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Abstract. In this work, we explicitly characterize local separation axioms as
well as generic separation axioms in the topological category of neutrosophic

crisp sets, and examine their mutual relationship. Moreover, we character-

ize several distinct notions of closedness, compactness and connectedness in
NCSet, and study their relationship with each other.

1. Introduction

As a generalization of crisp sets, Zadeh [30] introduced fuzzy set theory in 1965.
Without a doubt, the fuzzy set theory is effective in dealing with imprecise esti-
mates, yet it was unable to explain the level of dissatisfaction (non-membership).
The intuitionistic fuzzy set (IFS) model was established by Atanassov [1] to ad-
dress these weaknesses of fuzzy sets. This model is more accurate and useful than
fuzzy sets since it can manage both membership and nonmembership degrees. The
IFSs offer more space in terms of applications for decision-making because they can
handle data both in favor (membership value) and against (non-membership value)
of the possibilities given.

The concept of a neutrosophic set taking into account the degrees of member-
ship, non-membership, and indeterminacy was first suggested by Smarandache [29]
in 1998. Additionally, Salama and Smarandache [28] introduced the idea of a neu-
trosophic crisp set in a set in 2015. They also provided definitions of neutrosophic
crisp empty (resp. whole) set as more than two types, inclusion between two neu-
trosophic crisp sets, complement of a neutrosophic crisp set and intersection (union)
of two neutrosophic crisp sets. In 2017, Hur et al [18] defined several categorical
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properties of neutrosophic crisp set and showed that NCSet (the category of neu-
trosophic crisp spaces and neutrosophic crisp maps) is a cartesian closed topological
category.

Categorical topology is that field of mathematics where general topology and
category theory overlap, was introduced by Herrlich [17] in 1971, and the purpose
was to apply categorical concepts and results to topological settings and to explain
not only the original topological phenomena but similar phenomena throughout
topology as well as in other fields.

Due to huge importance of neutrosophic crisp sets in decision-making, it moti-
vates us to characterize several fundamental concepts of topology including Haus-
dorffness, closedness, compactness and connectedness in the topological category of
NCSet.

The following are the paper’s main goals:

(i) to characterize local T0, T1, PreT2 objects in the category of neutrosophic
crisp sets and to examine how they are related,

(ii) to provide the characterization of generic separation axioms and several
distinct version of Hausdorff objects in NCSet,

(iii) to give the explicit characterization of several notions of closedness, com-
pactness and connectness in topological category of NCSet,

(iv) to compare our results with the ones in some other categories.

2. Preliminaries

All preliminary information and more about neutrosophic crisp spaces can be
found in [28].

Definition 1. [18,28] Let A be a non-empty set.

(1) If N has the form N = (N1, N2, N3), where N1, N2, and N3 are subsets of
A, then N is referred to as a neutrosophic crisp set (NCS) on A. The pair
(A,N ) is called a neutrosophic crisp space (NCSp). The set of all NCSs
on A will be represented by NCS(A).

(2) The neutrosophic crisp empty set, ∅nc is an NCS on A defined by ∅nc =
(∅, ∅, A).

(3) The neutrosophic whole set, Anc is an NCS on A defined by Anc = (A,A, ∅).
(4) Let {Ni}i∈I be a family of NCSs on A, where Ni = (Ni1, Ni2, Ni3). Then

(i)
⋂

i∈I Ni, the intersection of {Ni}i∈I , is an NCS on A defined by⋂
Ni = (

⋂
Ni1,

⋂
Ni2,

⋃
Ni3),

(ii)
⋃

i∈I Ni, the union of {Ni}i∈I , is an NCS on A defined by⋃
Ni = (

⋃
Ni1,

⋃
Ni2,

⋂
Ni3).

Definition 2. [18] Let (A,N ), (B,M) be NCSps and f : A → B be a map. Then
f : (A,N ) → (B,M) is called a morphism, if N ⊂ f−1(M), equivalently, N1 ⊂
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f−1(M1), N2 ⊂ f−1(M2) and N3 ⊃ f−1(M3), where N = (N1, N2, N3) and M =
(M1,M2,M3).

Definition 3. The category of neutrosophic crisp spaces, NCSet has the pairs
(A,N ) as objects, where A is any non-empty set and N is a neutrosophic crisp
set on A, and has morphisms. In this case, every morphism in NCSet is called a
NCSet-map.

