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An advanced Salp Swarm Algorithm for optimization problems 

Optimizasyon problemleri için Gelişmiş Salp Sürüsü Algoritması  

 

Bahaeddin Türkoğlu1,*  

1 Niğde Ömer Halisdemir University, Computer Engineering Department, 51240, Niğde, Türkiye  

 

Abstract  Öz 

The Salp Swarm Algorithm (SSA) is a metaheuristic 

optimization algorithm inspired by Salp swarms' biological 

characteristics and colony strategies. There is a wide 

variety of studies conducted with SSA in the literature. 

These studies have revealed some significant disadvantages 

of SSA, the most critical being the imbalance of exploration 

and exploitation. In this study, an equilibrium operator has 

been developed using the Ikeda map. Thanks to this 

enhancement, the performance of the SSA algorithm has 

increased, and issues such as premature convergence and 

local optima have been overcome. To evaluate the proposed 

method, ten fixed-dimension benchmark problems and 

three engineering design optimization problems were 

solved. The proposed method is validated by comparing 

four well-known metaheuristic approaches and the original 

SSA. Experimental results demonstrated that the proposed 

method outperforms the compared methods. 

 Salp Sürüsü Algoritması (SSA), Salp sürülerinin biyolojik 

özelliklerinden ve koloni stratejilerinden ilham alarak 

geliştirilmiş metasezgisel bir optimizasyon algoritmasıdır. 

Literatürde SSA ile yapılmış çok çeşitli çalışmalar vardır. 

Bu çalışmalarda SSA'nın temel dezavantajlarının olduğu 

vurgulanmıştır. Bunlardan en önemlisi keşif ve sömürü 

dengesizliğidir. Bu çalışmada Ikeda haritası kullanılarak bir 

denge operatörü geliştirilmiştir. Bu geliştirme sayesinde 

SSA algoritmasının performansı artırılarak erken 

yakınsama ve lokal minimumlara takılma sorunu 

giderilmeye çalışılmıştır. Önerilen yöntemin başarısını 

değerlendirmek için on sabit boyutlu benchmark seti ve üç 

iyi bilinen mühendislik optimizasyon problemi 

çözülmüştür. Geliştirilen yöntemin güvenilirliği dört iyi 

bilinen metasezgisel yaklaşımla ve orijinal SSA ile 

kıyaslanarak doğrulanmıştır. Deneysel çalışma sonuçları, 

önerilen yöntemin kıyaslanan yöntemlerden daha 

performanslı olduğunu göstermiştir. 

Keywords: Salp Swarm Algorithm, Engineering design 

problem, Global optimization 

 Anahtar kelimeler: Salp Sürüsü Algoritması, Mühendislik 

tasarım problemleri, Global optimizasyon 

1 Introduction 

Optimization is the process of determining the most 

suitable solution among the possible solutions, considering 

given constraints. In today's world, optimization is widely 

applied in various domains aiming for maximum efficiency 

with minimum cost [1]. Many real-world problems such as 

vehicle and flight route planning [2], traveling salesman 

problems [3, 4], economic load dispatch [5], wind turbine [6] 

and facility layout problems [7], land consolidation [8], 

energy forecasting analysis [9], and engineering design 

problems, can be formulated as optimization problems [10-

12]. 

The literature introduces various strategies to solve 

optimization problems, and one prominent approach is 

metaheuristic methods. Metaheuristic methods initiate the 

search process with random initial solutions and utilize two 

fundamental search behaviors: exploration and exploitation, 

aiming to find the optimal solution. Exploration represents 

the ability of a method to search the solution space, while the 

exploitation mechanism refers to the capacity to improve a 

solution. These two processes are crucial for metaheuristic 

methods and must be carefully designed to strike an ideal 

balance [13]. 

In metaheuristic approaches, especially in the last 

decade, nature-inspired optimization methods have been 

developed and become popular. Swarm intelligence 

optimization is an artificial intelligence optimization 

technique that models the life behaviors of swarms, where 

individuals in the swarm, such as cheetahs, vultures, snakes, 

gorillas, and fruit flies, interact by sharing information. The 

popularity of swarm intelligence optimization algorithms 

stems from their effective performance in solving complex 

real-world problems. One of the key factors contributing to 

their successful performance is the utilization of collective 

location update mechanisms and processes inspired by 

natural events and living organisms in nature. These 

mechanisms aid in exploring the solution space and 

improving existing solutions [14].  

