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1. Introduction

The term “categorification” coined by Louis Crane refers to the process of replacing set theoretic concepts
by category-theoretic analogues in mathematics. A categorified version of a group is a 2-group. Internal
categories in the category of groups are exactly the same as 2-groups. The Brown-Spencer theorem [3] thus
constructs the associated 2-group of a crossed module given by Whitehead [11] to define an algebraic model
for a “(connected) homotopy 2-type”. The fact that the composition in the internal category must be a group
homomorphism implies that the “interchange law” must hold. This equation is in fact equivalent via the

Brown-Spencer result to the Peiffer identity.

We will concerne in this paper exclusively with categorification of algebras. We will obtain analogous re-
sults in (commutative) algebras with regard to Porter’s work [9]. He states that there is an equivalence of
categories between the category of internal categories in the category of k-algebras and the category of
crossed modules of commutative k-algebras. Since the internal category in the category of k-algebras is a
categorification of k-algebras, this internal category will be called as “strict 2-algebra” in this work. We de-
fine the strict 2-algebra by means of 2-module being a category in the category of modules as a 2-category
with single object in which collections of 1-morphisms and 2-morphisms are k-algebras and we denote the
category of strict 2-algebras by 2Alg . Given a group G, it is known that automorphisms of G yield a 2-group.
Analogous result in commutative algebras can be given that multiplications of C yield a strict 2-algebra

where C is a commutative R-algebra and R is a commutative k-algebra.

A crossed module « = (0 : C — R) of commutative algebras is given by an algebra morphism 6 : C — R

liakca@ogu.edu.tr (Corresponding Author); 2uege@ogu.edu.tr
L.2pepartment of Mathematics and Computer Sciences, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
Article History: Received: 03.10.2022 - Accepted: 23.12.2022 - Published: 27.02.2023


https://dergipark.org.tr/tr/pub/ikjm
https://orcid.org/0000-0003-4269-498X
https://orcid.org/0000-0002-2995-0718

Ibrahim Ilker Akga et al. / IKIM / 5(1) (2023) 1-19 2

together with an action - of R on C such that the relations below hold for each r € R and each c, cecC ,

o(r-c) = ro(c)

o(c) - ¢ cc.

In this paper we show that the category of strict 2-algebras is equivalent to the category of crossed modules

in commutative algebras.
2. Internal Categories and 2-categories

We begin by recalling internal categories as well as 2-categories. Ehresmann defined internal categories in

(5], and by now they are an important part of category theory [4].
2.1.Internal categories

Definition 2.1. Let C be any category. An internal category in C, say A, consists of:
« an object of objects Ay € C

« an object of morphisms A; € C,

together with

« source and target morphisms s, t: A} — Ay,

« an identity-assigning morphism e: Ag — A,

 a composition morphism o : A; x 4, A; — A; such that the following diagrams commute, expressing the

usual category laws:

« laws specifying the source and target of identity morphisms:

Ay - . A Ap - Ay
s t

Lag i 14 \L

Ao Ao

« laws specifying the source and target of composite morphisms:

Al XAO A1 4>0 A1

A———4A

Ay x gy Ay —— Ay

A4
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« the associative law for composition of morphisms:

Ay x4y A1 x4, A1 — A X 4 A1
P2 13
Ay X 4, A1 A

« the left and right unit laws for composition of morphisms:

eXAOIAl 1A1><A0e
Ag x pg A1 — A1 x4y A] =—— A1 X4, Ao

Sl

Aq

Here, the pullback A; x 4, A; is defined via the square:

0
Ay X 4, Aq A

pli l

Ay ——— Ap.

We denote this internal category with A = (A, Ay, s, ¢,€,0).

Definition 2.2. Let C be a category. Given internal categories A and A’ in C, an internal functor between

them, say F: A— A/, consists of

e amorphism Fy: Ag — Ay,

« amorphism F; : Ay — A}

such that the following diagrams commute, corresponding to the usual laws satisfied by a functor:

« preservation of source and target:

A L Ap A 4>t Ap

I L B

! !/ !/ !
Al s AO Al ¢ AO

« preservation of identity morphisms:

Ay —= Ay

Bl s

/ /
AO Py Al
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« preservation of composite morphisms:

F1><A0F1 / /
Ay X gy A ———= Af x4 A

A i A,

Given two internal functors F: A— A’ and G: A’ — A" in some category C, we define their composite
FG: A— A" by taking (FG)o = FyGp and (FG); = F; G;. Similarly, we define the identity internal functor in
C,14:A— Abytaking (14)0 = 14, and (14); = 14,.

