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Abstract
This paper is concerned with the study of stability analysis to a complicated recovered frac-
turing fluid model (RFFM, for short), which consists of a stationary incompressible Stokes
equation involving multivalued and nonmonotone boundary conditions, and a reaction-
diffusion equation with Neumann boundary conditions. Firstly, we introduce a family of
perturbated problems corresponding to (RFFM) and deliver the variational formulation
of perturbated problem which is a hemivariational inequality coupled with a variational
equation. Then, we prove that the existence of weak solutions to perturbated problems
and the solution sequence to perturbated problems are uniformly bounded. Finally, via
employing Mosco convergent approach and the theory of nonsmooth, a stability result to
(RFFM) is established.
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1. Introduction
Recently, in [5], the authors applied various constitutive laws, such as the law of con-

servation of mass, Fick’s diffusion law, inflow law, friction law and etc, for introducing
a complicated recovered fracturing fluid model, in order to study the flow behavior of
recovered fluid and the reaction-diffusion phenomenon of contaminants in the wellbore
of shale gas reservoir during the early stage of fracturing fluid flowback. Indeed, the
recovered fracturing fluid model in [5] is exactly formulated by a stationary incompress-
ible Stokes equation involving multivalued and nonmonotone boundary conditions, and a
reaction-diffusion equation with Neumann boundary condition.
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Problem 1.1. Find a velocity field u : Ω → Rd, a pressure field p : Ω → R and a concen-
tration field y : Ω → R such that

− µ∆u + ∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ΓD, (1.3){
uν = 0,
−τ τ (u) ∈ δ(y)∂j(x,uτ ),

on ΓC1 , (1.4)


uν ≤ 0,
τν(u, p) ≤ 0,
uντν(u, p) = 0,
τ τ (u) = 0,

on ΓC2 , (1.5)


uν ≥ 0,
τν(u, p) = −ϕ,
τ τ (u) = 0,

on ΓC3 , (1.6)

and 
− div(β(u)∇y) + g(x, y) = 0 in Ω,
∂y

∂νβ
:=

(
β(u)∇y

)
· ν = hχΓC2 ∪ΓC3

on Γ, (1.7)

where the boundary Γ is assumed to be divided into fourth disjoint parts ΓD, ΓC1 , ΓC2
and ΓC3 with ΓD having positive measure, ν is the unit outward normal on the boundary
Γ, χΓC2 ∪ΓC3

stands for the characteristic function of ΓC2 and ΓC3 , uν = u · ν and uτ =
u − uνν are the normal and tangential components of velocity field u on the boundary
Γ, τν(u, p) = τ (u, p) · ν and τ τ (u) = τ (u, p) − τν(u, p)ν are the normal and tangential
components to traction vector field τ .

In Problem 1.1, condition (1.3) models that the velocity u satisfies homogeneous Dirich-
let condition on ΓD; condition (1.4) reflects that there is no phenomenon of osmosis to
the recovered fracturing fluid and the tangential component of the traction vector τ τ (u)
satisfies a multivalued and nonmonotone friction constitutive law on ΓC1 ; condition (1.5)
indicate that recovered fracturing fluid satisfies the inflow boundary condition on ΓC2 ;
condition (1.6) represent that recovered fracturing fluid satisfies the outflow boundary
condition on ΓC3 ; condition (1.7)2 show that contaminants satisfies the nonhomogeneous
Neumann boundary condition on ΓC2 and ΓC3 .

Since the physical quantities, data and coefficients in recovered fracturing fluid measured
by various devices are not precise in general. Therefore, a necessary and significant study
concerning stability analysis should be carried out for determining the practicality and
effectiveness of a certain mathematical model (see [1,2,10,16]). On the other hand, stability
to a certain mathematical model is quite critical for ensuring whether the computational
implementation of the model under consideration is overly sensitive to possible round-off
errors (see [3,4,13–15,17,19,21,23–28]). From the view-point of numerical approximations,
the stability is particularly important since a numerical solution is meaningful only if
the certain mathematical model being solved is stable with respect to the data (see [11,
12, 22]). Based on these motivations, this paper is devoted to explore the stability of
recovered fracturing fluid model, Problem 1.1. More precisely, the main aim of this paper
is twofold. The first one is to introduce a family of perturbated problems (see Problem 3.1)
corresponding to Problem 1.1, and to obtain the existence of weak solutions for perturbated
problems. However, the second goal is to apply Mosco convergent approach and the
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theory of nonsmooth for establishing a stability result to Problem 1.1, which reveals that
the solution set of Problem 1.1 can be approached in the sense of Kuratowski by the
perturbated problem, Problem 3.1, when perturbated parameter tends to zero.

The rest of this paper is organized as follows. In Section 2, we introduce some nec-
essary preliminary materials, and review the variational formula as well as the existence
of weak solutions to Problem 1.1. Section 3 is devoted to introduce a family of pertur-
bated problems (see Problem 3.1) corresponding to Problem 1.1, and to impose the mild
assumptions to perturbated operators in Problem 3.1. Finally, in Section 4, a stability
result to recovered fracturing fluid model, Problem 1.1, is established.

2. Preliminaries and hypotheses
In this section, we shall recall some necessary notations, basic definitions and a result

on solvability to Problem 1.1.
Given a normed space X, we denote by ‖ · ‖X and X∗ the norm and topological dual

of X, respectively. In what follows, the symbol 〈·, ·〉X∗×X stands for the duality pairing
between X∗ and X. However, if no confusion arises, we often skip the subscript. The weak
and the strong convergences in X are denoted by "⇀" and "→", respectively. Furthermore,
we denote by L(X1, X2) the space of linear and bounded operators from a normed space
X1 to a normed space X2 endowed with the operator norm ‖ · ‖L(X1,X2).

Let us recall the definitions concerning the generalized directional derivative and gen-
eralized gradient in the sense of Clarke for locally Lipschitz functions, see [6–9].

Definition 2.1. Let h : X → R be a locally Lipschitz function defined on a Banach space
X. The generalized Clarke directional derivative of h at the point u ∈ X in the direction
v ∈ X, denoted by h0(u; v), is defined by

h0(u; v) = lim sup
λ→0+, w→u

h(w + λv) − h(w)
λ

.

The generalized Clarke subgradient of h at u ∈ X, denoted by ∂h(u), is a subset in the
dual space X∗ given by

∂h(u) =
{
ξ ∈ X∗ | h0(u; v) ≥ 〈ξ, v〉 for all v ∈ X

}
.

Some critical properties for generalized directional derivative and generalized subgradi-
ent in the sense of Clarke are selected by the following proposition, see [18, Proposition
3.23].

