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Abstract. It is important to solve the autonomous mapping problem with high 

accuracy using limited energy resources in an environment without prior 

knowledge and/or signal. Visual Simultaneous Localization and Mapping (SLAM) 

deals with the problem of determining the position and orientation of an 

autonomous vehicle or robot with various on-board sensors, and simultaneously 

creating a map of environment with low energy consumption. However visual 

SLAM methods require high processing performance for real-time operations. 

Also, processing capability of the hardware is limited by the power constraints. 

Therefore, it is necessary to compare the processing load and power consumption 

of visual SLAM methods for autonomous vehicles or robots. For visual SLAM 

methods, although there are different comparison studies, there is no 

comprehensive computational cost analysis covering different datasets and 

important parameters including absolute trajectory error, RAM Usage, CPU load, 

GPU load, with total power consumption. In this paper, ORB-SLAM2, Direct 

Sparse Odometry (DSO), and DSO with Loop Closure (LDSO), which are state of 

the art visual SLAM methods, are compared. Besides the performance of these 

methods, energy consumption and resource usage are evaluated allowing the 

selection of the appropriate SLAM method. 

 

 

1. Introduction 
 

Autonomous systems have become more visible in daily life, with many products 

from driverless cars to cleaning robots, from armed unmanned aerial vehicles to 

consumer electronics. They carry out specific missions autonomously with limited 

sources providing convenience and assistance to humans. 
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In environments where previously known or satellite signals can be received, 

relatively uncomplicated autonomous movement capability such as waypoint 

identification can be achieved with conventional applications. Position information 

can be obtained through Global Positioning System (GPS) receiver if satellite signal 

is available. In addition, various devices and sensors are also used to solve the same 

problem. Among them, Light Detection and Ranging (LIDAR) is used to determine 

position of the robot. Inertial Measurement Unit (IMU) is another device with 

accelerometer and gyroscope that is used widely. Position information can be used 

in a certain standard for functions such as waypoint identification, lane tracking, 

estimation of the distance passed, obstacle avoidance and distance adjustment. In 

these applications, the robot, whose spatial relationship is known through its sensors, 

estimates its own position by using the relevant reference information. However, in 

an environment where GPS satellite signals cannot be detected by the robot or in a 

place for which no prior knowledge is available, these methods, due to the high 

margin of error, are not sufficient in terms of functions such as obstacle avoidance 

and determining momentary position in its surroundings. In environments that are 

previously unknown or where GPS signals cannot be detected, different solutions 

are needed to calculate the robot's position relative to the environment.  

There are many studies that include various methods such as motion estimation, 

target tracking, waypoint tracking based on GPS and different interpretations based 

on these methods in order to increase autonomous movement capability. However, 

in order to determine the location of a robot in environments without prior 

knowledge, it is necessary to obtain information about the environment first and to 

calculate the position of the robot while obtaining information about the 

environment. 

 

1.1. Definition of SLAM Problem. If there is no information about the surroundings 

of wheeled robots, measurement of distances by odometer can be used. However, 

wheel slipping or spinning errors accumulate and increase the total error in the wheel 

odometry, as the error in the previous position information will also affect the next 

position information. Additionally, this does not apply to wheelless vehicles and 

robots. For this reason, different methods based on laser and visual sensors are used 

to obtain location information. Among these methods, odometry is based on 

calculating the current position with respect to previously visited locations to follow 

the course of the robot. On the contrary, for SLAM methods, position and 

environment are considered together in processing [1]. 

SLAM is the method that deals with the computational problem of tracking a 

robot's position while simultaneously creating or updating a map of a previously 

unknown environment. Since robot has to do two related tasks at the same time, the 

SLAM problem is a complex issue that needs to be solved in real-time [2]. 
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Calculation of displacement performed by the robot (odometry) and 

understanding of a place passed again (loop closure) are the basic components of 

SLAM [3]. In addition to being formulated in many theoretical ways, SLAM has the 

opportunity to be applied in many areas from indoor robots to underwater and air 

systems. The solution to the SLAM problem, which enables robots to be truly 

autonomous, is seen as one of the most significant achievements of robotics field [4]. 

As well as there are various methods to achieve autonomous mapping solution, 

there also exists data utilized to evaluate and compare the performance of those 

methods. Some of the data are obtained in the controlled environments using 

different techniques. For evaluation in different conditions, there exist different data 

with specific properties. Thus, it is possible to perform performance tests for visual 

SLAM methods in various conditions such as surroundings with moving objects. 