Definition 2.3. Let C be a category. Given two internal functors F,G: A — A’ in C, an internal natural
transformation in C between them, say 6 : F = G, is a morphism 0 : Ag — A] for which the following

diagrams commute, expressing the usual laws satisfied by a natural transformation:

« laws specifying the source and target of a natural transformation:

A ————= A

 the commutative square law:

A(sOxG)
A ——— T A A

A(Fxt0) of

! ! !
- >
Ap x4 A o A

Given an internal functor F : A— A’ in C, the identity internal natural transformation 1z: F = Fin Cis

given by 1r = Fye.
2.2, 2-categories

Definition 2.4. A 2-category ¢ consists of a class of objects Gy and for any pair of objects (A, B) a small
category of morphisms ¥ (A, B)-with objects G; (A, B) and morphisms Gz (A, B)-, along with composition
functors

o : YABx¥Y(B,C) — YAQ

for every triple (A, B, C) of objects and identity functors from the terminal category to (A, A)

iA:1— %A A
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for all objects A such that e is associative and
Feip=F=ijpeF aswellas Oel;;=0=1;,¢0

hold for all F € G1(A, B) and 9 € G2 (A, B) where source and target morphisms are defined by

AL B

SIGl(A,B) — Go
F — S(F)=A

t:G1(A,B) — Gy
F t(F)=B
for F € G1(A, B) and

s:Go(AB) — G
) — s =F

1:G2(A,B) — Go
) — (=G

for : F — G € G2(A, B). For all pairs of objects (A, B) elements of G; (A, B) are called 1-morphisms or 1-
cells of ¢4 and elements of G, (A, B) are called 2-morphisms or 2-cells of 4. We write G; and G, for the classes

of all 1-morphisms and 2-morphisms respectively.

There are two ways of composing 2-morphisms: using the composition o inside the categories (A, B),
called vertical composition, and using the morphism level of the functor e, called horizontal composition.
These compositions must be satisfy the following equation: for a, a’ € G»(A, B) with t(a) = s(a’) and y,y’ €
G2(B, C) with #(y) = s(y")

(@oa’)e(yoy')=(aey)o(a’sY))
which is called “interchange law”.

3. Constructions of Two-Algebras

In this section we will construct 2-algebras by categorification. We can categorify the notion of an algebra

by replacing the equational laws by isomorphisms satisfying extra structure and properties we expect. In [2]
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Baez and Crans introduce the Lie 2-algebra by means of the concept of 2-vector space defined as an internal
category in the category of vector spaces by them. Obviously we get a new notion of “2-module”which can

be considered as an internal category in the category of modules and we categorify the notion of an algebra.
3.1.2-Modules

A categorified module or “2-module”’should be a category with structure analogous to that of a k—module,
with functors replacing the usual k—module operations. Here we instead define a 2-module to be an in-
ternal category in a category of k—modules Mod . Since the main component part of a k—algebra is a
k—module, a 2-algebra will have an underlying 2-module of this sort. In this section we thus first define

a category of these 2-modules.

In the rest of this paper, the terms a module and an algebra will always refer to a k—module and a k—algebra.
Definition 3.1. A 2-module is an internal category in Mod .

Thus, a 2-module M is a category with a module of objects M, and a module of morphisms M, such that
the source and target maps s, t : M} — M, the identity assigning map e: My — M, and the composition

map o : M x p;, M1 — M are all module morphisms. We write a morphism as a: x — y when s(a) = x and

t(a) = y, and sometimes we write e(x) as 1.

The following proposition is given for the Vect vector space category in [2]. But we rewrite this proposition
for Mod .