In the literature, several nature-inspired metaheuristic 

optimization algorithms have been introduced, such as the 

cheetah optimizer (CO) [15], elephant clan optimization 

(ECO) [16], artificial gorilla troops optimizer (GTO) [17], 

snake optimizer (SO) [18], African vultures optimization 

algorithm (AVOA) [19],  remora optimization algorithm 

(ROA) [20], artificial hummingbird algorithm (AHA) [21], 

white shark optimizer (WSO) [22], marine predators 

https://orcid.org/0000-0003-0255-8422
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algorithm (MPA) [23], orca predation algorithms (OPA) 

[24], and Salp swarm algorithm (SSA) [25]. 

One of the main motivations of this study is the "No Free 

Lunch" (NFL) theorem, frequently mentioned in 

optimization problems. Although numerous optimization 

techniques are available in the literature, new algorithms are 

constantly being introduced, and existing algorithms require 

further development. This is due to the NFL theorem, which 

states that it is impossible for a single optimization algorithm 

to universally solve all optimization problems [26, 27].  

This paper introduced the advanced SSA algorithm using 

the equilibrium operator with the Ikeda chaotic map.  

The continuation of the study is organized as follows. 

In the second part (Materials and Methods), the original 

SSA and the advanced SSA algorithms are explained and 

detailed. The experimental setup is presented in the third part 

of the study. Additionally, the experimental results are 

analyzed in this section. In the fourth part (Conclusion), the 

importance of the proposed SSA is discussed. Furthermore, 

this part presents conclusions and recommendations for 

future work. 

2 Material and methods  

This section will present the original SSA method and 

our proposed approach, the advanced SSA. Additionally, we 

will provide details about the experimental setup employed 

in our study. 

2.1 Original Salp Swarm Algorithm  

Salps are jelly-like sea creatures that belong to the 

Salpidae family. Although their bodies resemble jellyfish, 

their movement patterns are quite similar. Salps exhibit 

swarm behavior, and one of their most fascinating behaviors 

is forming long chains of interconnected individuals, in the 

depths of the ocean, as illustrated in Figure 1. 

 

 

Figure 1. Figures of salp chain [28] 

 

The Salp Algorithm comprises two types of salps: leader 

and follower salps. The leader salp takes the lead while the 

follower salps, and trails behind. Salps exhibit a specific 

behavior called salp chain, which is used for foraging [25]. 

Figure 2 provides a representative illustration of this 

behavior. 

 

 

Figure 2. Illustration of salp behavior 

 

The position update equation of the salps is shown in 

Equations (1). 

 

𝑥𝑗
𝑖

= {
𝐹𝑗 + 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑐2 + 𝑙𝑏𝑗), 𝑐3 ≥ 0.5

𝐹𝑗 − 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑐2 + 𝑙𝑏𝑗), 𝑐3 < 0.5
 

(1) 

 

In the equation provided: 

 𝑥𝑗
𝑖 represents the position of the leader salp in the 

jth dimension. 

 𝐹𝑗 represents the position of the food source in the 

jth dimension. 

 𝑐1, 𝑐2, and 𝑐3 are randomly generated variables 

evenly distributed in the range [0,1]. 

 𝑢𝑏𝑗 and 𝑙𝑏𝑗 represent the upper and lower limits in 

the jth dimension. 

 

The algorithm described is considered a metaheuristic 

algorithm that exhibits early convergence. Various hybrid 

versions have been developed in the literature to address this 

issue. These hybrid versions have been applied to solve 

various real-world problems across different domains [29]. 

2.2 Advanced Salp Swarm Algorithm  

Salps are transparent fish species measuring 1-10 cm in 

length. These organisms feed on plankton, earning them the 

nickname "ghost fish." The Salp Swarm Algorithm is a 

metaheuristic optimization algorithm inspired by the 

foraging and feeding behaviors of these creatures in the 

ocean. Three critical parameters affect the SSA's 

performance: c1, c2, and c3. The c1 and c2 parameters 

significantly impact the position update, while the c3 

parameter is responsible for the strategy used to update the 

next position of the Salp. [25]. 

The randomly generated c3 parameter decides how to 

update the Salp’s location. In this study, instead of allowing 

the c3 parameter to decrease randomly, it is regulated using 

Ikeda chaotic mapping. The value produced by the chaotic 

map determines which location update mechanisms will be 

activated. The Ikeda chaotic map is depicted in Figure 3. 
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Figure 3. Image of Ikeda map [30] 

 

The formulation of the Ikeda chaotic map is shown in 

Equations (2). 

