(x, f )

��

and
t ( f ′(x)+ f (y)+x y, f ′ f ) = M f ′(x)+ f (y)+x y · f ′ f

= (My · f ′)(Mx · f )

The vertical composition is defined by

C

f

$$

Mx · f

77

M(x′+x)· f

FFC
(x, f )

��

(x ′,Mx · f )
��

(x, f )◦ (x ′, Mx · f ) = (x ′+x, f )

for (x, f ), (x ′, Mx · f ) ∈C ⋊M (C ) with t (x, f ) = s(x ′, Mx · f ) = Mx · f .

It remains to satisfy the interchange law, i.e.

C

f

$$

Mx · f

77

M(x′+x)· f

FFC
(x, f )

��

(x ′,Mx · f )
��

f ′

$$

My · f ′

77

M(y ′+y)· f ′

FF
(y, f ′)
��

(y ′,My · f ′)
��

C

[(x, f )◦ (x ′, Mx · f )]• [(y, f ′)◦ (y ′, My · f ′)] = [(x, f )• (y, f ′)]

◦[(x ′, Mx · f )• (y ′, My · f ′)].
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Evaluating the two sides separately, we get

LHS = (x ′+x, f )• (y ′+ y, f ′)
= ( f ′(x ′+x)+ f (y ′+ y)+ (x ′+x)(y ′+ y), f ′ f )

= ( f ′(x ′)+ f ′(x)+ f (y ′)+ f (y)+x ′y ′+x ′y +x y ′+x y, f ′ f )

and

RHS = ( f ′(x)+ f (y)+x y, f ′ f )◦ ((My · f ′)(x ′)
+(Mx · f )(y ′)+x ′y ′, (My · f ′)(Mx · f ))

= ( f ′(x)+ f (y)+x y + (My · f ′)(x ′)+ (Mx · f )(y ′)+x ′y ′, f ′ f )

= ( f ′(x)+ f (y)+x y + y x ′+ f ′(x ′)+x y ′+ f (y ′)+x ′y ′, f ′ f )

LHS and RHS are equal, thus interchange law is satisfied. Therefore we get a 2-algebra consists of the R-

algebra C as single object and the R-algebra A0 of 1-morphisms and the R-algebra A1 of 2-morphisms.

4. Crossed modules and 2-algebras

Crossed modules have been used widely and in various contexts since their definition by Whitehead [11]

in his investigations of the algebraic structure of relative homotopy groups. We recalled the definition of

crossed modules of commutative algebras given by Porter [10].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together

with a commutative action of R on C and a morphism

∂ : C −→ R

such that for all c ∈C , r ∈ R

CM1) ∂(r ▶ c) = r∂c.

This is a crossed R-module if in addition for all c,c ′ ∈C

CM2) ∂c ▶ c ′ = cc ′.

The last condition is called the Peiffer identity. We denote such a crossed module by (C ,R,∂).

A morphism of crossed modules from (C ,R,∂) to (C ′,R ′,∂′) is a pair of k-algebra morphisms φ : C −→C ′,ψ :

R −→ R ′ such that

∂′φ=ψ∂ and φ(r ▶ c) =ψ(r )▶φ(c).

Thus we get a category XModk of crossed modules (for fixed k).

Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, i nc : I −→ R which is a crossed module. Conversely given an

arbitrary R-module ∂ : C −→ R one easily sees that the Peiffer identity implies that ∂C is an ideal in R.

2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero mor-
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phism 0 : M → R sending everything in M to the zero element of R is a crossed module. Conversely: If

(C ,R,∂) is a crossed module, ∂(C ) acts trivially on ker∂, hence ker∂ has a natural R/∂(C )-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules.

Both aspects are important.

3. Let be M (C ) multiplication algebra. Then
(
C ,M (C ) ,µ

)
is multiplication crossed module. µ : C →M (C )

is defined by µ (r ) = δr with δr
(
r ′) = r r ′ for all r,r ′ ∈ C , where δ is multiplier δ : C → C such that for all

r,r ′ ∈C , δ
(
r r ′)= δ (r )r ′. Also M (C ) acts on C by δ▶ r = δ (r ) .(See [1] for details).