Proposition 3.2. Itis defined a 2-module by specifying the modules M, and M; along with the source, target
and identity module morphisms and the composition morphism o, satisfying the conditions of Definition

2.1. The composition map is uniquely determined by

o: Myxy, My — M
(a,b) — o(a,b)=aob=a+b-(es)(b).

Proof.
First given modules My, M; and module morphisms s, f : M; — M, and e : My — M;, we will define a

composition operation that satisfies the laws in the definition of internal category, obtaining a 2-module.

Given a, b € M; such that t(a) = s(b), i.e.
a:x—yandb:y—z
we define their composite o by

o M1><M0M1 — M1
(a,b) — o(a,b)=aob=a+b-(es)(b).

We will show that with this composition o the diagrams of the definition of internal category commute. The

triangles specifying the source and target of the identity-assigning morphism do not involve composition.
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The second pair of diagrams commute since

s(aob) = s(a+b-(es)(b)
= s(a)+s(b) - (se)(s(b))
= s(a)+ s(b)—s(b)

= sla)=x

and since t(a) = s(b),
t(aob) = tla+b-(es)(b)

= t(a)+t(b) - (te)(s(h)
= t(a)+t(b) - s(b)
= t(b)=z.

The associative law holds for composition because module addition is associative. Finally the left and right

unit laws are satisfied since given a: x — y,

e(x)oa = e(x)+a-(es)(a)
= ex)+a—e(x)

= a

and
a+e(y)—(es)e(y)

a+e(y)—e(y)

a.

ace(y)

We thus have a 2-module.

Given a 2-module M, we shall show that its composition must be defined by the formula given above. Sup-

pose that (a, g) and (@', g') are composable pairs of morphisms in My, i.e.
a:x—yandb:y—z

and

a:x'—yandb':y — 7.

Since the source and target maps are module morphisms, (a + a’, b+ b') also forms a composable pair, and

since that the composition is module morphism

(a+a)ob+b)=aob+d ol .
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Then if (a, b) is a composable pair, i.e, t(a) = s(b), we have

aob (@+1p)0(pr +b)

= (a+e(s(b)—s(b)))o(e(s(b) - s(b)) + b)

= (a—e(s(b) +e(s(h))) o (e(s(h)) —e(s(b)) + b)

= (aoce(s(D))) + (—e(s(b)) + e(s(b))) o (—e(s(b)) + b)
= aoce(s(b)+(—e(s(b))o(—e(s(h)))) + (e(s(b)) o b)
= a—-e(sb)+b

= a+b-e(s(h).
This show that we can define o by

o: Myxy, My — M
(a,b) — o(a,b)=aob=a+b-e(s(b)).

Corollary 3.3. For b € ker s, we have

a+b-(es)(b)
= a+b.

aob

Definition 3.4. Let M and N be 2-modules, a 2-module functor F : M — N is an internal functor in Mod
from M to N. 2-modules and 2-module functors between them is called the category of 2-modules denoted
by 2Mod.

After we get the definition of a 2-module, we define the definition of a categorified algebra which is main

concept of this paper.
3.2.Two-algebras

Definition 3.5. A weak 2-algebra consists of

- a 2-module A equipped with a functor e : A x A — A, which is defined by (x, y) — x e y and bilinear on

objects and defined by (f, g) — f g on morphisms satisfying interchange law, i.e.,
(fieg)o(faeg2) =(fiof2)e(g1082)

- k—bilinear natural isomorphisms

Axyz:(Xey)ez— xe(ye2)
Iy:lex—x

Iy:Xel—Xx

such that the following diagrams commute for all objects w, x, y, z € Ay.

(Wox)op) oz ™ (wex)e(yez)

Xw,x,yez
aw,x,y'lz

(Wwelxey)ezarmwelxey)ez) o> welxe(yez)
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Ax,1,y
(x-l)-y—>x-(l-y)

1,0l

Xey

A strict 2-algebra is the special case where ay,y, -, Iy, ry are all identity morphisms. In this case we have
(xoy)oz:xo(yoz)

lex=x,xel=x

Strict 2-algebra is called commutative strict 2-algebra if x e y = y ¢ x for all objects x,y€ Apand feg=ge f

for all morphisms f, g € A;.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomor-

phism between 2-algebras should preserve both the 2-module structure and the « functor.