𝑥𝑘+1 = 1 + 𝑈(𝑥𝑘𝑐𝑜𝑠𝑡𝑘 − 𝑦𝑘𝑠𝑖𝑛𝑡𝑘), 𝑈 = 0.8 

(2) 𝑦𝑘+1 = 𝑈(𝑥𝑘𝑐𝑜𝑠𝑡𝑘 + 𝑦𝑘𝑠𝑖𝑛𝑡𝑘) 

𝑡𝑘 = 0.4 − 6/(1 + 𝑥𝑘
2 + 𝑦𝑘

2)𝑦 = 𝑚𝑥 + 𝑛 

 

The new position update equation of the salps, 

incorporating the values generated by the Ikeda chaotic map 

(Ikeda maps), is shown in Equations (3).  

 

𝑖𝑓  𝐼𝑘𝑒𝑑𝑎 𝑚𝑎𝑝(𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒) <  0.5  𝑡ℎ𝑒𝑛 

 

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑐2 + 𝑙𝑏𝑗) 

else  

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑐2 + 𝑙𝑏𝑗) 

𝑒𝑛𝑑 𝑖𝑓 

(3) 

3 Result and discussion  

This section will first explain the benchmark test 

functions and real-world engineering design optimization 

problems. Then, the experimental study environment and 

experimental results will be detailed. 

3.1 Experimental setup  

To demonstrate the reliability of the algorithms 

developed in the literature, testing them on optimization 

problems with diverse characteristics is essential. Classical 

benchmark function sets and real-world engineering 

optimization problems are widely accepted in the literature 

for evaluating global optimization problems [21, 23, 25, 31-

34]. This section is divided into two subsections. The first 

subsection provides a detailed explanation of the classic 

benchmark test functions. The second subsection focuses on 

real-world engineering problems solved using the developed 

method.  

3.1.1 Benchmark functions  

Ten popular benchmark function sets of different 

difficulty levels were used to test and validate the developed 

approach. These functions possess a fixed dimension and 

exhibit multimodal characteristics, meaning they contain 

multiple local minimums and a single global minimum. 

Including multimodal functions allows for evaluating the 

algorithm's capability to escape local minimums and assess 

its convergence rate. A representation of these benchmark 

test functions can be found in Table 1. 

 

Table 1. Description of benchmark functions 

No Equation 

F1 𝐹1(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)62
𝑖=1

25

𝑗=1
)

−1

 

F2 𝐹2(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥𝑖)

𝑏𝑖
2 + 𝑏𝑖𝑥3𝑥4

]

211

𝑖=1
 

F3 𝐹3(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

F4 𝐹4(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos 𝑥1 + 10 

F5 
𝐹5(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]

∗ [30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)] 

F6 𝐹6(𝑥) = − ∑ 𝑐𝑖

4

𝑖=1
exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

2
3

𝑗=1
) 

F7 𝐹7(𝑥) = − ∑ 𝑐𝑖

4

𝑖=1
exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

2
6

𝑗=1
) 

F8 𝐹8(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
5

𝑖=1
 

F9 𝐹9(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
7

𝑖=1
 

F10 𝐹10(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1
10

𝑖=1
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These function properties are shown in Table 2. 

 

Table 2. Properties of fixed-dimension benchmark functions  

No Name Min Range Dim 

F1 Foxholes 1 [-65,65] 2 

F2 Kowalik 0.00030 [-5,5] 4 

F3 Six Hump Camel −1.0316 [-5,5] 2 

F4 Branin 0.398 [-5,5] 2 

F5 GoldStein-Price 3 [-2,2] 2 

F6 Hartman 3 −3.86 [1,3] 3 

F7 Hartman 6 −3.32 [0,1] 6 

F8 Shekel 5 −10.1532 [0,10] 4 

F9 Shekel 7 −10.4028 [0,10] 4 

F10 Shekel 10 −10.5363 [0,10] 4 

 

3.1.2 Engineering design problems  

To verify the success of the developed method, besides 

the classical benchmark functions, three engineering design 

problems are used. 

The most commonly used engineering design problems 

in the literature are the pressure vessel design problem, the 

welded beam design problem, and the tension/compression 

spring design. These problems were used in this study. 