In [10] Porter states that there is an equivalence of categories between the category of internal categories in

the category of k-algebras and the category of crossed modules of commutative k-algebras. In the following

theorem, we will give a categorical presentation of this equivalence.

Theorem 4.1. The category of crossed modules XModk is equivalent to that of 2-algebras, 2Alg.

Proof.

Let A = (A0, A1, s, t ,e,◦,•) be a 2-algebra consisting of a single object say∗ and an algebra A0 of 1-morphisms

and an algebra A1 of 2-morphisms. For x, y ∈ A0 and f : x → y ∈ A1, we get the following diagram

∗

x

  

y

== ∗f

��

We define s, t morphisms s : A1 −→ A0, s( f ) = x, t : A1 −→ A0, t ( f ) = y and e morphism e : A0 −→ A1 for

x ∈ A0, e(x) : x −→ x ∈ A1.

The s, t and e morphisms are algebra morphisms and we have

se(x) = s(e(x)) = x = I dA0 (x)

te(x) = t (e(x)) = x = I dA0 (x)

We define

Ker s = H = { f ∈ A1 | s( f ) = I dA0 } ⊆ A1

and ∂= t |H algebra homomorphism by ∂ : H −→ A0,∂(h) = t (h). We have semidirect product Ker s ⋊ A0 =
{(h, x) | h ∈Kers, x ∈ A0} with multiplication (h, x)• (h′, x ′) = (x ▶ h′+x ′ ▶ h+h′ •h, x •x ′) where action of A0

on Kers is defined by x ▶ h = e(x)•h. For each f ∈ A1, we can write f = n + e(x) where n = f − es( f ) ∈Kers

and x = s( f ). Suppose f ′ = n′+e(x ′). Then

f • f ′ = (n +e(x))• (n′+e(x ′))

= n •n′+n •e(x ′)+e(x)•n′+e(x)•e(x ′)
= e(x ′)•n +e(x)•n′+n •n′+e(x •x ′)
= x ′ ▶ n +x ▶ n′+n •n′+e(x •x ′).

There is a map

φ : A1 −→ Kers ⋊ A0

n +e(x) 7−→ φ(n +e(x)) = (n, x).
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Now
φ( f • f ′) = φ(x ′ ▶ n +x ▶ n′+n •n′+e(x •x ′))

= (x ′ ▶ n +x ▶ n′+n •n′, x •x ′)
= (n, x)• (n′, x ′)
= φ( f )•φ( f ′)

so φ is a homomorphism. Also, there is an obvious inverse

φ−1 : Kers ⋊ A0 −→ A1

(n, x) 7−→ φ−1(n, x) = n +e(x)

which is also a homomorphism. Hence φ is an isomorphism and we have established that Ker s ⋊ A0 ≃ A1.

Since A is a 2-algebra and Ker s ⋊ A0 ≃ A1, we can define algebra morphisms

s : Kers ⋊ A0 −→ A0

(h, x) 7−→ s(h, x) = x

t : Kers ⋊ A0 −→ A0

(h, x) 7−→ t (h, x) = ∂(h)+x

and
e : A0 −→ Kers ⋊ A0

x 7−→ e(x) = (0, x)

and for t (h, x) = s(h′,∂(h)+x) = ∂(h)+x we define

◦ : Kers ⋊ A0 t × s Kers ⋊ A0 −→ Kers ⋊ A0(
(h, x), (h′,∂(h)+x)

) 7−→ (h′+h, x)

∗

x

$$

∂(h)+x

77

∂(h′+h)+x

FF∗(h,x)

��

(h′,∂(h)+x)
��

= ∗

x

''

∂(h′+h)+x

77 ∗(h′+h,x)

��

which is vertical composition;

(h, x)◦ (h′,∂(h)+x) = (h′+h, x).