Definition 3.6. Given 2-algebras A and A’, a homomorphism
F:A— A

consists of
- a linear functor F from the underlying 2-module of A to that of A’, and

- a bilinear natural transformation
F>(x,y): Fo(x) e Fy(y) — Fo(xe y)

-an isomorphism F: 1’ — Fy(1) where 1 is the identity object of A and 1’ is the identity object of A’,

such that the following diagrams commute for x, y, z € Ao,

(F(x) e F() » F(2) 21 F(x e y) e F(z) —2> F((x )+ 2)
aF(x),F(y),F(z)J/ \LF(ax,y,z)

F(x)e (F(y)eF(2)) hT)F(x)'F(y'Z) ?F(x-(y-zn.

!
F(x)

1"e F(x) l—>F(x)

FO.I\L TF(ZX)

F(1) e F(x) ?F(lox).

F)el — o Fx)

I'F()\L TF(rx)

F(x)e F(1) ?F(xOI).

Definition 3.7. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by



Ibrahim Ilker Akga et al. / IKIM / 5(1) (2023) 1-19 10

2Alg.

Therefore if A= (Ao, 41,5, 1, e,0,¢) isa 2-algebra, Ap and A are algebras with this e bilinear functor. Thus we
can take that 2-algebra is a 2-category with a single object say *, and Ag collections of its 1-morphisms and

A collections of its 2-morphisms are algebras with identity.
3.3. Multiplication Algebras yield a 2-algebra

In [8] Norrie developed Lue’s work [6] and introduced the notion of an actor of crossed modules of groups
where it is shown to be the analogue of the automorphism group of a group. In the category of commutative
algebras the appropriate replacement for automorphism groups is the multiplication algebra .# (C) of an
algebra C which is defined by MacLane [7].

Let C be an associative (not necessarily unitary or commutative) R-algebra. We recall Mac Lane’s construc-

tion of the R-algebra Bim(C) of bimultipliers of C [7].

An element of Bim(C) is a pair (y, §) of R-linear mappings from C to C such that
ylec) =y(e)c

5(cc)=c(c)

and
cy(c)=6(c)c.

Bim(C) has an obvious R-module structure and a product
(y,0)(y',8) = (yy,8'6),

the value of which is still in Bim(C).

Suppose that Ann(C) = 0 or C? = C. Then Bim(C) acts on C by

Bim(C)xC — C; ((y,6),0) —y(0),
CxBim(C) — C; (¢, (y,6))—b(c)

and there is a
p: C — Bim(C)

Cc —_ (YC) 60)
with

Ye(x)=cx and 0.(x) = xc.

Commutative case: we still assume Ann(C) = 0 or C? = C. If C is a commutative R-algebra and (y,0) €

Bim(C), then y = 6. This is because for every x € C:

x0(c) = d(x=cy(x)=yx)c

Y(xc) =y(cx) =y(c)x = xy(c).

Thus Bim(C) may be identified with the R-algebra .4 (C) of multipliers of C. Recall that a multiplier of C is
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alinear mapping A : C — C such thatforall ¢,c’ € C
Alcch) = Ao .
Also ./ (C) is commutative as
AAxe) = A (Ax)e) = A () = V() A(x) = AN (cx) = AA (x¢)

for any x € C. Thus . (C) is the set of all multipliers A such that 1y = yA for every multiplier y.

In [10] Porter states that automorphisms of a group G yield a 2-group. The appropriate analogue of this
result in algebra case can be given. We claim that multiplications of an R-algebra C give a 2-algebra which
is called a multiplication 2-algebra.

Let k be acommutative ring, R be a k-algebra with identity and C be a commutative R-algebra with Ann(C) =
0 or C% = C. Take Ap = A (C) and say 1-morphisms to the elements of Ay. We define the action of .4 (C) on

C as follows:
MO xC — C

(f, %) —  fex=f(x).