Lemma 1. (cf. [18])

(1) Let A be a set, {(Aj ,Nj)}j∈J be any families of NCSps and {fj : (A,NA) →
(Aj ,Nj)}j∈J be a source. Then,

NA =
⋂
j∈J

f−1
j (Nj)

is an initial structure on A, where NA = (NA1, NA2, NA3) and Nj = (Nj1,
Nj2, Nj3).

(2) Let B be a set, {(Aj ,Nj)}j∈J be any families of NCSps and {gj : (Aj ,Nj) →
(B,NB)}j∈J be a sink. Then,

NB =
⋃
j∈J

gj(Nj)

is a final structure on B, where NB = (NB1, NB2, NB3) and Nj = (Nj1,
Nj2, Nj3).

(3) Let (A,N ) be a neutrosophic crisp space (NCSp).
(i) A neutrosophic crisp structure on A is discrete whenever N = ∅nc.
(ii) A neutrosophic crisp structure on A is indiscrete whenever N = Anc.

Remark 1. The forgetful functor U : NCSet → Set is topological, i.e., the cat-
egory NCSet is topological over Set [18], but the functor U is not normalized
(i.e., subterminals, have a unique structure) since a singleton set {a} has multiple
neutrosophic crisp structures on it.

3. Local Separation Axioms in Neutrosophic Crisp Sets

Let p be a point in a set B and B ∨p B be the wedge product of B at p ( [2],
p. 334), i.e., two disjoint copies of B identified at p. If a point b in B ∨p B is in
the first component, it is denoted as b1, and if it is in the second component, it is
denoted as b2.

Definition 4. [2] Let B2 denote the cartesian product of B.

(1) The map Ap : B ∨p B → B2 is called principal p-axis map iff

Ap(bi) =

{
(b, p), i = 1

(p, b), i = 2
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(2) The map Sp : B ∨p B → B2 is called skewed p-axis map iff

Sp(bi) =

{
(b, b), i = 1

(p, b), i = 2

(3) The map ∇p : B ∨p B → B is called fold map at p provided that ∇p(bi) = b
for i = 1, 2.

Definition 5. [2] Let U : E → Set be topological, A ∈ Ob(E) with U(A) = B and
p ∈ B.

(i) A is T0 at p iff the initial lift of the U -source {Ap : B ∨p B → U(A2) = B2

and ∇p : B ∨p B → UD(B) = B} is discrete, where D is the discrete
functor.

(ii) A is T ′
0 at p iff the initial lift of the U-source {id : B ∨p B → U(A ∨p A) =

B ∨p B and ∇p : B ∨p B → UD(B) = B} is discrete, where A ∨p A is the
wedge in E, i.e., the final lift of the U-sink {i1, i2 : U(A) = B → B ∨p B}
where i1, i2 denote the canonical injections.

(iii) A is T1 at p iff the initial lift of the U -source {Sp : B ∨p B → U(A2) = B2

and ∇p : B ∨p B → UD(B) = B} is discrete.

(iv) A is PreT 2 at p iff the initial lift of the U-source {Ap : B ∨pB → U(A2) =
B2} and the initial lift of the U-source {Sp : B∨pB → U(A2) = B2} agree.

(v) A is PreT ′
2 at p iff the initial lift of the U-source {Sp : B ∨p B → U(A2) =

B2} and the final lift of the U-sink {i1, i2 : U(A) = B → B ∨p B} agree.

(vi) A is T 2 at p iff A is T 0 at p and PreT 2 at p.
(vii) A is T ′

2 at p iff A is T ′
0 at p and PreT ′

2 at p.

Remark 2. (1) Particularly, we have the following for the category of topolog-
ical spaces, Top:
(a) T 0 at p and T ′

0 at p (resp. T1 at p) reduce to for each x ∈ X with
x ̸= p, there exists a neighborhood of x that doesn’t contain p or (resp.
and) there exists a neighborhood of p that doesn’t contain x [5].

(b) PreT 2 at p and PreT ′
2 at p are equivalent, and they both reduce to

for each point x distinct from p, there exist disjoint neighborhoods of
x and p if the set {x, p} is not indiscrete [5].

