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This paper discusses the immediate deflection calculation of reinforced concrete beams and their 

consistency with the experimental results. For this purpose, a total of six T-beams with low, medium, 

and high reinforcement ratios were tested and then, deflection behavior was compared with the well-

known Branson (1965) and Bischoff (2005) approaches. Although both approaches could yield close 

results for the low reinforcement at service loads by using a constant modulus of elasticity, they 

underestimated the deflections of medium and highly reinforced beams. Thus, the nonlinear behavior of 

concrete that changes with stress was also considered in the subsequent analyzes. As a result, the 

developed new approach could predict the experimental deformations very accurately, especially at the 

level of service loads. 
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1. INTRODUCTION 

As known, reinforced concrete (RC) structural members are designed to resist loads without experiencing 

failure. On the other hand, RC members should also meet serviceability requirements to assure proper behavior 

and functionality under these loads. Deflections and cracking properties are the major concerns that can affect 

serviceability. Therefore, it is very crucial to predict these features with an estimate close to the actual behavior. 

However, this is not straightforward due to the specific behavior of RC. The flexural stiffness of a beam section 

depends on the moment of inertia normal to loading direction and the modulus of elasticity. However, the 

product of both variables is not constant for RC beams at any stage of the loading. Nonlinear and time-

dependent stress-strain behavior of concrete results variability in the modulus of elasticity. On the other hand, 

the moment of inertia significantly changes after cracking and keeps changing due to crack propagation. 

Accordingly, many research was conducted to calculate or predict immediate deflections of RC beams. They 

dealt with predicting the decreasing trend of moment of inertia due to cracked section properties. This behavior 

was taken into account by using different effective moment of inertia at corresponding load levels. Among 

these studies, Branson (1965) became very popular and conventional. This approach was also adopted by 

Turkish Standards TS500 (2000), American Concrete Institute, ACI 318-14 (2014), Canadian Standards CSA 

(2004), AASHTO (2005), Australian Standards, AS 3600-2009 (2009). American Concrete Institute Building 

Codes had been using this approach for more than 35 years (Mancuso & Bartlett, 2017). However, in 2019, 

ACI 318-19 (2019) removed the Branson (1965) equation, and instead adopted the Bischoff (2005) approach. 

The method proposed by Bischoff (2005) slightly better estimated the load-deflection of RC beams with a 

more rational approach of cracking behavior (Kalkan, 2010; Mancuso & Bartlett, 2017; Bischoff, 2020).  
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The current study was conducted to estimate the immediate deflection of RC beams. For this purpose, half-

scaled and T-sectioned RC beams with the reinforcement ratios of high, medium, and low were tested under 

monotonic loads. Afterwards, obtained experimental load-deflection relationships were compared with 

analytical ones proposed by Branson (1965) and Bischoff (2005) in accordance with the ACI 318-14 (2014) 

and ACI 318-19 (2019), respectively. Both methods gave quite close results to experimental values for the 

beams with low reinforcement ratio. However, they underestimated the deflections of medium and highly 

reinforced beams especially at service load levels. In other words, this is on the unsafe side. The latest research 

are still mainly focused on cracking behavior of RC members and estimating the effective moment of inertia. 

Consequently, sophisticated methods have been developed (Ammash et al., 2018; Arabshahi et al., 2022). In 

these approaches, even shear deformations were considered and taken into account (Kim et al., 2021). On the 

other hand, the effect of the elastic modulus of the concrete, which shows non-linear behavior with stress, was 

omitted. In other words, the specific behavior for one of the two main parameters affecting flexural stiffness 

is neglected in the calculations as far as the author knows. ACI 318-14 (2014) and ACI 318-19 (2019) permit 

to use a constant modulus of elasticity for these analyses. Thus, the nonlinear behavior of concrete that changes 

with stress was also considered in the subsequent analyzes to predict deflections as accurately as possible. The 

widely-accepted Hognestad (1951) concrete model was implemented into the calculations in order to reflect 

the effect of an elasticity modulus that changes with stress. Obtained results were presented graphically and 

discussed in terms of accuracy. 

2. MATERIAL AND METHOD 

2.1 Experimental Research 

A set of ½ scaled and T-sectioned six RC beams were tested under monotonic four-point bending. Table 1 

indicates the basic properties of these specimens. Dimensions and materials of the beam specimens were 

designed considering common practice and the experimental test setup limits. Ratio of the longitudinal 

reinforcement and flange thicknesses were selected as research parameters. Concrete of the specimens were 

cast monolithically. Figure 1 shows the dimensions and reinforcement detailing of the test specimens. The 

length of the RC beams was 3000 mm. The beam width, depth, and flange width of beams were 125/250/725 

mm, respectively. Flange thickness was 100 or 75 mm based on the specimen type. For each specimen, the 

upper flange region was reinforced by orthogonally placed Ø5/75 (rebar diameter is 5 mm and center to center 

spacing is 75 mm) rebars. On the other hand, while the bottom region of the flange was reinforced with Ø5/75 

for the longitudinal direction, the transverse direction was Ø5/150. Five millimeters of net concrete cover 

distance was adopted for the flange reinforcement. 