Using the action of .# (C) on C, we can form the semidirect product
CxM(C)={(x,lxeC, fe ()}

with multiplication
x5 N =X+ e x+xx 1)

Take A; = C x 4 (C) and say 2-morphisms to the elements of A;. Therefore we get the following diagram
for (x, ) e Cx.H(C),

C wf C

\g_/”

and we define the source, target and identity assigning maps as follows;

s: CxMOC) —  M(C) t: CxMC) — M (C)
xf)  — sNH=f (x,f)  — t,f)=Myf

and

e: MC) — CxMO)
o — eNH=0/
where M, - f is defined by (My - f)(u) = xu+ f(u) forue C.

There are two ways of composing 2-morphisms: vertical and horizontal composition. Now we define this

compositions.
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For (x, f),(y, f) € Cx 4(C)

CC

C xfH C wM C
MX'f My'f,

the horizontal composition is defined by

O =@+ +xy, 1),

thus we have
f'f

C “(y,f’)-(x.f) C

(My- ) (M- f)

and

t(f' () + f)+xy, 1) Mo+ riexy f'f

(My- ) (M- f)

The vertical composition is defined by

f
C/WC
\\\/

\ M, f
(x/v xf)
M(x’+x)'f

(x, o, My-f)=("+x,f)

for (x, ), (x', My - f) € C x 4 (C) with t(x, f) = s(x', My - f) = My f.

It remains to satisfy the interchange law, i.e.

f
\\_//
\ My f

M(x’+x)'f M(y’+y)'f/

[(x, flo(x', My )l e[y, fo(y My~ ] = [(x,f) ey fI
of(x', My f) o (y', My~ f].

12
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Evaluating the two sides separately, we get

LHS

& +x, ey +yf)
fE+0+f+n+&+00 +», N
'+ O+ fON+f+X Y +Xy+xy +xy, ' f)

and

RHS = (f'(xX)+f)+xy,f'f)o((My-f)(x))
+(My- HON+ XY, (M- (M- )

= (ffO+fWM+xy+ M, fHX)+ M- HON+XY, ')

= (ffO+f+xy+yx'+f' &N +xy + fOH+x'y, f'

LHS and RHS are equal, thus interchange law is satisfied. Therefore we get a 2-algebra consists of the R-
algebra C as single object and the R-algebra A of 1-morphisms and the R-algebra A; of 2-morphisms.

4. Crossed modules and 2-algebras

Crossed modules have been used widely and in various contexts since their definition by Whitehead [11]
in his investigations of the algebraic structure of relative homotopy groups. We recalled the definition of

crossed modules of commutative algebras given by Porter [10].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together

with a commutative action of R on C and a morphism
0:C—R

such thatforallceC,reR

CM1) o(r » ¢) = roc.

This is a crossed R-module if in addition for all ¢, ¢’ € C
CM2) dcw ¢’ =cc'.

The last condition is called the Peiffer identity. We denote such a crossed module by (C, R, 8).
A morphism of crossed modules from (C, R,0) to (C’,R’,d’) is a pair of k-algebra morphisms ¢: C — C’, v :
R — R’ such that
dp=wd and  G(rw»c)=y(r)» Pc).
Thus we get a category XModj. of crossed modules (for fixed k).
Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, inc: I — R which is a crossed module. Conversely given an

arbitrary R-module 8 : C — R one easily sees that the Peiffer identity implies that C is an ideal in R.

2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero mor-
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phism 0: M — R sending everything in M to the zero element of R is a crossed module. Conversely: If

(C,R,0) is a crossed module, 0(C) acts trivially on kerd, hence kerd has a natural R/8(C)-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules.

Both aspects are important.

3. Let be .# (C) multiplication algebra. Then (C, .# (C), ut) is multiplication crossed module. y: C — .4 (C)
is defined by p(r) = 6, with 6, (r') = rr’ for all 1,7 € C, where 6 is multiplier § : C — C such that for all
rr'eC,&(rr')=6(r)r'. Also .4 (C) acts on C by 6 » r =6 (r).(See [1] for details).

In [10] Porter states that there is an equivalence of categories between the category of internal categories in
the category of k-algebras and the category of crossed modules of commutative k-algebras. In the following

theorem, we will give a categorical presentation of this equivalence.
Theorem 4.1. The category of crossed modules XMody. is equivalent to that of 2-algebras, 2Alg.
Proof.