(c) T 2 at p and T ′
2 at p are equivalent, and they both reduce to for each

x ∈ X with x ̸= p, there exist disjoint neighborhoods of x and p [5].
(2) Local separation axioms are used to introduce the notions of (strong) closed-

ness in set-based topological categories which are defined in [3]. These no-
tions are used in [2,9,10] to generalize each of the notions of Hausdorffness,
compactness, perfectness and connectedness to arbitrary set-based topologi-
cal categories. Additionally, it is shown in [9] that they constitute suitable
closure operators in the sense of Dikranjan and Giuli [16] in various well-
known topological categories.
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Theorem 1. Let (A,N ), (B,M) be NCSps and f : (A,N ) → (B,M) be a NCSet-
map. If (B,M) is discrete, then so is (A,N ), i.e., f reflects discreteness.

Proof. Let (B,M) be discrete, i.e., M = ∅nc, but (A,N ) be not discrete, i.e.,
N ≠ ∅nc. Since f : (A,N ) → (B,M) is in NCSet, it follows that N ⊂ f−1(M =
∅nc) = ∅nc and consequently N = ∅nc, a contradiction. □

Theorem 2. All objects in NCSet are T0 at p, T ′
0 at p, and T1 at p.

Proof. It is deduced from Definition 5 and Theorem 1. □

Theorem 3. Let (A,N ) be a neutrosophic crisp space and p ∈ A. The following
are equivalent.

(1) (A,N ) is PreT ′
2 at p.

(2) (A,N ) is PreT 2 at p.
(3) (A,N ) is T2 at p.
(4) (A,N ) is T ′

2 at p.
(5) N = ∅nc or p ∈ N .

Proof. (1) =⇒ (2) : By Theorem 3.1 of [8] we get the result.
(2) =⇒ (3) : It follows from Definition 5 and Theorem 2.
(3) =⇒ (4) : Suppose (A,N ) is T2 at p. Then by Definition 5, Lemma 1 and

Theorem 2, (π1Ap)
−1N ∩ (π2Ap)

−1N = (π1Sp)
−1N ∩ (π2Sp)

−1N . It follows that
N = ∅nc or p ∈ N . Otherwise the equality does not hold. Because, if N ̸= ∅nc
and p /∈ N , then (π1Ap)

−1N ∩ (π2Ap)
−1N = ∅nc and (π1Sp)

−1N ∩ (π2Sp)
−1N =

N × p ⊂ A ∨p A by definitions of principal and skewed p−axis maps. This is a
contradiction.

If N = ∅nc, then clearly (π1Sp)
−1N ∩ (π2Sp)

−1N = i1N ∪ i2N = ∅nc.
If p ∈ N , then (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N = N ∨p N . Hence (A,N )

is T ′
2 at p by Definition 5, Lemma 1 and Theorem 2.
(4) =⇒ (5) : Suppose (A,N ) is T ′

2 at p. Then by Definition 5, Lemma 1
and Theorem 2, (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N . We must show that

p ∈ N if N ≠ ∅nc. Let N ≠ ∅nc and p /∈ N , then (π1Sp)
−1N ∩ (π2Sp)

−1N =
(N×p)∩(N∨pN ) = N×p and i1N∪i2N = N∨pN by definitions of skewed p−axis
map and canonical injections. It follows that (π1Sp)

−1N ∩(π2Sp)
−1N ̸= i1N ∪i2N

since if x ∈ N , then i2x = (p, x) ∈ N ∨p N but (p, x) /∈ N × p. Consequently, this
is a contradiction. Thus p ∈ N if N ̸= ∅nc.

(5) =⇒ (1) : Assume that N = ∅nc or p ∈ N . If N = ∅nc, then clearly
(π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N = ∅nc. If N ≠ ∅nc, then p ∈ N by assump-

tion. It follows that (π1Sp)
−1N ∩ (π2Sp)

−1N = (N ∨p N ) ∩ (N ∨p N ) = N ∨p N ,
i1N ∪ i2N = N ∨p N , and consequently, (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N .

Hence, (A,N ) is PreT ′
2 at p by Definition 5. □
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4. Generic Separation Axioms in Neutrosophic Crisp Space

Let B be a non-empty set, B2 be cartesian product of B with itself and B2∨∆B2

be two distinct copies of B2 identified along the diagonal. If a point (a, b) in B2∨∆

B2 is in the first (resp. second) component, it is denoted as (a, b)1 (resp.(a, b)2)
Clearly, (a, b)1 = (a, b)2 iff a = b [2].