Proposition 2.2. Assume that h : X → R is a locally Lipschitz function. Then the
following assertions hold:

(i) for every u ∈ X, the function X 3 v 7→ h0(u; v) ∈ R is positively homogeneous
and subadditive, i.e.,

h0(u;λv) = λh0(u; v) and h0(u; v1 + v2) ≤ h0(u; v1) + h0(u; v2)
for all λ ≥ 0 and v, u, v1, v2 ∈ X.

(ii) for each v ∈ X fixed, there exists an element ξv ∈ ∂h(u) satisfying h0(u; v) =
〈ξv, v〉, so, by the definition of generalized Clarke subgradient, we have h0(u; v) =
max { 〈ξ, v〉 | ξ ∈ ∂h(u) }.

(iii) the function X ×X 3 (u, v) 7→ h0(u; v) ∈ R is upper semicontinuous.

Also, we review the definition of Mosco convergence, see e.g. [8, Chapter 4.7] and [20].

Definition 2.3. Let X be a Banach space and {Kρ,K}ρ>0 ⊂ 2X \ {∅}. We say that Kρ

converges to K in the sense of Mosco as ρ → 0, denoted by Kρ
M−→ K, if and only if the

conditions hold:
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(i) for each u ∈ K, there exists a sequence {uρ}ρ>0 such that uρ ∈ Kρ for every ρ > 0
and uρ → u in X;

(ii) for each sequence {uρ}ρ>0 such that uρ ∈ Kρ for every ρ > 0 and uρ ⇀ u in X,
we have u ∈ K.

In order to give the definition of weak solutions to Problem 1.1, we need the following
function spaces and admissible set for velocity fields:

Ṽ =
{

u ∈ C∞(Ω;Rd)| ∇ · u = 0 in Ω,u = 0 on ΓD and uν = 0 on ΓC1

}
, (2.1)

V = Ṽ
H1(Ω;Rd)

, i.e., V is the closure of Ṽ in H1(Ω;Rd), (2.2)

K = {u ∈ V | uν ≤ 0 on ΓC2 and uν ≥ 0 on ΓC3}. (2.3)
Because ΓD has positive measure, it is not difficult to apply Korn inequality to conclude
that the norm ‖ · ‖V defined by

‖v‖V = ‖D(v)‖L2(Ω;Sd) for all v ∈ V,

is an equivalent norm of V . In the meanwhile, by the Rellich-Kondrachov theorem (see
e.g. [18, Theorem 2.16]), we can see that the embeddings

H1(Ω;R3) ⊂ L4(Ω;R3), and H1(Ω;R2) ⊂ Lq(Ω;R2) for any q ≥ 1
are continuous and compact.

Moreover, we make the following hypotheses on the data of Problem 1.1.
H(f): f ∈ L2(Ω;Rd).

H(h): h ∈ L2(ΓC2).

H(ϕ): ϕ ∈ L2(ΓC3).

H(j): j : ΓC1 × Rd → R satisfies the following conditions:
(i) j(·, ξ) is measurable on ΓC1 for all ξ ∈ Rd, and j(·,0) ∈ L1(ΓC1);
(ii) j(x, ·) is locally Lipschitz for a.e. x ∈ ΓC1 ;
(iii) there exist c0 ∈ L2(ΓC1 ;R+) and c1 ≥ 0 such that

‖∂j(x, ξ)‖Rd ≤ c0(x) + c1‖ξ‖Rd for all ξ ∈ Rd and a.e. x ∈ ΓC1 ,

where ∂j is the generalized Clarke subdifferential operator of j with respect to its
second variable;

(iv) there exists a constant αj ≥ 0 such that
j0(x, r1; r2 − r1) + j0(x, r2; r1 − r2) ≤ αj‖r1 − r2‖2

Rd for all r1, r2 ∈ Rd and a.e. x ∈ ΓC1 .

H(δ): δ : ΓC1 × R → R is such that
(i) δ(·, y) is measurable on ΓC1 for all y ∈ R;
(ii) δ(x, ·) is continuous in R for a.e. x ∈ ΓC1 ;
(iii) there exist constants δ0, δ1 > 0 such that

0 < δ0 ≤ δ(x, z) ≤ δ1 for all z ∈ R and a.e. x ∈ ΓC1 .

H(β): β : Ω × Rd → R enjoys the following properties
(i) β(·,u) is measurable in Ω for all u ∈ Rd;
(ii) β(x, ·) is continuous in Rd for a.e. x ∈ Ω;
(iii) there exist constants β0, β1 > 0 such that

0 < β0 ≤ β(x, z) ≤ β1 for all z ∈ Rd and a.e. x ∈ Ω.

H(g): g : Ω × R → R is a Carathéodoary function such that
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(i) there exist a function αg ∈ L4(Ω;R) and a constant cg > 0 such that

|g(x, r)| ≤ αg(x) + cg|r|4 for all r ∈ R and a.e. x ∈ Ω;

(ii) there exists a constant dg > 0 such that

(g(x, r1) − g(x, r2))(r1 − r2) ≥ dg|r1 − r2|2 for all r1, r2 ∈ R and a.e. x ∈ Ω.

From [5], we have the weak variational formulation of Problem 1.1 as follows.

Problem 2.4. Find a concentration field y ∈ H1(Ω) and a velocity filed u ∈ K such that

2µ
∫

Ω
D(u) : D(v − u) dx +

∫
ΓC1

δ(y)j0(x,uτ ; vτ − uτ ) dΓ

≥
∫

Ω
f · (v − u) dx −

∫
ΓC3

ϕ(vν − uν) dΓ (2.4)

for all v ∈ K, and∫
Ω
β(u)∇y · ∇z dx +

∫
Ω
g(x, y)z dx −

∫
ΓC2 ∪ΓC3

hz dΓ = 0 for all z ∈ H1(Ω). (2.5)

It should be pointed out that a pair of functions (u, y) ∈ K ×H1(Ω) that satisfies Prob-
lem 2.4 is called to be a weak solution of Problem 1.1.

Let us consider the functions

A : V → V ∗, 〈Au,v〉 = 2µ
∫

Ω
D(u) : D(v) dx for all u,v ∈ V, (2.6)

f̃ ∈ V ∗, 〈f̃ ,v〉 =
∫

Ω
f · v dx −

∫
ΓC3

ϕvν dΓ for all v ∈ V, (2.7)

γ : V → L2(Γ;Rd), γv = vτ for all v ∈ V. (2.8)

Using (2.6)–(2.8), we can observe that Problem 2.4 can be rewritten equivalently to the
following one:

Problem 2.5. Find a concentration field y ∈ H1(Ω) and a velocity filed u ∈ K such that

〈Au − f̃ ,v − u〉 +
∫

ΓC1

δ(y)j0(x, γu; γ(v − u)) dΓ ≥ 0 for all v ∈ K, (2.9)

and∫
Ω
β(u)∇y · ∇z dx +

∫
Ω
g(x, y)z dx −

∫
ΓC2 ∪ΓC3

hz dΓ = 0 for all z ∈ H1(Ω).