Let A= (Ag, A1, s, t,e,0,e) be a2-algebra consisting of a single object say * and an algebra Ay of 1-morphisms

and an algebra A; of 2-morphisms. For x, y € Ap and f: x — y € A;, we get the following diagram

We define s, f morphisms s: Ay — Ay, s(f) = x,t: A] — Ay, t(f) = y and e morphism e : Ay — A; for

xX€Ap, e(x): x— x€eA;.

The s, t and e morphisms are algebra morphisms and we have

se(x) s(e(x)) = x =1Id,(x)

te(x)

t(e(x)) =x=1Idy,(x)

We define
Kers=H={f € Ay |s(f) =1da,} < A

and 0 = t |y algebra homomorphism by 6 : H — Ay, d(h) = t(h). We have semidirect product Ker s x Ay =
{(h, x) | h €Kers, x € Ag} with multiplication (h, x) e (h',x') = (x » '+ x' » h+ h’ e h, x » x') where action of Ay
on Kers is defined by x » h = e(x) « h. For each f € A;, we can write f = n+ e(x) where n = f —es(f) eKers

and x = s(f). Suppose f'=n'+e(x"). Then

(n+e(x) e (n'+e(x")

feof
= nen'+nee(x)+e(x)en +e(x)ee(x)
= exN)en+ex)en'+nen +e(xex’)

= xXpn+xwn+nen +e(xex).

There is a map
o: A — Kers X Ap

n+elx) — ¢n+elx) =(nx).
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Now
O(fef) = PpX'»n+x»n' +nen +e(xex))

= (Xw»n+xwpn'+nen,xex)
= (n,x)e(n,x)

= ¢ ()

so ¢ is a homomorphism. Also, there is an obvious inverse
¢ l: KersxAy — A

n,x) — ¢ lmx)=n+e(x)

which is also a homomorphism. Hence ¢ is an isomorphism and we have established that Ker s x Ag = A;.

Since A is a 2-algebra and Ker s x Ag = A;, we can define algebra morphisms

s: KersxAy — Ap t: KersxAy — Ap
(h, x) — s(h,x)=x (h, x) — t(h,x)=0(h) +x

and
e: Ay — Kersx Ay

x —ex)=(0,x)

and for t(h, x) = s(h',0(h) + x) = 0(h) + x we define

o: Kersx Ag;x sKers x Ay — Kersx Ag
((h,x), (W, 0(h)+x))  — (W +h,x)

X

oW +h)+x

d(h' +h)+x

which is vertical composition;
(h,x)o (W,0(h) +x) = (W' + h, x).

For (h, x), (g, y) €Kers x Ag, horizontal composition is defined by

X y

SN ~
(hx) * (gh * = * (x> g+y»h+geh,xey)*
A

A\
(0(h)+x)+(0()+Y)

*
\,

o(h)+x o(g)+y

(h,x)*(g,y) (x»g+yw»h+geh,xey)

(e(x)eg+e(y)eh+geh,xey).

Thus we have
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CM1)
oxw» h) = d(e(x)eh)
= 0d(e(x))e0(h)
= (te)(x)e0d(h)
= xed(h).

Also by interchange law we have

[(h,x)e (g, W] [(H,0)+x)e(g,0@+y)] = [(hx)o(H,0(h)+x)]
«[(g,»olg,a(8)+y)].

Therefore, evaluating the two sides of this equation gives:

LHS = (x»g+yw»h+geh,xey)
(M) +x)» g +(0(g)+y)» W +g o', (0(h) +x)+(3(8) +¥))
= (OW+x)»g'+(0@+y)»h +g eh'+x»g+y» h+geh,xey)
= Ohw»g+ex)eg +a(g)» H
+e(y)eh'+g e +e(x)eg+e(y)eh+geh,xey)
RHS = (W+hx)e(g'+gy
= (»(g+g)+ty» (W +h)+(g +g)e (W +h),xey)
= (ex)eg'+e(x)eg+e(y)oh +e(y)oh+g eh +g' eh+geh +geh,xey).