For (h, x), (g , y) ∈Kers ⋊ A0, horizontal composition is defined by

∗

x

��

∂(h)+x

BB∗(h,x)

��

y

��

∂(g )+y

BB(g ,h)

��

∗ = ∗

x•y

))

(∂(h)+x)•(∂(g )+y)

55 ∗(x▶g+y▶h+g•h,x•y)

��

(h, x)• (g , y) = (x ▶ g + y ▶ h + g •h, x • y)

= (e(x)• g +e(y)•h + g •h, x • y).

Thus we have
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CM1)

∂(x ▶ h) = ∂(e(x)•h)

= ∂(e(x))•∂(h)

= (te) (x)•∂(h)

= x •∂(h).

Also by interchange law we have

[
(h, x)• (g , y)

]◦ [
(h′,∂(h)+x)• (g ′,∂(g )+ y)

] = [
(h, x)◦ (h′,∂(h)+x)

]
•[

(g , y)◦ (g ′,∂(g )+ y)
]

.

Therefore, evaluating the two sides of this equation gives:

LHS = (x ▶ g + y ▶ h + g •h, x • y)

◦((∂(h)+x)▶ g ′+ (
∂(g )+ y

)
▶ h′+ g ′ •h′, (∂(h)+x)• (

∂(g )+ y
)
)

= ((∂(h)+x)▶ g ′+ (
∂(g )+ y

)
▶ h′+ g ′ •h′+x ▶ g + y ▶ h + g •h, x • y)

= (∂(h)▶ g ′+e(x)• g ′+∂(g )▶ h′

+e(y)•h′+ g ′ •h′+e(x)• g +e(y)•h + g •h, x • y)

RHS = (h′+h, x)• (g ′+ g , y)

= (x ▶
(
g ′+ g

)+ y ▶ (h′+h)+ (
g ′+ g

)• (h′+h), x • y)

= (
e(x)• g ′+e(x)• g +e(y)•h′+e(y)•h + g ′ •h′+ g ′ •h + g •h′+ g •h, x • y

)
.

Since the two sides are equal, we know that their first components must be equal, so we have

∂(h)▶ g ′+∂(g )▶ h′ = h • g ′+ g •h′

and
h • g ′+ g •h′ = ∂(h)▶ g ′+∂(g )▶ h′

= ∂(h + g )▶ (g ′+h′)−∂(h)▶ h′−∂(g )▶ g ′

= ∂(h + g )▶ (g ′+h′)− (
h •h′+ g • g ′) ,

thus
∂(h + g )▶ (g ′+h′) = h • g ′+ g •h′+ (

h •h′+ g • g ′)
= (

h + g
)• (

h′+ g ′)
and writing (h + g ) = l ,

(
h′+ g ′)= l ′ ∈ K er s, we get

∂ (l )▶ l ′ = l • l ′

which is the Peiffer identity as required. Hence (K er s, A0,∂) is a crossed module.

Let A = (A0, A1, s, t ,e,◦,•) and A
′ = (A

′
0, A

′
1, s

′
, t

′
,e

′
,◦′

,•′
) be 2-algebras and F = (F0,F1) : A −→A

′
be a 2-

algebra morphism. Then F0 : A0 −→ A
′
0 and F1 : A1 −→ A

′
1 are the k-algebra morphisms. We define f1 =
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F1|K er s : K er s −→ K er s
′

and f0 = F0 : A0 −→ A
′
0. For all a ∈ K er s and x ∈ A0,

f0∂(a) = F0t (a)

= t
′
F1(a)

= ∂
′
f1(a)

and
f1(x ▶ a) = F1(e(x)a)

= F1(e(x))F1(a)

= e
′
F0(x)F1(a)

= e
′
f0(x) f1(a)

= f0(x)▶ f1(a).

Thus ( f1, f0) map is a crossed module morphism (K er s, A0,∂) −→ (K er s
′
, A

′
0,∂

′
). So we have a functor

Γ : 2Alg −→ XModk .