Under the assumptions H(j), H(δ), H(β), H(f), H(h), H(ϕ) and H(g), the authors
in [5, Theorem 5.1] applied a surjective theorem of pseudomonotone operators, mono-
tonicity arguments and Schauder fixed point theorem to establish the following existence
theorem for Problem 1.1.

Theorem 2.6. Assume that H(j), H(δ), H(β), H(f), H(h), H(ϕ), H(g) and the following
smallness condition are satisfied

2µ > δ1αj‖γ‖2.

Then Problem 1.1 has at least one weak solution (u, y) ∈ K ×H1(Ω).
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3. Perturbation of recovered fracturing fluid model
In order to explore the stability analysis for the recovered fracturing fluid model, Prob-

lem 1.1, this section is devoted to introduce a family of perturbated problems correspond-
ing to Problem 1.1 and to deliver the variational formulations for perturbated problems.
Let ρ > 0 be a given parameter. Assume that data µ, f , ϕ, δ, j, β, g and h are perturbated
by parameter ρ, (so, we have perturbated operators and coefficients µρ, fρ, δρ, jρ, ϕρ, βρ,
gρ and hρ. Let us consider the following pertubated recovered fracturing fluid model.

Problem 3.1. Find a velocity field uρ : Ω → Rd, a pressure field pρ : Ω → R and a
concentration field yρ : Ω → R such that

− µρ∆uρ + ∇pρ = fρ in Ω, (3.1)

∇ · uρ = 0 in Ω, (3.2)

uρ = 0 on ΓD, (3.3){
uρν = 0,
−τ ρτ (uρ) ∈ δρ(yρ)∂jρ(x,uρτ ),

on ΓC1 , (3.4)


uρν ≤ ρ,

τρν (uρ, pρ) ≤ 0,
(uρν − ρ)τρν (uρ, pρ) = 0,
τ ρτ (uρ) = 0,

on ΓC2 , (3.5)


uρν ≥ 0,
τρν (uρ, pρ) = −ϕρ,

τ ρτ (uρ) = 0,
on ΓC3 , (3.6)

and 
− div(βρ(uρ)∇yρ) + gρ(x, yρ) = 0 in Ω,
∂yρ

∂νβρ

:=
(
βρ(uρ)∇yρ

)
· ν = hρχΓC2 ∪ΓC3

on Γ. (3.7)

It follows from Problem 1.1 that τ (u, p) := P · ν stands for the traction vector of total
stress tensor P on Γ, and the total stress tensor P on Γ satisfies the following equation
(see equation (3.8) in paper [5])

P = −pI + S with S = 2µD(u).
However, on the boundary ΓC1 ∪ΓC2 ∪ΓC3 , we can decompose the extra stress tensor field
S into the normal and tangential components, i.e., Sν = (Sν) · ν = 2µD(u)ν and

Sτ = Sν − (Sν · ν)ν = 2µD(u)ν − (2µD(u)ν)ν

= 2µD(u)ν − (2µD(u)ν − 2µD(u)τ )

= 2µD(u)τ .

Using these notation above, we have τρν (uρ, pρ) = τ ρ(uρ, pρ) · ν and τρτ (uρ, pρ) =
τ ρ(uρ, pρ) − τρν (uρ, pρ)ν. Therefore, it holds
τρν (uρ, pρ) = Sρν (uρ) − pρ = 2µρD(uρ)ν − pρ and τ ρτ (uρ) = Sρτ (uρ) = 2µρD(uρ)τ .

Moreover, we assume that µρ, fρ, ϕρ, δρ, jρ, βρ, gρ and hρ satisfy the following condi-
tions.
H(fρ): fρ ∈ L2(Ω;Rd), and fρ → f in L2(Ω;Rd) as ρ → 0.

H(hρ): hρ ∈ L2(ΓC2), and hρ → h in L2(ΓC2) as ρ → 0.
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H(ϕρ): ϕρ ∈ L2(ΓC3), and ϕρ → ϕ in L2(ΓC3) as ρ → 0.

H(µρ): µρ, µ ∈ (0,+∞), and µρ → µ as ρ → 0.

H(jρ): jρ : ΓC1 × Rd → R is such that
(i) jρ is such that hypotheses H(j) hold with c0ρ ∈ L2(ΓC1 ;R+), c1ρ ≥ 0, αjρ ≥ 0,

respectively;
(ii) for all {uρ}, {vρ} ⊂ Rd with uρ → u and vρ → v in L2(ΓC1 ;Rd) as ρ → 0, we

have
lim sup

ρ→0
j0

ρ(uρ; vρ − uρ) ≤ j0(u; v − u) for a.e. x ∈ ΓC1 .

H(δρ): δρ : ΓC1 × R → R is such that
(i) δρ satisfies H(δ) with δ0ρ > 0 and δ1ρ > 0;
(ii) for all {zρ} ⊂ R with zρ → z as ρ → 0, we have

lim
ρ→0

δρ(x, zρ) = δ(x, z) for a.e. x ∈ ΓC1 .

H(βρ): βρ : Ω × Rd → R is such that
(i) βρ fulfills condition H(β) with β0ρ > 0, β1ρ > 0 and infρ>0 β0ρ > 0;
(ii) for all {uρ} ⊂ Rd and u ∈ Rd with uρ → u as ρ → 0, we have

lim
ρ→0

βρ(x,uρ) = β(x,u) for a.e. x ∈ Ω.

H(gρ): gρ : Ω × R → R is such that
(i) gρ reads hypotheses H(g) with αgρ ∈ L4(Ω;R), cgρ > 0, dgρ > 0 and infρ>0 dgρ > 0;
(ii) for all {rρ} ⊂ R with rρ → r as ρ → 0, we have

lim
ρ→0

gρ(x, rρ) = g(x, r) for a.e. x ∈ Ω.