In the next subsections, information about the probabilistic definition of SLAM, 

environmental factors, and related works are given. 

 

1.2. Solution of SLAM Problem. The position of a robot can be calculated relatively 

easily if the robot has a precise prior knowledge of the environment. On the contrary, 

a robust model of the environment in which the robot is located can be created if the 

position of the robot is known perfectly. However, within the scope of SLAM 

problem, the robot with on-board sensors does not have any prior knowledge about 

the environment it is located in. Probabilistic methods are used in solving the SLAM 

problem, since the robot's location and environment’s map are created 

simultaneously and a perfect information cannot be obtained [3]. In SLAM problem 

(see Fig. 1), if 𝒙𝒌 is the robot's position and orientation, and 𝒖𝒌 is the control input 

applied to bring the robot to position 𝒙𝒌 at time 𝒌 − 𝟏,   𝒎𝒊 is the location of each 

obstacle that makes up the environment map; 𝒛𝒊𝒌 refers to observation of the robot 

at time 𝒌. 

Also, 𝑿𝟎:𝒌 = {𝒙𝟎, 𝒙𝟏, … , 𝒙𝒌} are the positions where the robot has visited in the 

past.  𝑼𝟏:𝒌 = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌} are history of control inputs. Robot’s all observations 

on landmarks are 𝒁𝟎:𝒌 = {𝒛𝟎, 𝒛𝟏, … , 𝒛𝒌}.  Together with these definitions, solution 

of the SLAM problem is based on the probabilistic approach given below as 

conditional probability (𝑷), which must be calculated across whole trajectory: 

                                                𝑷(𝒙𝒌, 𝒎 |𝒁𝟎:𝒌, 𝑼𝟏:𝒌, 𝒙𝟎)                                    (1) 
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Figure 1. Solution of SLAM problem [4]. 

 

With the probabilistic definition given in equation (1), many methods have 

emerged for solution of the SLAM problem. In order to perform these solutions in 

real-time, extended Kalman filter, particle filter and graph-based methods are mostly 

used [5]. 

Besides theoretical solution, autonomous systems in daily life are expected to be 

able to cope with the usual environmental factors. However, there are many 

compelling factors within the scope of solving the SLAM problem. Effects such as 

sensor noise, size of the area where the robot is located, and the dynamic elements 

in the environment cause mathematical and hardware difficulties in solving SLAM 

problem. The accuracy of the sensors, as an indicator of the reliability of the data 

regarding environment and the state of the robot, emerges as an important factor for 

solution of the SLAM problem. In addition, size of the environment reveals as 

another problem, as size of the environment will increase the need for memory, 

processing load, and accumulation of error originating from the sensor. Moving 

objects, which change model of the environment, are another environmental factor 

that should be taken into account for solution of the SLAM problem.  

In addition to the variety of SLAM's mathematical solution methods, different 

devices such as camera, accelerometer are used in robots. Robustness of the sensor 

data will reduce the error accumulated. However, since it is not possible to obtain 

perfect sensor data in real life, the solution to the SLAM problem should be able to 

overcome sensor errors and noise. In solution of the SLAM problem, information 

can be obtained from a single sensor, as well as environmental data can be obtained 

via multiple sensors of the same type or combinations of different sensors. 
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1.3. Visual SLAM. SLAM methods using camera as sensor are called visual SLAM and 

are generally divided into two categories, as direct methods that using entire image and the 

methods utilizing features [6]. To date, many studies have been carried out in single-camera 

and multi-camera sensor configurations. Among these, as given in Tab. 1, feature-based 

PTAM [7], ORB-SLAM [8] created by using ORB features developed over [9] PTAM; direct 

methods, Large Scale Direct Monocular (LSD) SLAM [10], SVO [11], Direct Sparse 

Odometry (DSO), Direct Sparse Odometry with Loop Closing (LDSO), Dense Visual (DVO) 

SLAM [12], and ElasticFusion [13] can be counted. There are also many benchmarks used 

for performance analysis of the visual SLAM problem. These benchmarks are mostly 

obtained by capturing movement of objects in controlled environments [14] and are separated 

from each other by several features like outdoor, indoor including moving objects and/or 

relatively stationary environments. KITTI, EUROC, TUM RGB-D [14], TUM Monocular 

[15], ICL-NUIM, Sintel [16], Tsukuba [17] and NYU [18] datasets are among them. RAM 

and CPU usages with processing time on a particular dataset are also compared [19] and for 