Definition 6. [2]

(1) The map A : B2 ∨∆ B2 → B3 is called principal axis map iff

A(a, b)i =

{
(a, b, a), i = 1

(a, a, b), i = 2

(2) The map S : B2 ∨∆ B2 → B3 is called skewed axis map iff

S(a, b)i =

{
(a, b, b), i = 1

(a, a, b), i = 2

(3) The map ∇ : B2 ∨∆ B2 → B2 is called fold map iff ∇(a, b)i = (a, b) for
i = 1, 2.

Definition 7. (cf. [2, 6]) Let U : E → Set be a topological functor, A an object in
E with U(A) = B.

(1) A is T 0 iff the initial lift of the U−source {A : B2 ∨∆ B2 → U(A3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is the discrete
functor that is a left adjoint to U [2].

(2) A is T ′
0 iff the initial lift of the U−source {id : B2 ∨∆ B2 → U(B2 ∨∆

B2)
′
= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where

(B2∨∆B2)
′
is the final lift of the U−sink {i1, i2 : U(A2) = B2 → B2∨∆B2},

i1 and i2 are the canonical injections, and D(B2) is the discrete structure
on B2 [2].

(3) A is T0 iff A doesn’t contain an indiscrete subspace with at least two points
[23].

(4) A is T1 iff the initial lift of the U−source {S : B2 ∨∆ B2 → U(A3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete [2].
(5) A is PreT 2 iff the initial lift of the U-sources {A : B2 ∨∆ B2 → U(A3) =

B3} and {S : B2 ∨∆ B2 → U(A3) = B3} agree.
(6) A is PreT ′

2 iff the initial lift of the U-source {S : B2∨∆B2 → U(A3) = B3}
and the final lift of the U-sink {i1, i2 : U(A2) = B2 → B2 ∨∆ B2} agree.

(7) A is T 2 iff A is PreT 2 and T 0.
(8) A is T ′

2 iff A is PreT ′
2 and T ′

0.
(9) A is KT2 iff A is PreT 2 and T ′

0.
(10) A is LT2 iff A is PreT ′

2 and T 0.
(11) A is MT2 iff A is PreT ′

2 and T0.
(12) A is NT2 iff A is PreT 2 and T0.
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Remark 3. Note that for Top, all of T0’s or T1 or PreT 2, PreT ′
2 or all of T2’s

reduce to usual T0 or T1 or PreT2 (for each distinct pair x, y, there exist disjoint
neighborhoods of x and y if the set {x, y} is not indiscrete) or Hausdorff separation
axioms, respectively [2, 23].

Theorem 4. Let (A,N ) be an object in NCSet.

(1) (A,N ) is T0.
(2) (A,N ) is T ′

0.
(3) (A,N ) is T1.
(4) (A,N ) is PreT 2.
(5) (A,N ) is PreT ′

2.
(6) (A,N ) is T2.
(7) (A,N ) is T ′

2.
(8) (A,N ) is KT2.
(9) (A,N ) is LT2.

Proof. For (1)− (3), the proofs are deduced from Definition 7 and Theorem 1.
Let (A,N ) be a neutrosophic crisp space and (A2,N 2) be the product neutro-

sophic crisp space. Note that the product neutrosophic crisp structure N 2 is given
by N 2 = π−1

1 N ∩ π−1
2 N .

Let M = (π1A)−1N ∩ (π2A)−1N ∩ (π3A)−1N , M′ = (π1S)−1N ∩ (π2S)−1N ∩
(π3S)−1N , M′′ = i1N 2 ∪ i2N 2 and it follows that M = M′ = M′′ = N 2 ∨∆ N 2.
Then by Definition 7 and Lemma 1, (A,N ) is PreT 2 since M = M′, and by
Definition 7 and Lemma 1, (A,N ) is PreT ′

2 since M′ = M′′, and consequently,
(A,N ) is T2, T

′
2, KT2 and LT2 by Definition 7. □

Theorem 5. (A,N ) in NCSet is T0 if and only if cardA ≤ 1.

Proof. Assume that (A,N ) is a T0 neutrosophic crisp space and cardA > 1, i.e.,
A is not a one-point set. Then there exist distinct points a and b of A. It follows
that ({a, b}, {a, b}nc) is the indiscrete subspace of (A,N ) contradicting to (A,N )
is being T0. Hence, cardA ≤ 1.