Next, let us establish the variational formula of Problem 3.1. We denote by Kρ ⊂ V
the admissible set to velocity filed given by

Kρ = {u ∈ V | uν ≤ ρ on ΓC2 and uν ≥ 0 on ΓC3}. (3.8)
Given a smooth tensor σ : Ω → Sd, two smooth vector fields v : Ω → Rd, w : Ω → Rd,
and a smooth function ψ : Ω → R, so, the following Green formulas are available (see
e.g., [18, Theorems 2.24 and 2.25])∫

Ω
σ : D(v) dx +

∫
Ω

Div σ · v dx =
∫

∂Ω
σν · v dΓ, (3.9)

and ∫
Ω

∇ψ · w dx +
∫

Ω
ψ div w dx =

∫
∂Ω
ψ(w · ν) dΓ. (3.10)

Remark 3.2. If the subsets K and Kρ are defined by (2.3) and (3.8), respectively, then it
is not hard to prove that K and Kρ are nonempty, closed and convex of V , and Kρ

M−→ K
as ρ → 0 (namely, Kρ converges to K in the sense of Mosco, when ρ tends to 0). Indeed,
let sequence {uρ}ρ>0 be such that uρ ∈ Kρ for each ρ > 0 and uρ ⇀ u in V as ρ → 0.
Then, from the Sobolev embedding theorem, we have uρν → uν in L2(Γ) as ρ → 0. Since
Kρ = {v ∈ V | vν ≤ ρ on ΓC2} ∩ {v ∈ V | vν ≥ 0 on ΓC3}, we obtain uρ − ρ ∈ {v ∈ V |
vν ≤ 0 on ΓC2} and uρ ∈ {v ∈ V | vν ≥ 0 on ΓC3}. Moreover, since the sets {v ∈ V |
vν ≤ 0 on ΓC2} and {v ∈ V | vν ≥ 0 on ΓC3} are weakly closed by Mazur’s theorem, we
deduce that u ∈ {v ∈ V | vν ≤ 0 on ΓC2} and u ∈ {v ∈ V | vν ≥ 0 on ΓC3}, and hence,
u ∈ K. On the other hand, for any u ∈ K, we can observe that uρ = u + ρe ∈ Kρ and
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uρ → u as ρ → 0 in V , where e ∈ V is such that eν ≤ 1 on ΓC2 and eν ≥ 0 on ΓC3 . This
means that Kρ

M−→ K.

Let uρ : Ω → Rd, pρ : Ω → R and yρ : Ω → R be sufficiently smooth such that (3.1)–(3.7)
hold, and vρ ∈ Kρ be arbitrary. Multiplying (3.1) by vρ −uρ and integrating the resulting
equality on Ω, we get

−µρ

∫
Ω

∆uρ · (vρ − uρ) dx +
∫

Ω
∇pρ · (vρ − uρ) dx =

∫
Ω

fρ · (vρ − uρ) dx. (3.11)

By using the Green formula (3.10), and the conditions vρ = uρ = 0 on ΓD and vρν =
uρν = 0 on ΓC1 , as well as the fact that uρ and vρ satisfy divergence free condition, we
obtain∫

Ω
∇pρ · (vρ − uρ) dx = −

∫
Ω

(
∇ · (vρ − uρ)

)
pρ dx +

∫
ΓD

pρν · (vρ − uρ) dΓ (3.12)

+
∫

ΓC1

pρ(vρν − uρν ) dΓ +
∫

ΓC2 ∪ΓC3

pρ(vρν − uρν ) dΓ

=
∫

ΓC2 ∪ΓC3

pρ(vρν − uρν ) dΓ.

But, the divergence free condition ∇ · uρ = 0 in Ω points out that

∂(
∑d

j=1
∂uρ,j

∂xj
)

∂xi
=

d∑
j=1

uρ,j,ij = 0 in Ω,

where uρ,j,ij = ∂2uρ,j

∂xi∂xj
, i, j = 1, ..., d. Then, we have

∆uρ · (vρ − uρ) =
d∑

i=1
(

d∑
j=1

uρ,i,jj)(vρ,i − uρ,i) =
d∑

i=1

( d∑
j=1

(uρ,i,jj + uρ,j,ij)
)
(vρ,i − uρ,i)

(3.13)

=
d∑

i=1

( d∑
j=1

(uρ,i,j + uρ,j,i),j
)
(vρ,i − uρ,i) = 2 Div D(uρ) · (vρ − uρ) in Ω.

Combining the Green formula (3.9) with equation (3.13), it has

− µρ

∫
Ω

∆uρ · (vρ − uρ) dx = −2µρ

∫
Ω

Div D(uρ) · (vρ − uρ) dx (3.14)

= 2µρ

∫
Ω

D(uρ) : D(vρ − uρ) dx − 2µρ

∫
Γ

D(uρ)ν · (vρ − uρ) dΓ.

Subsequently, we use the conditions vρ = uρ = 0 on ΓD, vρν = uρν = 0 on ΓC1 , τ ρτ (uρ) =
0 on ΓC2 , and (uρν − ρ)τρν (uρ, pρ) = 0, (vρν − ρ)τρν (uρ, pρ) ≥ 0 on ΓC2 , and τρν (uρ, pρ) =
−ϕρ, τ ρτ (uρ) = 0 on ΓC3 , and

τρν (uρ, pρ) = Sρν (uρ) − pρ = 2µρD(uρ)ν − pρ and τ ρτ (uρ) = Sρτ (uρ) = 2µρD(uρ)τ
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on ΓC1 ∪ ΓC2 ∪ ΓC3 , to obtain

− 2µρ

∫
Γ

D(uρ)ν · (vρ − uρ) dx (3.15)

= − 2µρ

∫
ΓC1 ∪ΓC2 ∪ΓC3

(
D(uρ)ν(vρν − uρν ) + D(uρ)τ · (vρτ − uρτ )

)
dΓ

= −
∫

ΓC1

τ ρτ (uρ) · (vρτ − uρτ ) dΓ −
∫

ΓC2 ∪ΓC3

(
τρν (uρ, pρ) + pρ

)
(vρν − uρν ) dΓ

= −
∫

ΓC1

τ ρτ (uρ) · (vρτ − uρτ ) dΓ +
∫

ΓC3

ϕρ(vρν − uρν ) dΓ −
∫

ΓC2 ∪ΓC3

pρ(vρν − uρν ) dΓ

−
∫

ΓC2

τρν (uρ, pρ)(vρν − ρ) dΓ +
∫

ΓC2

τρν (uρ, pρ)(uρν − ρ) dΓ

≤ −
∫

ΓC1

τ ρτ (uρ) · (vρτ − uρτ ) dΓ +
∫

ΓC3

ϕρ(vρν − uρν ) dΓ −
∫

ΓC2 ∪ΓC3

pρ(vρν − uρν ) dΓ.

From the definition of the Clarke subgradient and the boundary condition (3.4), it yields
−τ ρτ

(uρ) = δρ(yρ)ξρ and ξρ ∈ ∂jρ(x,uρτ
) with ξρ · (vρτ

− uρτ
) ≤ j0

ρ(x,uρτ
; vρτ

− uρτ
) on ΓC1 .