MSCKF [20], OKVIS [21], ROVIO [22], VINS-Mono [23], SVO [11] + MSF [24] and SVO 

+ GTSAM [25]. These studies carried out on four different hardware with Intel and ARM 

architectures. ATE parameter results are evaluated using some SLAM methods on a wheeled 

robot with a camera [6]. NVIDIA Jetson TX1 hardware with Ubuntu 16.04 version was used 

on the robot. LSD SLAM, ORB-SLAM and Direct Sparse Odometry (DSO) were compared. 

Among the stereo-camera methods, Real-Time Appearance-Based Mapping (RTAB map) 

[26], ORB SLAM, Stereo Parallel Tracking and Mapping (SPTAM) [27] were compared. 

ORB2, DynaSLAM [28] and DSO algorithms are also benchmarked [29]. Intel processors 

were used as part of the analysis. Several parameters including Absolute Trajectory Error 

were evaluated on TUM Monocular and EUROC data sets. 
Although there are many comparison studies, no comprehensive computational 

cost analysis for visual SLAM methods has been encountered in the literature, apart 

from comparison of CPU and memory usages for visual-Inertial Navigation methods 

[19]. 

 

Table 1. Visual SLAM algorithms. 

Algorithm Method Map Sparsity Loop Closing 

Parallel Tracking and Mapping (PTAM) Feature-based Yes No 

Semi-direct Visual Odometry Semi-Direct Yes No 

ORB-SLAM Feature-based Semi Yes 

Direct Sparse Odometry (DSO) Direct No No 

DSO with Loop Closing Direct No Yes 

LSD-SLAM Direct No Yes 

DVO-SLAM Direct No Yes 

ElasticFusion Direct No Yes 
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We evaluate performances of state-of-the-art methods such as ORB-SLAM2 (or 

ORB2) [30], DSO [31], and LDSO [32] on datasets created in different laboratories 

and separated from each other in terms of information such as indoor and outdoor 

environments. The most important parameters, which are Central Processing Unit 

(CPU), Graphics Processing Unit (GPU), and Random Access Memory (RAM) 

usage as well as power consumption of the SLAM algorithms are compared. On the 

other hand, related to the performance of visual SLAM methods, this study 

represents a different and comprehensive perspective using various datasets such as 

ICL-NUIM, KITTI, EUROC and TUM Monocular, regarding to hardware 

constraints such as power consumption, memory usage, CPU and GPU load. 

Material and Methods, Experimental Results, and Conclusion about the study are 

given in the next three sections. 

 
2. Materials and Methods 

 

In this paper, performance and behaviours of ORB2, DSO, and LDSO algorithms on 

KITTI, EUROC, TUM Monocular and ICL-NUIM datasets were compared using 

NVIDIA Jetson TX1 hardware in real-time (online). ATE parameter was obtained 

via “evo” repository [33] to detect trajectory error and to get graphical results. In 

order for the datasets to be used by the visual SLAM methods, calibration of the data, 

definition of the timestep of each image, correct naming of the images, method for 

reading timesteps are considered. According to SLAM methods, data set formats are 

also tailored. Analyses were performed on NVIDIA Jetson TX1 hardware which has 

NVIDIA Maxwell GPU (with 256 NVIDIA CUDA Cores). It has also ARM Cortex 

Quad Core CPU, 4 GB LPDDR memory with Ubuntu 18.04 operating system. In 

order to determine the hardware parameters, "tegrastats" software interface provided 

by NVIDIA JETSON TX1 was used. “tegrastats” interface provides a text file 

containing detailed information about resources such as RAM usage, GPU and CPU 

loads and total consumed power in desired period. Tegrastats data obtained at 

frequency of 1 Hz were converted to .mat file via MATLAB. 

 

2.1. SLAM Methods Used in Benchmarks. ORB2 and Direct Sparse Odometry 

with and without loop closing algorithms are compared in the experimental studies. 

ORB2, a feature-based SLAM method, can produce solutions with monocular, stereo 

and RGB-D cameras. On the other hand, LDSO and DSO methods produce 

monocular solutions. Therefore, monocular solutions were emphasized in the 

comparisons. ORB2 has map reuse, loop closure and relocalization capabilities. 