If cardA ≤ 1, i.e., A = ∅ or A is a one-point set, then clearly by Definition 7,
(A,N ) is a T0. □

Theorem 6. (A,N ) in NCSet is MT2 (resp. NT2) if and only if cardA ≤ 1.

Proof. It is deduced from Definition 7 and Theorems 4, 5. □

5. Closedness, Compactness and Connectedness in NCSet

Let p be a point in a set B and ∨∞
p B be the infinite wedge product of B at p,

that is formed by taking countably separate copies of B and identifying them at p.
If a point b in ∨∞

p B is in the i-th component, it is denoted as bi.

Definition 8. [3] Let ∨∞
p B be the infinite wedge product at p and B∞ = B×B× ...

be the countable cartesian product of B with itself.
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(i) The map A∞
p : ∨∞

p B → B∞ is called infinite principle axis map at p
provided that A∞

p (bi) = (p, p, ...., p, b, p, ...).
(ii) The map ∇∞

p : ∨∞
p B → B∞ is called infinite fold map at p provided that

∇∞
p (bi) = b for all i ∈ I.

Definition 9. [3] Let U : E → Set be a topological functor, A ∈ Ob(E) with
U(A) = B and p ∈ B. Let C be a subset of B. We denote A/C as the final lift of
the epi U-sink q : U(A) = B → B/C = (B\C)∪ {∗}, where q is the epi map that is
the identity on B\C and identifying C with a point {∗}.

(i) {p} is closed provided that the initial lift of the U-source {A∞
p : ∨∞

p B →
U(A∞) = B∞ and ∇∞

p : ∨∞
p B → UD(B∞) = B∞} is discrete, where D is

the discrete functor.
(ii) C ⊂ A is closed provided that {∗}, the image of C, is closed in A/C or

C = ∅.
(iii) C ⊂ A is strongly closed provided that A/C is T1 at {∗} or C = ∅.
(iv) C ⊂ A is (strongly) open provided that Cc, the complement of C, is (strongly)

closed in A.

Remark 4. In Top, C is strongly closed provided that C is closed and there exists
a neighbourhood of C missing x for each x /∈ C, and the notion of closedness coin-
cides with the usual one. Moreover, the notions of strong closedness and closedness
coincide for T1 topological spaces [3].

Theorem 7. Every point is closed in A for (A,N ) in NCSet.

Proof. It is deduced from Definition 9 and Theorem 1. □

Theorem 8. Let (A,N ) be in NCSet. Each C ⊂ A is both strongly closed and
closed, so it is strongly open and open.

Proof. It is deduced from Definition 9 and Theorem 1. □

Definition 10. [7] Let E be a topological category over Set, A,B ∈ Ob(E), and
f : A → B a morphism.

(1) f is (strongly) closed provided that the image of each (strongly) closed sub-
object of A is a (strongly) closed subobject of B.

(2) A is (strongly) compact provided that for each B ∈ Ob(E), the projection
π2 : A×B → B is (strongly) closed.

Remark 5. (1) In Top, the notions of compactness and closed morphism re-
duce to the usual ones ( [15] p. 97 and 103).

(2) The notions of compactness and strong compactness are different for an
arbitrary topological category, in general, since the notions of strong closed-
ness and closedness are different, in general ( [3] p. 393).

Theorem 9. Every neutrosophic crisp space is (strongly) compact.
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Proof. Let (A,N ) be a neutrosophic crisp space. By Definition 10, we need to show
that π2 : (A,N )× (B,M) → (B,M) is (strongly) closed for all (B,M) in NCSet.
Suppose C ⊂ A × B is (strongly) closed. By Theorem 8, it follows that π2(C) is
(strongly) closed and consequently, (A,N ) is (strongly) compact. □

Corollary 1. Let (A,N ) and (B,M) be in NCSet and f : (A,N ) → (B,M) be
an NCSet-map.

(1) Each NCSet-map f is (strongly) closed.
(2) If (A,N ) is (strongly) compact, then (f(A),M) is (strongly) compact.

Now, we give the characterizations of the various notions of connected objects
in NCSet.