Hence, we have

−
∫

ΓC1

τ ρτ (uρ) · (vρτ − uρτ ) dΓ ≤
∫

ΓC1

δρ(yρ)j0
ρ(x,uρτ ; vρτ − uρτ ) dΓ. (3.16)

Combining with (3.14)–(3.16), one has

− µρ

∫
Ω

∆uρ · (vρ − uρ) dx ≤ 2µρ

∫
Ω

D(uρ) : D(vρ − uρ) dx +
∫

ΓC3

ϕρ(vρν − uρν ) dΓ

+
∫

ΓC1

δρ(yρ)j0
ρ(x,uρτ ; vρτ − uρτ ) dΓ −

∫
ΓC2 ∪ΓC3

pρ(vρν − uρν ) dΓ. (3.17)

Inserting (3.12) and (3.17) into (3.11), we deduce

2µρ

∫
Ω

D(uρ) : D(vρ − uρ) dx +
∫

ΓC1

δρ(yρ)j0
ρ(x,uρτ ; vρτ − uρτ ) dΓ

≥
∫

Ω
fρ · (vρ − uρ) dx −

∫
ΓC3

ϕρ(vρν − uρν ) dΓ (3.18)

for all vρ ∈ Kρ.
On the other hand, for the diffusion system (3.7), we apply the Green formula (3.10)

and the boundary condition (3.7)2 to obtain the following variational equation∫
Ω
βρ(uρ)∇yρ · ∇z dx +

∫
Ω
gρ(x, yρ)z dx −

∫
ΓC2 ∪ΓC3

hρz dΓ = 0 for all z ∈ H1(Ω).

Therefore, we obtain the weak variational formulation of Problem 3.1 as follows.

Problem 3.3. Find a concentration field yρ ∈ H1(Ω) and a velocity filed uρ ∈ Kρ such
that

2µρ

∫
Ω

D(uρ) : D(vρ − uρ) dx +
∫

ΓC1

δρ(yρ)j0
ρ(x,uρτ ; vρτ − uρτ ) dΓ

≥
∫

Ω
fρ · (vρ − uρ) dx −

∫
ΓC3

ϕρ(vρν − uρν ) dΓ (3.19)

for all vρ ∈ Kρ, and∫
Ω
βρ(uρ)∇yρ · ∇z dx +

∫
Ω
gρ(x, yρ)z dx −

∫
ΓC2 ∪ΓC3

hρz dΓ = 0 for all z ∈ H1(Ω).(3.20)
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It is not difficult to see that Problem 3.3 can be equivalently rewritten to the following
one.

Problem 3.4. Find a concentration field yρ ∈ H1(Ω) and a velocity filed uρ ∈ Kρ such
that

〈Aρuρ − f̃ρ,vρ − uρ〉 +
∫

ΓC1

δρ(yρ)j0
ρ(x, γuρ; γ(vρ − uρ)) dΓ ≥ 0 for all vρ ∈ Kρ,

(3.21)

and∫
Ω
βρ(uρ)∇yρ · ∇z dx +

∫
Ω
gρ(x, yρ)z dx −

∫
ΓC2 ∪ΓC3

hρz dΓ = 0 for all z ∈ H1(Ω),

where Aρ : V → V ∗ and f̃ρ ∈ V ∗ are defined by

〈Aρu,v〉 = 2µρ

∫
Ω

D(u) : D(v) dx for all u,v ∈ V, (3.22)

〈f̃ρ,v〉 =
∫

Ω
fρ · v dx −

∫
ΓC3

ϕρvν dΓ for all v ∈ V. (3.23)

4. Stability analysis
In this section, we provide a stability result to the Problem 1.1 which reveals that

the solution set of Problem 1.1 can be approached in the sense of Kuratowski by the
perturbated problem, Problem 3.1, when perturbated parameter tends to zero.

The main theorem of this section is stated as follows.

Theorem 4.1. Let {ρn} ⊂ (0,+∞) be such that ρn → 0 as n → ∞. Assume that H(jρ),
H(δρ), H(βρ), H(fρ), H(ϕρ), H(hρ), H(gρ) and H(µρ) are satisfied. In addition, the
smallness condition infρ>0(2µρ − δ1ραjρ‖γ‖2) > 0 holds. Then, we have

(i) for each ρ > 0, Problem 3.1 has at least one weak solution (uρ, yρ) ∈ Kρ ×H1(Ω);
(ii) for each n ∈ N, if (un, yn) := (uρn , yρn) is a solution of Problem 3.1 with ρ = ρn,

then there exists a subsequence of {(uρn , yρn)}, still denoted by the same way, and
(u, y) ∈ V ×H1(Ω) such that

un → u in V and yn → y in H1(Ω),

and (u, y) is a weak solution of Problem 1.1.

Proof. (i) Arguing as in the proof of Theorem 2.6, it can be obtained directly that
Problem 3.1 is solvable.

(ii) Let Z = H1(Ω). Suppose that (un, yn) := (uρn , yρn) is a solution of Problem 3.1
with ρ = ρn for every n ∈ N.
Step 1. The boundedness of ∪n∈N{(un, yn)}.

Set Kn = Kρn , An = Aρn , δn = δρn , jn = jρn , f̃n = f̃ρn , βn = βρn , gn = gρn and
hn = hρn . Then, for each n ∈ N, it has

〈Anun − f̃n,vn − un〉 +
∫

ΓC1

δn(yn)j0
n(x, γun; γ(vn − un)) dΓ ≥ 0 for all vn ∈ Kn,

(4.1)

and∫
Ω
βn(un)∇yn · ∇z dx +

∫
Ω
gn(x, yn)z dx −

∫
ΓC2 ∪ΓC3

hnz dΓ = 0 for all z ∈ Z. (4.2)
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We argue by contradiction to assume that ∪n∈N{(un, yn)} is unbounded in V ×Z. Then,
without loss of generality, we may suppose that

‖un‖V → ∞ and ‖yn‖Z → ∞ as n → ∞.