3.1.3 Pressure vessel design optimization problem 

The main purpose of this problem is to determine the 

most suitable design parameters that will keep the total cost 

of a compressed cylindrical air tank to a minimum to create 

a given volume and a constant working pressure and meet 

the design constraints. As shown in Figure 4, the hood is 

hemispherical when both sides of the tank are closed [35]. 

 

 
Figure 4. Schema of the pressure vessel design [23] 

 

As shown in the figure, four design variables need to be 

optimized. The mathematical constraints of this problem are 

as in Equation (4). 

 

 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠        �⃗� =  [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿] 
the inner radius (𝑹), 

the thickness of the cover (𝑻𝒉), 
the shell thickness of the body (𝑻𝒔), 

the length of the cylindrical part excluding the cover (𝑳) 

(4) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠       𝑓(�⃗�)

= 0.6224𝑥1𝑥3𝑥4 + 0.7781𝑥2𝑥3
2

+ 3.1661𝑥1
2𝑥4 + 19.84𝑥1

2𝑥3 
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠      𝑔1(�⃗�) =  −𝑥1 + 0.0193𝑥3 ≤ 0, 

𝑔2(�⃗�) =  −𝑥3 + 0.00954𝑥3 ≤ 0, 

𝑔3(�⃗�) =  −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3  + 1296000 ≤ 0, 

𝑔4(�⃗�) =  𝑥4 − 240 ≤ 0, 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒𝑠     0 ≤ 𝑥1 ≤ 99, 0 ≤ 𝑥2 ≤ 99,                
10 ≤ 𝑥3 ≤ 200, 10 ≤ 𝑥4 ≤ 200 

 

The objective function represents the manufacturing cost 

of the pressure vessel, and the smaller it is, the more efficient 

it is. 

3.1.4 Welded beam design optimization problem 

The main purpose of this problem is to find the optimum 

design so that the production of the welded beam is the least 

costly under the given constraints. As shown in Figure 5, the 

minimum production cost can be calculated by determining 

the optimum value of the four parameters [36].  

 

 
Figure 5. Schema of the welded beam design [23] 

 

The given variables must be determined to satisfy the 

seven constraints. The mathematical expression of the 

welded beam problem is shown in Equation (5). 
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𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠        �⃗� =  [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏] 

the length of the connected part of the bar (𝒍) 

the thickness of the weld (𝒉) 

the height of the bar (𝒕) 

the thickness of the bar (𝒃) 

(5) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠    𝑓(�⃗�)

= 1.10471𝑥1
2𝑥2

+ 0.04811𝑥3𝑥4(14.0 + 𝑥2) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠       𝑔1(�⃗�) =  𝜏(�⃗�) − 𝜏𝑚𝑎𝑥 ≤ 0, 

𝑔2(�⃗�) =  𝜎(�⃗�) − 𝜎𝑚𝑎𝑥 ≤ 0 

𝑔3(�⃗�) =  𝛿(�⃗�) − 𝛿𝑚𝑎𝑥 ≤ 0 

𝑔4(�⃗�) =  𝑥1 − 𝑥4 ≤ 0, 

𝑔5(�⃗�) =  𝑃 − 𝑃𝑐(�⃗�) ≤ 0, 

𝑔6(�⃗�) =  0.125 − 𝑥1 ≤ 0, 

𝑔7(�⃗�) =  1.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0
≤ 0, 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒𝑠     0.1 ≤ 𝑥1 ≤ 2,     0.1 ≤ 𝑥2 ≤ 10,      
0.1 ≤ 𝑥3 ≤ 10,  0.1 ≤ 𝑥4 ≤ 2 

3.1.5 Tension & compression spring design optimization 

problem 

The main objective of this problem is to determine the 

three design parameters to establish the minimum weight of 

the tension spring to meet the specified design constraints 

[37]. An exemplary tension spring design is shown in Figure 

6. 

 

 
Figure 6. Schema of the compression spring design [23] 

 

The mathematical expression of this problem is shown in 

Equation (6). 

 

3.2 Experimental results  

In this section, the performance of the advanced SSA 

algorithm is assessed by solving various optimization 

problems and comparing the results with popular algorithms 

from the literature under the same conditions. This section is 

divided into two parts. Firstly, the effectiveness of the 

proposed method is evaluated through ten fixed-dimensional 

optimization benchmark tests. In the second part, the 

performance of the developed algorithm and the compared 

methods are analyzed in real-world design problems.  