Conversely, let (G ,C ,∂) be a crossed module of algebras. Therefore there is an algebra morphism ∂ : G →C

and an action of C on G such that

CM1) ∂(x ▶ g ) = x∂(g ),

CM2) ∂(g )▶ g ′ = g g ′.

Since C acts on G , we can form the semidirect product G ⋊C as defined by

G ⋊C = {
(
g ,c

) | g ∈G ,c ∈C }

with multiplication (
g ,c

)(
g ′,c ′

)= (
c ▶ g ′+ c ′ ▶ g + g ′g ,cc ′

)
and define maps s, t : G ⋊C → C and e : C → G ⋊C by s(g ,c) = c, t (g ,c) = ∂(g )+ c and e(c) = (0,c). These

maps are clearly algebra morphisms.

∗

c

&&

∂(g )+c

66

∂(g+g ′)+c

DD∗(g ,c)

��

(g ′,∂(g )+c)
��

For t (g ,c) = s(g ′,∂(g )+ c) = ∂(g )+ c, we define composition

◦ : (G ⋊C )t × s (G ⋊C ) −→ (G ⋊C )(
(g ,c), (g ′,∂(g )+ c)

) 7−→ (g + g ′,c),

for (g ,c), (h,d) ∈G⋊C and (g ,c), (g ′,∂(g )+c) ∈G⋊C , following equations give horizontal and vertical com-

position respectively.

(g ,c)• (h,d) = (c ▶ h +d ▶ g + g h,cd)
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(g ,c)◦ (g ′,∂(g )+ c) = (g + g ′,c)

Finally, since it must be that ◦ is an algebra morphism and by the crossed module conditions, interchange

law is satisfied. Therefore we have constructed a 2-algebra A = (C ,G ⋊C , s, t ,e,◦,•) consists of the single

object say ∗ and the k-algebra C of 1-morphisms and the k-algebra G ⋊C of 2-morphisms. Let (G ,C ,∂) and

(G
′
,C

′
,∂

′
) be crossed modules and f = ( f1, f0) : (G ,C ,∂) −→ (G

′
,C

′
,∂

′
) be a crossed module morphism. We

define
F1 : G ⋊C −→ G

′ ⋊C
′

(g ,c) 7−→ F1(g ,c) = ( f1(g ), f0(c))

and
F0 : C −→ C

′

c 7−→ F0(c) = f0(c).

Then
s
′
F1(g ,c) = s

′
( f1(g ), f0(c))

= f0(c)

= F0(c)

= F0s(g ,c),

t
′
F1(g ,c) = t

′
( f1(g ), f0(c))

= ∂
′
f1(g )+ f0(c)

= f0∂(g )+ f0(c)

= F0(∂(g )+ c)

= F0t (g ,c),

e
′
F0(c) = (0, f0(c))

= F1(0,c)

= F1e(c),

F1((g ,c)◦ (g
′
,c

′
)) = F1(g + g

′
,c)

= ( f1(g + g
′
), f0(c))

= ( f1(g )+ f1(g
′
), f0(c))

= ( f1(g ), f0(c))◦ ( f1(g
′
), f0(c

′
))

= F1(g ,c)◦F1(g
′
,c

′
),

F1((g ,c)• (h,d)) = F1(c ▶ h +d ▶ g + g h,cd)

= ( f1(c ▶ h)+ f1(d ▶ g )+ f1(g h), f0(cd))

= ( f0(c)▶ f1(h)+ f0(d)▶ f1(g )+ f1(g ) f1(h), f0(c) f0(d))

= ( f1(g ), f0(c))• ( f1(h), f0(d))

= F1(g ,c)•F1(h,d)

for all (g ,c) ∈ G ⋊C and c ∈ C . Therefore F = (F1,F0) is a 2-algebra morphism from (C ,G ⋊C , s, t ,e,◦,•) to

(C
′
,G

′ ⋊C
′
, s

′
, t

′
,e

′
,◦′

,•′
). Thus we get a functor

Ψ : XModk −→ 2Alg.
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