Keeping in mind that 0V ∈ Kn (see (3.8)), we insert vn = 0V into inequality (4.1) to
get that

〈Anun,un〉 −
∫

ΓC1

δn(yn)j0
n(x, γun; −γun) dΓ ≤ 〈f̃n,un〉. (4.3)

From the definition of An (see (3.22)) and µn = µρn , the following result holds

〈Anun,un〉 = 2µn

∫
Ω

D(un) : D(un) dx = 2µn‖un‖2
V . (4.4)

Using hypothesis H(jρ)(i) implies

j0
n(x, γun; −γun) = j0

n(x, γun; γ(0V − un)) + j0
n(x, γ0V ; γun) − j0

n(x, γ0V ; γun)

≤ αjn‖γun‖2
Rd − j0

n(x, γ0V ; γun),
and

j0
n(x, γ0V ; γun) ≥ −‖ξγ0V ‖Rd‖γun‖Rd ≥ −c0n(x)‖γun‖Rd

for all ξγ0V ∈ ∂jn(x, γ0V ). The estimates above together with the hypotheses H(δρ)
concludes that

−
∫

ΓC1

δn(yn)j0
n(x, γun; −γun) dΓ (4.5)

≥ −
∫

ΓC1

δn(yn)
(
αjn‖γun‖2

Rd − j0
n(x, γ0V ; γun)

)
dΓ

≥ − δ1nαjn‖γ‖2‖un‖2
V +

∫
ΓC1

δn(yn)j0
n(x, γ0V ; γun) dΓ

≥ − δ1nαjn‖γ‖2‖un‖2
V + δ0n

∫
ΓC1

j0
n(x, γ0V ; γun) dΓ

≥ − δ1nαjn‖γ‖2‖un‖2
V − δ0n‖c0n‖L2(ΓC1 )‖γ‖‖un‖V .

By the definition of f̃ρ (see (3.23)), hypotheses H(fρ) and H(ϕρ), we have

〈f̃n,un〉 =
∫

Ω
fn · un dx −

∫
ΓC3

ϕnunν dΓ (4.6)

≤ ‖fn‖L2(Ω;Rd)‖un‖L2(Ω;Rd) + ‖ϕn‖L2(ΓC3 )‖unν ‖L2(ΓC3 )

≤ C1‖fn‖L2(Ω;Rd)‖un‖V + C2‖ϕn‖L2(ΓC3 )‖un‖V ,

with some C1 > 0, C2 > 0. Taking into account (4.3)–(4.6), we have

(2µn − δ1nαjn‖γ‖2)‖un‖2
V − δ0n‖c0n‖L2(ΓC1 )‖γ‖‖un‖V

≤ C1‖fn‖L2(Ω;Rd)‖un‖V + C2‖ϕn‖L2(ΓC3 )‖un‖V ,

i.e.,
(2µn − δ1nαjn‖γ‖2)‖un‖V ≤ δ0n‖c0n‖L2(ΓC1 )‖γ‖ + C1‖fn‖L2(Ω;Rd) + C2‖ϕn‖L2(ΓC3 ). (4.7)

Because of ‖un‖V → ∞ as n → ∞, we use the smallness condition infρ>0(2µρ−δ1ραjρ‖γ‖2)
> 0 to obtain

+∞ = lim
n→∞

(2µn − δ1nαjn‖γ‖2)‖un‖V ≤ C0
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with some C0. This leads to a contradiction, therefore, we conclude that {un} is bounded
in V .

On the other hand, let us take z = yn in equation (4.2) to get∫
Ω
βn(un)∇yn · ∇yn dx +

∫
Ω
gn(x, yn)yn dx −

∫
ΓC2 ∪ΓC3

hnyn dΓ = 0. (4.8)

By virtue of hypothesis H(βρ)(i), one has∫
Ω
βn(un)∇yn · ∇yn dx ≥ β0n‖∇yn‖2

L2(Ω;Rd). (4.9)

Also, we use the condition H(gρ)(i) to obtain∫
Ω
gn(x, yn)yn dx =

∫
Ω

(
gn(x, yn) − gn(x, 0)

)
yn dx +

∫
Ω
gn(x, 0)yn dx (4.10)

≥
∫

Ω
dgn |yn|2 dx −

∫
Ω
αgn(x) · |yn| dx

≥ dgn‖yn‖2
L2(Ω) − ‖αgn‖L2(Ω)‖yn‖L2(Ω).

Applying Hölder inequality, it gives

−
∫

ΓC2 ∪ΓC3

hnyn dΓ ≥ −
∫

ΓC2

|hn| · |yn| dΓ −
∫

ΓC3

|hn| · |yn| dΓ (4.11)

≥ −‖hn‖L2(ΓC2 )‖yn‖L2(ΓC2 ) − ‖hn‖L2(ΓC3 )‖yn‖L2(ΓC3 ).

Employing (4.8)–(4.11), it yields

β0n‖∇yn‖2
L2(Ω;Rd) + dgn‖yn‖2

L2(Ω) − ‖αgn‖L2(Ω)‖yn‖L2(Ω) (4.12)

− ‖hn‖L2(ΓC2 )‖yn‖L2(ΓC2 ) − ‖hn‖L2(ΓC3 )‖yn‖L2(ΓC3 ) ≤ 0.

Passing to the limit as n → ∞ in (4.12) and using the assumption, ‖yn‖Z → ∞ as n → ∞,
it yields

+∞ = lim
n→∞

(
β0n‖∇yn‖2

L2(Ω;Rd) + dgn‖yn‖2
L2(Ω) − ‖αgn‖L2(Ω)‖yn‖L2(Ω)

− ‖hn‖L2(ΓC2 )‖yn‖L2(ΓC2 ) − ‖hn‖L2(ΓC3 )‖yn‖L2(ΓC3 )

)
≤ 0.

This triggers a contradiction. Consequently, we conclude that {yn} is bounded in Z.
By the reflexivity of V × Z, passing to a subsequence if necessary, we may suppose

that there exists a subsequence of {(un, yn)}, still denoted by the same way, and a pair of
functions (u, y) ∈ V × Z such that

(un, yn) ⇀ (u, y) in V × Z as n → ∞. (4.13)

Step 2. (un, yn) converges strongly to (u, y) in V × Z.
Since V is embedded compactly into L2(Ω;Rd) and the trace operator γ̃ : Z → L2(ΓC1)

is compact. So, we have

(un, yn) → (u, y) in L2(Ω;Rd) × L2(ΓC1) as n → ∞.

Remark 3.2 reveals that Kn
M−→ K as n → ∞. Exploiting condition (ii) of Definition 2.3

and (4.13), it yields (u, y) ∈ K × Z.
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We next show that An : V → V ∗ is continuous and Anu → Au in V ∗ for any u ∈ V as
n → ∞. Using Hölder inequality, one has

〈Anu −Anv,w〉 = 2µn

∫
Ω

(D(u) − D(v)) : D(w) dx (4.14)

≤ 2µn‖D(u) − D(v)‖L2(Ω;Sd)‖D(w)‖L2(Ω;Sd)

≤ 2µn‖u − v‖V ‖w‖V for all u,v,w ∈ V,

and

‖Anu‖V ∗ = sup
w∈V,‖w‖V =1

|〈Anu,w〉| ≤ 2µn‖u‖V . (4.15)

This implies that An is bounded and continuous. Moreover, we use the inequalities (4.14)–
(4.15) to obtain

‖Anu −Au‖V ∗ = sup
w∈V,‖w‖V =1

|〈Anu −Au,w〉| ≤ 2|µn − µ| ‖u‖V → 0 as n → ∞.