Definition 11. Let E be a topological category over Set and A ∈ Ob(E).
(i) A is strongly connected (connected) provided that the only subsets of A both

open (strongly open) and closed (strongly closed) are A and ∅ [10].
(ii) A is D-connected provided that any morphism from A to any discrete object

is constant [10,26].
(iii) A is (strongly) hereditarily disconnected provided that the only (strongly)

connected subspaces of A are singletons and ∅ [11].
(iv) A is said to be (strongly) irreducible if X,Y are (strongly) closed subobjects

of A and A = X ∪ Y , then X = A or Y = A [13].

Remark 6. In Top,

(1) The notions of D-connectedness and strong connectedness coincide with the
usual notion of connectedness. Moreover, if a topological space X is T1, then
the notions of D-connectedness, connectedness and strong connectedness
coincide [10].

(2) The notion of irreducibility coincides with the usual irreducibility [13]. Note
that if a topological space (X, τ) is irreducible, then (X, τ) is connected,
and if (X, τ) is T1, then the notions of of irreducible spaces and strongly
irreducible spaces coincide. [13].

Theorem 10. Let (A,N ) be a neutrosophic crisp space. Then the following are
equivalent.

(1) (A,N ) is (strongly) connected.
(2) (A,N ) is (strongly) irreducible.
(3) cardA ≤ 1.

Proof. (1) =⇒ (2) : Let (A,N ) is strongly connected (resp. connected). Then
the only subsets of A both open (strongly open) and closed (strongly closed) are A
and ∅. Suppose (A,N ) is not (strongly) irreducible. Let B be a subset of A. By
Theorem 8, B and Bc are closed (strongly closed). Since A = B ∪ Bc and (A,N )
is not (strongly) irreducible, then B ̸= A and Bc ̸= A. It follows that ∅ ̸= B ⊂ A
is a both open (strongly open) and closed (strongly closed). Given that (A,N )
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is strongly connected (resp. connected), this is a contradiction. Hence, (A,N ) is
(strongly) irreducible.

(2) =⇒ (3) : Suppose (A,N ) is (strongly) irreducible and cardA > 1. Then
there exist distinct points a and b of A. By Theorem 8, both {a} and {a}c are
(strongly) closed subsets of A and A = {a} ∪ {a}c contradicting to (A,N ) is being
(strongly) irreducible. Hence, cardA ≤ 1.

(3) =⇒ (1) : Suppose cardA ≤ 1. We show that (A,N ) is strongly connected
(resp. connected). Since cardA ≤ 1, A = ∅ or A = {a} (one-point set). If A = {a},
then A and Ac = ∅ is closed (strongly closed). It follows that A = {a} is both
closed (strongly closed) and open (strongly open). Similarly, we have A = ∅ is
both closed (strongly closed) and open (strongly open). Hence, (A,N ) is strongly
connected (resp. connected). □

Theorem 11. All objects in NCSet is (strongly) hereditarily disconnected.

Proof. It is deduced from Definition 11 and Theorem 10. □

Theorem 12. (A,N ) in NCSet is D-connected provided that cardA ≤ 1 and
N = ∅nc.

Proof. Suppose (A,N ) is D-connected. Let (B, ∅nc) be a discrete neutrosophic
crisp space. By the definition of D-connectedness, every NCSet-map f : (A,N ) →
(B, ∅nc) is constant. Since f is an NCSet-map, N ⊂ f−1(∅nc) = ∅nc and we have
N = ∅nc. We show that cardA ≤ 1. Suppose cardA > 1. Let B = {0, 1}, E be a
non-empty proper subset of A and f : A → B be map given by

f(x) =

{
0, x ∈ E

1, x ∈ Ec

The map f : (A, ∅nc) → (B, ∅nc) is an NCSet-map, but it is not constant. Given
that (A,N ) is D-connected, this is a contradiction. Hence, cardA ≤ 1.

Conversely, suppose that cardA ≤ 1 and N = ∅nc. Let (B, ∅nc) be a discrete
neutrosophic crisp space. A = ∅ or A = {a}. If A = ∅, then f : (∅, ∅nc) → (B, ∅nc)
is an NCSet-map. If A = {a}, then f : ({a}, ∅nc) → (B, ∅nc) is an NCSet-map
and it is constant. It follows that every morphism from A to (B, ∅nc) is constant.
By Definition 11, we have that (A,N ) is D-connected. □

6. Comparative Evaluation

In this section, we compare our results with the ones in some other categories.