ORB2 can be executed in real-time for synthetic environments as well as indoor and 

outdoor sequences obtained by cars or robots. It uses ORB features for mapping, 

tracking, relocalization and loop closing [30].  
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DSO is a monocular visual odometry method, which can be executed in real-time. 

DSO combines a full photometric calibration by using lens vignetting, exposure 

time, and non-linear responses. Without need for features, it is able to sample pixels 

through the image areas which have density gradient [31].  

LDSO method was created using the point selection infrastructure of the DSO 

method. But it has loop closure feature that enables detection of repeated point. In 

this respect, LDSO is a monocular Visual SLAM method [32]. 

 

2.2. Benchmark Datasets. In order to compare SLAM methods, datasets developed 

in laboratory environments or developed with special equipment are used. There are 

many datasets available from open sources differentiated from each other according 

to the environments they describe, and the equipment they use to obtain images. As 

such, using datasets with different characteristics will be an important approach to 

reach an accurate result. For this reason, within the scope of this study, KITTI, ICL-

NUIM, TUM Monocular and EUROC benchmark datasets, which are available in 

open sources, were used to compare SLAM methods. 

KITTI outdoor data set was captured using various sensors. Therefore, the data 

set includes images captured by camera beside the measurements obtained via GPS 

and position information. Also, accelerometer data is supplied [34]. KITTI 

benchmark provide 11 training and 11 test data, which can also be used with stereo 

methods (Visual Odometry / SLAM Evaluation, 2012). KITTI data sets named 00, 

03 and 07 each with 10 frame per second were used in the comparison of the 

algorithms ORB2, DSO and LDSO. A micro unmanned aerial vehicle equipped with 

stereo camera was used to create EUROC data set, which is available publicly. 

Beside the image data there are also measurement results by accelerator added to the 

same data set. This data set includes three categories according to degree of 

difficulty. In the experiments data with various difficulty degrees from this set, 

which are MH01, V102 and V203 from interior space were used, so that the 

performance and consumption values of the algorithms are evaluated extensively. 

For data that is rated from easy to difficult, motion and thus blur increases 

progressively. ICL-NUIM dataset contains RGB-D data using handheld camera 

movements [35]. Unlike other datasets, images in the ICL-NUIM dataset were not 

collected from a real environment. The ICL-NUIM dataset consists of synthetic 

images and depth information with frequency of 30 Hz, and ground-truth data. ICL-

NUIM dataset is divided into two categories as Office Room and Living Room, each 

with four subsets. It was considered that LivingRoom0 (lR0) and OfficeRoom0 

(oR0) which have the maximum number of video frames among the all subsets are 

appropriate to be used in the analysis. TUM Monocular dataset contains fisheye 

camera video frames from small indoor to large outdoor environments. It has also 

ground truth data, and calibration parameters in 50 subsets. Subsets numbered 19, 

29, and 30 are used for comparison of LDSO and DSO algorithms. Because ORB2 
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is not suitable with fisheye camera frame, ORB2 was not compared on TUM 

Monocular dataset. 

 
3. Experimental Results 

 

In experimental studies, video sequences from TUM Monocular, EUROC, KITTI 

and ICL-NUIM data sets are used for benchmarking ORB2, LDS and DSO 

algorithms. Total of five pparameters, which are ATE, RAM usage, CPU and GPU 

loads and total power consumption are compared in the experiments. In order to 

avoid non-deterministic results, each SLAM method was executed six times on the 

video sequences. At the end, average of six results obtained for the parameters was 

used for the comparisons. Details of the results obtained for the parameters are given 

in the following subsections.  

In order to obtain data that is in-use by RAM, GPU Load, CPU Load, and 

Consumed Total Power, “Tegrastats” software is used. ATE results are obtained by 

using Evo software. Evo software supplies ATE parameter as meter (rms). By means 

of Tegrastats, RAM usage is obtained as Megabyte (MB). GPU Load and Consumed 

Total Power are determined in term of milliwatt. CPU load is measured as 

percentage. 