Therefore, we conclude that Anu → Au in V ∗ for all u ∈ V as n → ∞. Let {wn} ⊂ V be
a bounded sequence. So, we have

‖Anwn −Awn‖V ∗ = sup
v∈V,‖v‖V =1

|〈Anwn −Awn,v〉| ≤ 2|µn − µ| ‖wn‖V → 0 as n → ∞,

that is, Anwn −Awn → 0 in V ∗ as n → ∞.
Recall that (un, yn) ∈ Kn × Z is a weak solution of Problem 3.1, then we have

〈Anun − f̃n,vn − un〉 +
∫

ΓC1

δn(yn)j0
n(x, γun; γ(vn − un)) dΓ ≥ 0 for all vn ∈ Kn,(4.16)

and∫
Ω
βn(un)∇yn · ∇z dx +

∫
Ω
gn(x, yn)z dx −

∫
ΓC2 ∪ΓC3

hnz dΓ = 0 for all z ∈ Z. (4.17)

Because of (u, y) ∈ K × Z and Kn
M−→ K as n → ∞, we can find a sequence {ũn} such

that ũn ∈ Kn for each n ∈ N and ũn → u in V (see condition (i) of Definition 2.3).
Putting vn = ũn into (4.16), it gives

〈f̃n,un − ũn〉 +
∫

ΓC1

δn(yn)j0
n(x, γun; γ(ũn − un)) dΓ + 〈Anũn, ũn − un〉 (4.18)

≥ 〈Anun,un − ũn〉 + 〈Anũn, ũn − un〉

= 〈Anun −Anũn,un − ũn〉 = 2µn‖un − ũn‖2
V .

Hence, we obtain

lim sup
n→∞

〈Anũn, ũn − un〉 (4.19)

= lim sup
n→∞

〈Anũn −Au, ũn − un〉 + lim sup
n→∞

〈Au, ũn − un〉

≤ lim sup
n→∞

‖Anũn −Au‖V ∗‖ũn − un‖V + lim sup
n→∞

〈Au, ũn − un〉

≤ lim sup
n→∞

(‖Anũn −Aũn‖V ∗ + ‖Aũn −Au‖V ∗) ‖ũn − un‖V + lim sup
n→∞

〈Au, ũn − un〉

= 0.

The compactness of γ : V → L2(Γ;Rd) indicates that γun → γu in L2(Γ;Rd). Passing
to the upper limit as n → ∞ for the inequality (4.18), and utilizing hypotheses H(µρ),
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H(fρ), H(ϕρ), H(jρ)(ii), H(δρ)(ii), and inequality (4.19), it finds

0 ≥ lim sup
n→∞

( ∫
Ω

fn · (un − ũn) dx +
∫

ΓC3

ϕn(ũnν − unν ) dΓ
)

+ lim sup
n→∞

〈Anũn, ũn − un〉

+ lim sup
n→∞

∫
ΓC1

δn(yn)j0
n(x, γun; γ(ũn − un)) dΓ

≥ lim sup
n→∞

(
〈f̃n,un − ũn〉 +

∫
ΓC1

δn(yn)j0
n(x, γun; γ(ũn − un)) dΓ + 〈Anũn, ũn − un〉

)
≥ lim sup

n→∞
2µn‖un − ũn‖2

V

= lim sup
n→∞

2µ‖un − ũn‖2
V .

Hence, we obtain un − ũn → 0 in V . This implies that un → u in V as n → ∞.
Besides, we insert z = y − yn into inequality (4.17) for deriving∫

Ω
βn(un)∇yn · ∇(y − yn) dx +

∫
Ω
gn(x, yn) · (y − yn) dx (4.20)

−
∫

ΓC2 ∪ΓC3

hn(y − yn) dΓ = 0.

Passing to limit as n → ∞ in inequality (4.20), we have

0 = lim
n→∞

∫
ΓC2 ∪ΓC3

hn(yn − y) dΓ + lim
n→∞

∫
Ω
gn(x, y)(y − yn) dx

= lim
n→∞

∫
Ω
βn(un)∇yn · ∇(yn − y) dx + lim

n→∞

∫
Ω

(
gn(x, yn) − gn(x, y)

)
· (yn − y) dx

≥ lim
n→∞

(
β0n‖∇yn − ∇y‖2

L2(Ω;Rd) + dgn‖yn − y‖2
L2(Ω)

)
.

The latter combined with hypotheses H(βρ), H(gρ) implies that yn → y in Z as n → ∞.
Therefore, we have that {(un, yn)} converges strongly to (u, y) in V × Z.

Step 3. (u, y) ∈ K × Z is also a weak solution of Problem 1.1.
Since (un, yn) ∈ Kn × Z is a weak solution of Problem 3.1, namely,

〈Anun − f̃n,vn − un〉 +
∫

ΓC1

δn(yn)j0
n(x, γun; γ(vn − un)) dΓ ≥ 0 for all vn ∈ Kn,(4.21)

and∫
Ω
βn(un)∇yn · ∇z dx +

∫
Ω
gn(x, yn)z dx −

∫
ΓC2 ∪ΓC3

hnz dΓ = 0 for all z ∈ Z. (4.22)

Let w ∈ K. Because of Kn
M−→ K, by condition (i) of Definition 2.3, there exists a

sequence {wn} such that wn ∈ Kn and wn → w in V . Inserting vn = wn in (4.21), it
gives

〈Anun − f̃n,wn − un〉 +
∫

ΓC1

δn(yn)j0
n(x, γun; γ(wn − un)) dΓ ≥ 0. (4.23)
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We pass to the upper limit as n → ∞ to inequality (4.23) and use conditions H(fρ),
H(ϕρ), H(jρ)(ii), H(δρ)(ii) with properties of An to see that

〈Au − f̃ ,w − u〉 +
∫

ΓC1

δ(y)j0(x, γu; γ(w − u)) dΓ (4.24)

≥ 〈Au,w − u〉 +
∫

Ω
f · (u − w) dx +

∫
ΓC3

ϕ(wν − uν) dΓ (4.25)

+
∫

ΓC1

δ(y)j0(x, γu; γ(w − u)) dΓ

≥ lim sup
n→∞

〈Anun,wn − un〉 + lim sup
n→∞

( ∫
Ω

fn · (un − wn) dx +
∫

ΓC3

ϕn(wnν − unν ) dΓ
)

+ lim sup
n→∞

∫
ΓC1

δn(yn)j0
n(x, γun; γ(wn − un)) dΓ

≥ lim sup
n→∞

〈Anun − f̃n,wn − un〉 + lim sup
n→∞

∫
ΓC1

δn(yn)j0
n(x, γun; γ(wn − un)) dΓ

≥ lim sup
n→∞

(
〈Anun − f̃n,wn − un〉 +

∫
ΓC1

δn(yn)j0
n(x, γun; γ(wn − un)) dΓ

)
≥ 0.