(1) In Top,
(a) All T2’s are equivalent, i.e., T2 = T ′

2 = KT2 = LT2 = MT2 = NT2.
Moreover, T2 =⇒ T1 =⇒ T0 = T ′

0 = T0 and T2 =⇒ PreT 2 =
PreT ′

2 [6].
(b) T2 at p = T ′

2 at p =⇒ T1 at p =⇒ T0 at p = T ′
0 at p and T2 at p

=⇒ PreT 2 at p = PreT ′
2 at p [5].
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(c) If a topological space (X, τ) is T0 (resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or
T ′
2), then (X, τ) is T 0 at p (resp. T ′

0 at p, T1 at p, PreT 2 at p, PreT ′
2

at p, T 2 at p, or T ′
2 at p), since Top is a normalized category [5].

(d) Strong closedness implies closedness. In addition, in the realm of T1

topological spaces, the notions of strong closedness and closedness co-
incide [3]. Based on this, the notions of strong compactness and com-
pactness are different, in general, and in the realm of T1 property, these
notions coincide [7].

(e) D-connectedness and strong connectedness coincides with the usual
connectedness [10], and in the realm of T1 property, then all the no-
tions of connectedness coincide [10]. Moreover, the notion of strong
hereditary disconnectedness coincides with the usual hereditary dis-
connectedness [10], and if a topological space is T1, then hereditary
disconnectedness and strong hereditary disconnectedness coincide [11].

(f) The notion of irreducibility coincides with the usual irreducibility [13].
In addition, in the realm of T1 topological spaces, the notions of irre-
ducibility and strong irreducibility coincide. [13].

(2) In NCSet, we can infer the following results.
(a) By Theorems 2 and 3, if a neutrosophic crisp space (A,N ) is PreT 2

at p, PreT ′
2 at p, T2 at p or T ′

2, then (A,N ) is T0 at p, T ′
0 at p or T1

at p, but the reverse implication is not true, in general.
(b) By Theorems 4, 5, and 6, if a neutrosophic crisp space (A,N ) is T0,

NT2 or MT2, then (A,N ) is T0, T
′
0, T1, PreT 2, PreT ′

2, T2, T
′
2, KT2

or LT2, but the reverse implication is not true, in general.
(c) By Theorems 2 and 4, a neutrosophic crisp space (A,N ) is T0 (resp.

T ′
0, or T1) iff (A,N ) is T0 at p (resp. T ′

0 at p, or T1 at p). But, by
Theorems 3 and 4, if (A,N ) is PreT 2 (resp. PreT ′

2, T2, or T
′
2), then

(A,N ) is not necessary to be PreT 2 at p (resp. PreT ′
2 at p, T2 at p,

or T ′
2 at p).

(d) By Theorems 8, closedness and strong closedness are equivalent, and
all subsets of a neutrosophic crisp space are (strongly) closed.

(e) Let (A,N ) be a neutrosophic crisp space. By Theorems 9 and 11,
(i) (A,N ) is (strongly) compact.
(ii) (A,N ) is (strongly) hereditary disconnected.

(f) Let (A,N ) be a neutrosophic crisp space. By Theorems 5 and 10, the
following are equivalent:

(i) A = ∅ or A is a one-point set.
(ii) (A,N ) is T0.
(iii) (A,N ) is (strongly) connected.
(iv) (A,N ) is (strongly) irreducible.
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(g) By Theorems 10 and 12, D-connectedness implies (strong) connected-
ness or (strong) irreducibility, but in general, the converse of impli-
cation does not hold. For instance, if A = {a} and N = Anc, then
(A,N ) is (strongly) connected and (strongly) irreducible, but not D-
connected.

(h) By Theorems 10 and 11, (strong) connectedness or (strong) irreducibil-
ity implies hereditary disconnectedness, the reverse implication is not
true, in general. For instance, the indiscrete neutrosophic crisp space
(A,N ) with cardA = 2 is hereditary disconnected, but neither (strongly)
connected nor (strongly) irreducible.

(3) In Prox, the category of proximity spaces and proximity maps,
(a) T0 = T1 = PreT ′

2 = T2 = T ′
2 =⇒ T ′

0 = PreT 2 [20].
(b) T0 at p = T1 at p = PreT ′

2 at p = T2 at p = T ′
2 at p =⇒ T ′

0 at p =
PreT 2 at p [19, 22].