 

3.1. Absolute Trajectory Error. ATE is one of the most frequently used parameters 

in the comparison of SLAM methods. It is an indicator of how well the SLAM 

method can track ground-truth data. For the calculation of ATE parameter, open-

source Evo tool was used, and the trajectory file was compared with the ground-truth 

data. Results obtained for ICL-NUIM, KITTI, EUROC and TUM Monocular 

datasets are given in Tab. 2. DSO method gives the best result on OfficeRoom0, 

while ORB2 gives the best result on all other datasets. Besides, LDSO is more 

accurate than DSO for TUM Monocular dataset. Trajectory graph of OfficeRoom0 

is given in Fig. 2, in which all methods track the ground-truth similar to each other 

with tolerable differences.  

 

3.2. RAM Usage. RAM usage is also an important parameter, which is used to 

quantify performance of the algorithms. It is aimed to examine RAM load in order 

to evaluate how SLAM methods use hardware. Therefore, RAM loads created by 

ORB2, LDSO DSO methods over the video sequences of EUROC, ICL-NUIM, 

KITTI, and TUM data sets were recorded with the frequency of 1 Hz. RAM usage 

results are given in Tab. 3. DSO gives the best results in RAM usage due to the lack 

of loop closure increasing complexity. 
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Figure 2.  Trajectory of methods on officeroom0: DSO (left) gives the best result in terms of ATE. 

Table 2. ATE results (rms). 

 
ICL-NUIM EUROC KITTI TUM Monocular 

oR0 lR0 MH01 V102 V203 00 03 07 19 29 30 

DSO 0.162 0.024 0.0464 1.026 1.373 119.77 2.314 15.272 0.165 0.147 0.365 

LDSO 0.413 0.114 0.0425 1.511 1.142 10.612 2.904 6.385 0.137 0.057 0.085 

ORB2 0.171 0.008 0.0441 0.064 0.263 8.3245 1.807 2.132 - - - 

 

Table 3. RAM usage - MB (rms). 

 
ICL-NUIM EUROC KITTI TUM Monocular 

oR0 lR0 MH01 V102 V203 00 03 07 19 29 30 

DSO 1362 1354 1430 1423 1443 1701 1626 1509 1804 1768 1554 

LDSO 1974 1980 2177 2121 2143 2943 2112 2071 2429 2402 2019 

ORB2 1515 1547 1558 1525 1524 2160 1457 1475 - - - 
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3.3. CPU Usage. One of the parameters frequently used in the computational load 

calculations of SLAM methods is CPU load. Since NVIDIA Jetson TX1 has quad-

core processor, comparisons were made by averaging the usage rates of four 

processors. CPU load results are given in Table . LDSO method causes higher CPU 

usage than DSO for all datasets.  This result is about loop closure effect. On the other 

hand, while ORB2, as a feature-based method, causes more CPU load in case of non-

textured environment such as officeRoom0, livingRoom0, and MH01, it causes less 

CPU usage in more textured environment such as V203, 00, and 07. 
 

3.4. Total Power Consumption. One of the most important constraints for 

autonomous systems is limited power supplies. For this reason, it will be a correct 

approach to examine how the total power consumption of the hardware changes 

depending on the SLAM methods, as well as processing load on the CPU. Total 

power consumption results are given in Table . 5. According to results shown in 

Table  5, the least power consuming method is ORB2. Furthermore, when compared 

to DSO, it is obviously seen that LDSO method consumes less power, with an 

exception of ICL-NUIM dataset on which total power consumption of the methods 

are similar. This situation is also a question of this study to answer because power 

consumption behavior is different from the CPU load behavior. 
 

Table 4.  CPU usage (rms). 

 
ICL-NUIM EUROC KITTI TUM Monocular 

oR0 lR0 MH01 V102 V203 00 03 07 19 29 30 

DSO 47.292 45.876 45.815 50.562 54.692 61.974 52.661 56.371 57.365 55.167 53.272 

LDSO 51.374 49.200 53.796 54.595 55.334 68.162 56.502 59.068 59.114 57.745 57.646 

ORB2 55.753 53.813 53.858 52.519 49.349 39.928 46.925 48.067 - - - 

 

Table 5. Total power consumption – milliwatts (rms). 