On the other hand, letting n → ∞ for inequality (4.22) and using the conditions H(βρ)(ii),
H(gρ)(ii), H(hρ), we deduce that∫

Ω
β(u)∇y · ∇z dx +

∫
Ω
g(x, y)z dx −

∫
ΓC2 ∪ΓC3

hz dΓ = 0 for all z ∈ Z.

This together with (4.24) and the arbitrariness of w ∈ K implies that (u, y) ∈ K ×Z is a
weak solution of Problem 1.1.

Consequently, we conclude that for each n ∈ N, if (uρn , yρn) is a weak solution of Prob-
lem 3.1 with ρ = ρn, then there exists a subsequence of {(uρn , yρn)}, still denoted by the
same way, and (u, y) ∈ V × H1(Ω) such that uρn → u in V and yρn → y in H1(Ω), and
(u, y) is a weak solution of Problem 1.1. 2

Acknowledgment. This project has received funding from the Natural Science Foun-
dation of Guangxi Grant No. 2021GXNSFFA196004, NNSF of China Grant No. 12001478,
and the European Union’s Horizon 2020 Research and Innovation Programme under the
Marie Skłodowska-Curie grant agreement No. 823731 CONMECH, National Science Cen-
ter of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the Startup
Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07. It is
also supported by International Cooperation Program of Chengdu City, 2020-GH02-00023-
HZ, and State Key Scientific Research G202012, Big Data and Artificial Intelligence in
Petroleum Industry.

References
[1] M. A. Abbasi, D. O. Ezulike, H. Dehghanpour and R. V. Hawkes, A comparative

study of flowback rate and pressure transient behavior in multifractured horizontal
wells completed in tight gas and oil reservoirs, J. Nat. Gas Sci. Eng. 17, 82–93, 2014.

[2] M. Asadi, R. A. Woodroof and R.E. Himes, Comparative study of flowback analysis
using polymer concentrations and fracturing-fluid tracer methods: a field study, SPE
Prod. & Oper. 23 (2), 147–157, 2008.



1548 J.X. Cen, N. Costea, C. Min, J.C. Yao

[3] Y. R. Bai, N. S. Papageorgiou and S. D. Zeng, A singular eigenvalue problem for the
Dirichlet (p, q)-Laplacian, Math. Z. 300, 325–345, 2022.

[4] J. X. Cen, A. A. Khan, D. Motreanu and S. D. Zeng, Inverse problems for gener-
alized quasi-variational inequalities with application to elliptic mixed boundary value
systems, Inverse Problems, 38, 065006, 28 pp, 2022.

[5] J. X. Cen, S. Migórski, C. Min and J. C. Yao, Hemivariational inequality for contam-
inant reaction-diffusion model of recovered fracturing fluid in the wellbore of shale gas
reservoir, Commun. Nonliner Sci. Numer. Simulat. 118, 107020, 2023.

[6] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205,
247–262, 1975.

[7] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York,
1983.

[8] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear
Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London,
New York, 2003.

[9] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear
Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht,
London, New York, 2003.

[10] X. X. Dong, W. J. Li, Q. Liu and H. H. Wang, Research on convection-reaction-
diffusion model of contaminants in fracturing flowback fluid in non-equidistant frac-
tures with arbitrary inclination of shale gas development, J. Petrol. Sci. Eng. 208,
109479, 2022.

[11] C. J. Fang and W. M. Han, Well-posedness and optimal control of a hemivariational
inequality for nonstationary Stokes fluid flow, Discrete Contin. Dyn. Syst. 36 (10),
5369-5386, 2016.

[12] C. J. Fang and W. M. Han, Stability analysis and optimal control of a stationary
Stokes hemivariational inequality, Evol. Equ. Control The. 9 (4), 995-1008, 2020.

[13] E. Ghanbari, M.A. Abbasi, H. Dehghanpour and D. Bearinger, Flowback volumetric
and chemical analysis for evaluating load recovery and its impact on early-time pro-
duction, Presented at the SPE Unconventional Resource Conference Canada, Calgary,
Alberta, Canada, November, SPE-167165-MS, 2013.

[14] H. Lin, X. Zhou, Y. L. Chen, B. Yang, X. X. Song, X. Y. Sun and L. F. Dong,
Investigation of the factors influencing the flowback ratio in shale gas reservoirs:
a study based on experimental observations and numerical simulations, J. Energy
Resour. Technol. 143 (11), 113201, 2021.

[15] Z. B. Liu, X. X. Dong, L. Chen, C. Min and X. C. Zheng, Numerical simulation of
recovered water flow and contaminants diffusion in the wellbore of shale gas horizontal
wells, Environ. Earth. Sci. 79, 128, 2020.

[16] Z. B. Liu, X. X. Dong and C. Min, Transient analysis of contaminant diffusion in the
wellbore of shale gas horizontal wells, Water Air Soil Pullut. 229 (7), 1–15, 2018.

[17] Z. H. Liu, D. Motreanu and S. D. Zeng, Generalized penalty and regularization method
for differential variational-hemivariational inequalities, SIAM J. Optim. 31 1158–
1183, 2021.

[18] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational
Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and
Mathematics, 26, Springer, New York, 2013.

[19] S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in
Banach spaces, J. Glob. Optim. 72, 761–779, 2018.

[20] U. Mosco, Convergence of convex sets and of solutions of variational inequalities,
Adv. Math. 3 (4), 510–585, 1969.



Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir 1549

[21] S. D. Zeng, Y. R. Bai, L. Gasiński and P. Winkert, Existence results for double phase
implicit obstacle problems involving multivalued operators, Calc. Var. PDEs 59, 18
pages, 2020.

[22] B. Zeng, Z. H. Liu and S. Migórski, On convergence of solutions to variational-
hemivariational inequalities, Z. Angew. Math. Phys. 69 (3), 1-20, 2018.

[23] S. D. Zeng, S. Migórski and Z. H. Liu, Well-posedness, optimal control, and sensitivity
analysis for a class of differential variational-hemivariational inequalities, SIAM J.
Optim. 31, 2829–2862, 2021.

[24] S. D. Zeng, S. Migórski and Z. H. Liu, Nonstationary incompressible Navier-Stokes
system governed by a quasilinear reaction-diffusion equation (in Chinese), Sci. Sin.
Math. 52, 331–354, 2022.

[25] S. D. Zeng, N. S. Papageorgiou and V. D. Rǎdulescu, Nonsmooth dynamical systems:
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