(c) Since Prox is a normalized category, if a topological space (X, δ) is T0

(resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or T
′
2), then (X, δ) is T 0 at p (resp.

T ′
0 at p, T1 at p, PreT 2 at p, PreT ′

2 at p, T 2 at p, or T ′
2 at p).

(d) By Remark 4.11 of [19], the notions of closedness and strong closedness
coincide. Moreover, by Lemma 4.3 of [21], (strong) closedness implies
(strong) compactness since all objects are (strongly) compact.

(e) By Theorem 4.5 of [25], a proximity space (X, δ) is (strongly) con-
nected if and only if (X, δ) is (strongly) irreducible.

(4) In L-GS, the category of quantale-valued gauge spaces and L-gauge mor-
phisms,
(a) T2 = T1 =⇒ T0 =⇒ T0. Moreover, an L-gauge space (X,G) is T2,

then (X,G) is both NT2 and PreT2, and in the realm of Pre-Hausdorff
quantale-valued gauge spaces, T0, T1 and T2 are equivalent [24].

(b) By Theorems 3.6 and 3.9 of [27], T1 at p =⇒ T0 at p, and if an
L-gauge space (X,G) is T0 (or T1), then (X,G) is T0 at p (or T1 at
p) [24,27].

(c) There is no relation betweenD-connectedness and the notion of closed-
ness or T1 at p [27].

(5) In pqsMet, the category of extended pseudo-quasi-semi metric spaces and
contraction maps,
(a) T1 = PreT ′

2 = T ′
2 = T2 =⇒ T0 =⇒ T0 =⇒ T ′

0 and T2 =⇒
NT2 =⇒ PreT 2 = KT2 [14].

(b) T1 at p = PreT ′
2 at p = T ′

2 at p = T2 at p =⇒ T0 at p =⇒ T ′
0 at p

and T2 at p =⇒ PreT 2 at p [12].
(c) Since pqsMet is a normalized category, if an extended pseudo-quasi-

semi metric space (X, d) is T0 (resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or
T ′
2), then (X, d) is T 0 at p (resp. T ′

0 at p, T1 at p, PreT 2 at p, PreT ′
2

at p, T 2 at p, or T ′
2 at p).
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(d) By Theorem 3.4 of [13], strong closedness implies closedness. By The-
orem 3.20 of [14], an extended pseudo-quasi-semi metric space (X, d)
is KT2 or NT2, then the notions of strong closedness and closedness
coincide. Moreover, in the realm of T2, T

′
2 or T1 property, each subset

of X is (strongly) closed.
(e) By Theorem 4.9 of [13], an extended pseudo-quasi-semi metric space

(X, d) is strongly connected, then (X, d) is connected. In addition, the
notions of connectedness and D-connectedness coincide.

(f) By Theorem 5.4 of [13], irreducibility implies strong irreducibility or
strong connectedness. Also, strong irreducibility implies connectedness
or D-connectedness.

(6) For any arbitrary topological category,
(a) T0 =⇒ T ′

0 and there is no relationship between T0 or T ′
0 and T0 [3].

In addition, it is shown in [6], that T2 =⇒ NT2 and LT2 =⇒ T ′
2,

also the notions of T2 and NT2, or T ′
2 and MT2 are independent of

each other, in general. Moreover, PreT ′
2 =⇒ PreT 2 [8].

(b) Let U : E → Set be a topological functor, A an object in E and
p ∈ U(A) be a retract of A, i.e., the initial lift h : 1 → A of the U-
source p : 1 → U(A) is a retract, where 1 is the terminal object in
Set, or more precisely let U be normalized. Then if A is T 0 (resp. T1,
PreT 2, or T 2), then A is T 0 at p (resp. T1 at p, PreT 2 at p, or T 2 at
p), but the reverse implication is not true, in general ( [4], Theorem
2.6 and Corollary 2.7).

(c) The notions of closedness and strong closedness are independent of
each other, in general [3]. Even if A ∈ E is T1, where E is a topological
category, then these notions are still independent of each other [3].
Based on this, the notions of compactness and strong compactness are
different, in general.

(d) There are no implications between the notions of strong connectedness
and connectedness, or hereditary disconnectedness and strong heredi-
tary disconnectedness [11].
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