 
ICL-NUIM EUROC KITTI TUM Monocular 

oR0 lR0 MH01 V102 V203 00 03 07 19 29 30 

DSO 5558.8 5368.4 6515.6 6250.9 6727.4 8878.6 6070.0 6547.6 8033.2 7377.7 6382.8 

LDSO 5747.6 5541.9 6362.5 5940.1 5935.0 6875.9 5926.4 6323.5 6727.0 6297.7 6185.9 

ORB2 5351.8 5236.2 5465.1 5248.5 5201.9 4511.5 4959.4 5022.4 - - - 
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3.5. GPU Power Consumption. The difference between CPU usage and overall 

power consumed behaviors by the hardware, which is created by SLAM methods 

has revealed the need to check GPU load. The results of given data provided by 

hardware have been able to explain the differences between CPU loads and total 

power dissipated. 

GPU load in milliwatts of all methods are given in Tab6. For all datasets, GPU 

power consumption of DSO is higher than the others while ORB2 is the most 

effective one among all methods for all datasets. GPU power consumption versus 

time graphs of all methods are also given in Fig. 3. As seen in this figure, GPU load 

of DSO method for all dataset is getting higher over time. As explained before, on 

TUM Monocular Dataset, ORB2 methods was not executed. 

 

Table 6. Power consumption by GPU – milliwatts (rms). 

 
ICL-NUIM EUROC KITTI 

oR0 lR0 MH01 V102 V203 00 03 07 

DSO 346,7439 350,9953 1303,57 1052,36 1472,55 3050,55 621,99 1162,24 

LDSO 304,4431 341,4259 902,00 576,95 550,76 995,11 520,67 631,24 

ORB2 165,4507 148,8809 99,02 120,71 144,56 81,85 110,61 85,52 

 

 
Figure 3. GPU power consumption of DSO, LDSO and ORB-SLAM2. 
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4. Conclusion 
 

In this paper, performances of ORB2, DSO and LDSO methods, which are suitable 

to be executed on ARM processor that NVIDIA Jetson TX1 has, are compared using 

ICL-NUIM, KITTI, TUM Monocular and EUROC benchmark datasets. By making 

an exhaustive comparison, in particular, it is aimed to make a choice among the 

methods in order to meet the power constraints of mobile robots, localization 

requirements within indoor environment, and to guide to future studies. ATE, RAM 

usage, CPU and GPU loads and total consumed power parameters were used for the 

comparison studies. 

ORB2 is the most effective method for ATE parameter, except for the 

Officeroom0 dataset, for which DSO method gives the best result. The reason for 

ORB2 gives the worst result for OfficeRoom0 is that it cannot detect features in the 

Officeroom0 dataset sufficiently. 

Due to the lack of loop closure in DSO, it gives the best results in RAM usage as 

expected. On the other hand, as a direct method, owing to loop-closure ability, LDSO 

is the method that pushes RAM constraints the most. It has been determined that the 

LDSO method not only forces the RAM constraint of NVIDIA Jetson TX1 hardware 

during the process, but also tends to use the SWAP memory more. 

As for the CPU load, DSO method gives better results on the ICL-NUIM dataset, 

while the ORB2 method has better results on the KITTI dataset. However, while 

DSO method is better for MH01 and V102 dataset, ORB2 method achieves better 

results on V203 dataset. In this way, it can be said that ORB2 causes more CPU load 

when solving SLAM problem in surroundings such as supplied by ICL-NUIM where 

features are less obvious, whereas ORB2 algorithm also causes CPU to have less 

load in environments where features are dense and can be followed. 

When the CPU load and total power consumption are compared, different 

behaviours are noticed. For instance, CPU is used at least by DSO algorithm on 

MH01 data set. However, power consumed by this method is the most demanding 

among all. As an explanation for that, DSO is the method that requires the most GPU 

power. 

For GPU power consumption, the best results were obtained with ORB2 on all 

datasets while the worst results were obtained by DSO. Differences between GPU 

power consumption behaviours are related with keyframe frequencies of the 

methods. DSO and LDSO use 5-10 frames per second [31], and 5-7 frames per 

second [32], respectively. However, ORB2 uses one frame as a keyframe per 20 

frames maximum [30]. This situation is the root cause for the difference between the 

total power consumption and CPU load. 

LDSO method is not suitable to be used in large environments, since it pushed 

RAM constraints. In textured environments, regardless of the size of the 
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environment, ORB2 is more suitable than DSO and LDSO to solve the SLAM 

problem within the constraints of the hardware in terms of ATE, GPU and CPU 

loads, and total power consumption. On the other hand, within the untextured 

environment with short and straight trajectory, DSO is suitable for the solution of 

the SLAM problem. 
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