 

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔        �⃗� =  [𝑥1, 𝑥2, 𝑥3] = [𝑑, 𝐷, 𝑁] 

the wire diameter (𝒅), 

the average turn diameter (𝑫) 

the number of active turns (𝑵). 

(6) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠       𝑓(�⃗�) = (𝑥3 + 2)𝑥2𝑥1
2 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠      𝑔1(�⃗�) =  1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0, 

𝑔2(�⃗�) =  
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 ≤ 0, 

𝑔3(�⃗�) =  1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(�⃗�) =  1 −
𝑥1 + 𝑥2

1.5
− 1 ≤ 0, 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒𝑠   0.05 ≤ 𝑥1 ≤ 2.00,     0.25 ≤ 𝑥2 ≤
1.30,       2.00 ≤ 𝑥3 ≤ 15.0, 

 

To verify the performance of the developed algorithm, 

five well-known algorithms, namely Grey Wolf Optimizer 

(GWO), Whale Optimization Algorithm (WOA), Moth-

Flame Optimization (MFO), Moth-Flame Optimization 

(MFO), and Salp Swarm Algorithm (SSA), were used. 

The parameter values of the compared algorithms used in the 

experimental study are presented in Table 3. These 

parameter values correspond to the recommendations the 

respective algorithm authors provided in their own 

publications. 

 
Table 3. Parameter values of the compared algorithms 

Algorithms Parameters Values 

   

GWO alpha 2 

   

WOA alpha 2 

   

MVO wepmax 1 

 wepmin 0.2 

   

MFO a (linearly decreases) [-1, -2] 

   

SSA 

(Original and 

Advanced) 

Probability of crossover 0.8 

Probability of mutation 0.01 

 

Thirty independent experiments were conducted to 

ensure a fair study, and the results were averaged. The 

number of populations used in each experiment was set to 

40. A total of 50,000 fitness calculations were performed. 

. 
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Table 4. Results of algorithms in benchmark test functions 