Since the two sides are equal, we know that their first components must be equal, so we have

o g +a(gwh' =heg +gel

and
heg'+geh = o)w g +o(g)» I
= 0h+g)» (g'+h)-0(h» h' -ag)» g
= Oh+g)w (g +h)—(heh +geg'),
thus

oh+g)» (g +h)

heg' +geh'+(heh +geg)
(h+g)e(h +g)

and writing (h+ g) =1, (k' + g') = I' € Kers, we get
ohwl'=1el

which is the Peiffer identity as required. Hence (Ker s, Ap,0) is a crossed module.

Let of = (Ap, A1, S, t,e,0,e) and o = (AL),AII,S,, t’,e’,o',-/) be 2-algebras and F = (Fy, F1) : o — of bea?2-
algebra morphism. Then Fj : Ag — AE) and F; : A} — A’1 are the k-algebra morphisms. We define f; =
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Filgers: Kers — Kers and fo=Fy: Ay — A/O. For all a e Kers and x € Ay,

fod(a) Fot(a)
t Fi(a)

3 fi(a)

and
fitxwa) = File(x)a)

= F(e(x)Fi(a)
= ¢RWF @
= effi@

= folx)» fi(a).

Thus (f1, fo) map is a crossed module morphism (Kers, Ag,d) — (K ers/, A;),a/). So we have a functor

I':2Alg — XMody.

Conversely, let (G, C,0) be a crossed module of algebras. Therefore there is an algebra morphismd: G — C

and an action of C on G such that
CM1) d(x » g) = x0(g),
CM2)d(g)» g’ =gg'.

Since C acts on G, we can form the semidirect product G x C as defined by
GxC={(gc)lgeGceC}

with multiplication
(g.c)(g,c)=(crg +»g+g'gcl)

and define maps s, :GxC—Cande:C— GxCbys(g,c) =c, t(g ) =0(g)+cand e(c) = (0,c). These

maps are clearly algebra morphisms.

c
* /’P *
NoT—
\ a(g)+c /
a(g+g)H+c

For (g, c) = s(g’,0(g) + ¢) = 4(g) + ¢, we define composition

o: (GXQO)x(GXC) —(GXO)
((g 0,0 +0) —(g+g,0),
for (g,¢), (h,d) € Gx Cand (g, ¢),(g’,0(g) + ¢) € G x C, following equations give horizontal and vertical com-

position respectively.

(g,c)e(h,d)=(c» h+dw g+gh,cd)
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(g,0)o(g,d(g)+c)=(g+g',0)

Finally, since it must be that o is an algebra morphism and by the crossed module conditions, interchange
law is satisfied. Therefore we have constructed a 2-algebra «f = (C,G % C, s, t, e,0, ¢) consists of the single
object say * and the k-algebra C of 1-morphisms and the k-algebra G x C of 2-morphisms. Let (G, C,0) and
(G’,c’,a’) be crossed modules and f = (f1, fo) : (G,C,0) — (G/, C’,d/) be a crossed module morphism. We
define / /
F: GxC — G xC
(g0 — Fi(g )= (/8 folc)

and
F()Z cC — C’
c — Fylo) = folo).
Then
sFi(g,o) = s(fi(g), folo)
= folc)
= Fylo)
= Fps(g,0),

tFi(g,c) = t(fi(®, folc)
= 3 filg+folo
= fo0(g)+ folc)
= Fo0(g)+o)
= Fpt(g,0),

e Fy(c) 0, fo(c)
= F0,0)

= F]@(C),

Fi(gc)o(g,c) = Fi(g+g,0
= (filg+g), folo)
= (il®+A(8) folo)
= (filg, fole)o(fi(g), folc)
= Fi(gooFl(g,c),

Fi((g,c)e(h,d)) = Fi(c»rh+dwg+gh,cd)
= (filc» W)+ fildw» g+ fi(gh), folcd))
= (fole)» fi(h) + fo(d) » f1(g) + f1(8) f1(h), fo(c) fo(d))
= (fi(@, fole)) s (f1(h), fo(d))
= Fi(g 0 Fi(had)

for all (g,c) € G x C and c € C. Therefore F = (F}, Fp) is a 2-algebra morphism from (C,G x C, s, t,e,0,) to

(C,G xC,s,t,e,0,s). Thus we get a functor

Y :XMod; — 2Alg.
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