No Name 
Evolution 

criteria 
GWO WOA MVO MFO SSA 

Advanced 

SSA 

F1 Foxholes 
mean 

std 

4.32E+00 

4.35E+00 

2.34E+00 

2.93E+00 

9.98E-01 

1.31E-11 

1.85E+00 

1.61E+00 
9.98E-01 

2.39E-16 
9.98E-01 

1.13E-16 

F2 Kowalik 
mean 

std 

2.35E-03 

6.11E-03 

7.66E-04 

4.21E-04 

5.91E-03 

1.21E-02 

2.63E-03 

5.01E-03 

8.71E-04 

2.42E-04 
4.33E-04 

1.09E-04 

F3 
Six Hump 

Camel 

mean 
std 

-1.03E+00 

8.00E-09 

-1.03E+00 

2.15E-11 

-1.03E+00 

2.18E-07 

-1.03E+00 

6.78E-16 

-1.03E+00 

5.60E-15 
-1.0316 

5.68E-16 

F4 Branin 
mean 

std 

3.98E-01 

2.51E-07 
3.98E-01 

1.14E-06 
3.98E-01 

5.25E-08 

3.97E-01 

0.00E+00 
3.98E-01 

5.21E-15 
3.98E-01 

0.00E+00 

F5 
GoldStein-

Price 

mean 
std 

3.00E+00 

6.11E-06 
3.00E+00 

8.65E-06 
3.00E+00 

9.88E-07 
3.00E+00 

1.61E-15 
3.00E+00 

1.08E-13 
3.00E+00 

1.35E-15 

F6 Hartman 3 
mean 

std 

-3.00E-01 

2.26E-16 

-3.00E-01 

2.26E-16 

-3.00E-01 

2.26E-16 

-3.00E-01 

2.26E-16 

-3.00E-01 

2.26E-16 
-3.34E+00 

4.33E-01 

F7 Hartman 6 
mean 

std 

-3.24E+00 

7.87E-02 

-3.26E+00 

9.14E-02 

-3.27E+00 

6.04E-02 

-3.22E+00 

4.82E-02 

-3.22E+00 

4.22E-02 
-3.32E+00 

1.38E-08 

F8 Shekel 5 
mean 

std 

-8.97E+00 

2.18E+00 

-9.73E+00 

1.63E+00 

-7.96E+00 

2.80E+00 

-5.98E+00 

3.37E+00 

-7.82E+00 

3.41E+00 
-1.02E+01 

4.36E-10 

F9 Shekel 7 
mean 

std 

-1.00E+01 

1.34E+00 

-8.72E+00 

2.63E+00 

-8.38E+00 

2.73E+00 

-7.93E+00 

3.36E+00 

-8.42E+00 

3.15E+00 
-1.04E+01 

1.69E-10 

F10 Shekel 10 
mean 

std 

-1.02E+01 

1.58E+00 

-7.72E+00 

3.29E+00 
-9.10E+00 

2.42E+00 

-8.58E+00 

3.33E+00 

-7.96E+00 

3.51E+00 

-7.05E+00 

1.83E-09 

 

3.2.1 Performance of advanced SSA in benchmark 

problems 

The experimental study results for ten well-known 

benchmark functions conducted using five popular 

algorithms (GWO, WOA, MVO, MFO, original SSA, and 

advanced SSA) are presented in Table 4.  

All benchmark test functions were executed in 30 

dimensions 

According to the results in Table 4, the advanced SSA 

algorithm demonstrated superior performance compared to 

the other algorithms, including the original SSA, in nine out 

of the ten benchmark test functions, indicating a success rate 

of 90%. These results highlight that by utilizing the Ikeda 

chaotic map, the proposed method achieves a favorable 

balance between exploration and exploitation. Following the 

Advanced SSA, the MFO algorithm emerged as the second 

most successful. 

3.2.2 Performance of advanced SSA in real-world 

engineering design optimization problems 

In solving the engineering design optimization problems, 

the experimental work employed the same parameters as 

those used for the benchmark functions. Likewise, thirty 

independent runs were conducted and averaged. The 

maximum number of fitness evaluations (FEs) was 50,000, 

while the population was 40 individuals [38-41]. The results 

were compared with the performance of GWO, WOA, 

MVO, MFO algorithms, and the original SSA. The results of 

the experimental study are presented in Table 5. 

 

Table 5. Results of algorithms in real-world engineering design optimization problems 

No Problem 
Evolution 

criteria 
GWO WOA MVO MFO SSA 

Advanced 
SSA 

P1 
Welded 

Beam 

mean 
std 

1.74E+00 

1.53E-02 

2.33E+00 

4.57E-01 

1.77E+00 

3.16E-02 

1.72E+00 

8.34E-02 

1.77E+00 

9.88E-02 
-3.28E+05 

2.45E+04 

P2 
Compression 

Spring 

mean 
std 

3.67E+00 

2.63E-03 

3.69E+00 

2.93E-02 

3.71E+00 

3.28E-02 

3.67E+00 

1.98E-02 

3.68E+00 

2.08E-02 
-9.73E+06 

3.29E+06 

P3 
Pressure 

Vessel 

mean 
std 

2.68E+03 

1.14E+03 

4.32E+03 

1.81E+03 

2.94E+03 

6.12E+02 

2.39E+03 

3.35E+02 

3.20E+03 

6.28E+02 
-2.37E+11 

3.44E+10 
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Based on the results presented in Table 5, it can be 

observed that the proposed method, advanced SSA, 

outperformed the compared methods in all engineering 

optimization problems. These findings confirm the superior 

performance and reliability of the proposed method. 

4 Conclusion  

The primary objective of this study was to enhance the 

balance between exploration and exploitation in the SSA 

algorithm by incorporating the Ikeda chaotic operator. The 

performance of the developed method was evaluated by 

applying it to ten different difficulty levels of fixed-

dimension multimodal benchmark functions. To validate the 

results, a comparison was conducted with five well-known 

methods, namely GWO, WOA, MVO, MFO, and the 

original SSA. The experimental findings indicated that the 

proposed method outperformed these comparison methods 

regarding performance. 

This study demonstrated that incorporating the Ikeda 

chaotic map into the r3 parameter of the SSA algorithm 

yielded efficient and reliable results. In future studies, it 

would be worthwhile to investigate the impact of different 

operators on the vital parameters of the SSA algorithm, 

namely r1 and r2. Exploring the performances of alternative 

operators concerning these parameters could provide 

valuable insights and further enhance the optimization 

capabilities of the SSA algorithm. 

The results of the experimental study are quite 

competitive in terms of standard deviation values. The 

standard deviation values of all algorithms are very close to 

zero. It shows that these algorithms work stably, and their 

values are consistent across 30 independent studies. 
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