Table 1. Test specimen properties 

Specimen 
Flange thickness 

(mm) 
Compression rebars Tension rebars Reinforcement ratio (%) 

L75 75 2Ø8 3Ø8 low  0.51 

M75 75 2Ø10 4Ø10 medium  1.07 

H75 75 2Ø12 4Ø12 high 1.55 

L100 100 2Ø8 3Ø8 low  0.51 

M100 100 2Ø10 4Ø10 medium  1.07 

H100 100 2Ø12 4Ø12 high 1.55 

RC beams in this study were formed with three main longitudinal tension reinforcement ratios, which are low, 

medium, and high. Accordingly, beams with low reinforcement had 3Ø8 (3 rebars with a diameter of 8 mm) 

tension and 2Ø8 compression, medium reinforcement had 4Ø10 tension and 2Ø10 compression, high 

reinforcement had 4Ø12 tension and 2Ø12 compression rebars. Numerical expression of these tension 

reinforcement ratios were indicated in Table 1. Ten millimeters of net concrete cover was left for longitudinal 

rebars. Transverse reinforcement was detailed by double-legged stirrups of Ø5/100 mm which had 60 mm long 

135° bended hooks. Stirrup detailing was kept the same along the length of all specimens. Transverse 

reinforcement was designed to prevent shear failures in the experiments.  
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Figure 1. Dimensions and detailing of test specimens 

Low and high longitudinal tension reinforcement ratios for the test specimens were designed according to 

TS500 (2000). While the low one corresponds to the minimum (ρmin), the high one corresponds to the maximum 

(ρmax) longitudinal reinforcing limits for flexural members and calculated by Eq. (1) and Eq. (2). 


𝑚𝑖𝑛

= 0.8 
𝑓𝑐𝑡𝑑 

𝑓𝑦𝑑
 (1) 


𝑚𝑎𝑥

= 0.85𝜌𝑏 ≤  0.02  (2) 

where fyd is the design yield strength of longitudinal rebars and obtained by dividing characteristic strength to 

material factor of 1.15; fctd is the design tensile strength of concrete and obtained by dividing characteristic 

strength to material factor of 1.5; ρb is the reinforcement ratio for the balanced section. The medium 

reinforcement ratio was set by the arithmetic mean of these maximum and minimum boundaries. 

The name of the specimens were determined to represent their test parameters. Accordingly, the first letter (H, 

M, or H) refers to the low, medium, and high reinforcement ratios by their initials. The following number 

indicates the flange thickness of the beam in millimeters as 75 or 100 (Table 1). 

Concrete compressive strengths were determined based on standard 150×300 mm cylinder tests conducted on 

the 28th day of the casting. The same concrete mixing ratio was used for all specimens and there was not any 

chemical additives in it. At least ten concrete cylinder specimens were tested for each RC beam. Accordingly, 

the mean concrete compressive strength (fc) of the concrete was calculated as 15.8 MPa, with a sample standard 

deviation of 0.63 MPa. Ribbed steel bars were used for the reinforcement. However, while Ø5 rebars were in 

S500 grade, Ø8, Ø10, and Ø12 rebars were in S420 grade. While S500 grade has a minimum yield strength 

(fy) of 500 MPa and an ultimate strength (fsu) of 550 MPa, these values for S420 grade are 420 MPa and 500 

MPa, respectively. 
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The experimental set-up was illustrated in Figure 2. Accordingly, RC beams were placed on simple supports. 

Tests were conducted in the closed steel frame. The load was acted by a hydraulic jack, and this load 

transmitted to the RC beam with the help of load-spreader steel shapes. The upper steel beam was utilized to 

divide the main load into halves. This simple supported steel beam had a clear span length of 600 mm and was 

standing on two steel shapes which were located on transverse direction of the RC beam. In this way, two 

uniformly distributed loads acted along the transverse direction of the test specimen. To ensure more even load 

distribution, rubber pads were also placed between the steel shapes and the RC beam. The acting force was 

measured by a canister type load cell which was attached to the hydraulic jack. The load cell had an accuracy 

of 0.25%. Linear variable differential transformers (LVDTs), which had an accuracy of 0.1%, were utilized to 

measure vertical displacements at the mid-span, loading projections, and supports. Since observed support 

settlements during the experiments were very close to zero, they were neglected during net displacement 

calculations. The vertical displacements measured from the loading projections were for curvature calculations 

and also a backup for the mid-span measurement. Monotonic quasi-static load was maintained up to 150 mm, 

which is the stroke length capacity of the hydraulic jack or a significant (at least 15%) decrease in the maximum 

load. All specimens experienced ductile flexural failure as expected. There was no sign of shear or bond 

damage. The experimental load-deflection diagrams of RC beams were plotted and shown in Figure 3 for 

comparison. In these diagrams, while the deflection axis corresponds to the net mid-span deflection, the load 

axis corresponds to the force measured by the load cell. 

 

Figure 2. Test set-up 

2.2 Analytical Study 

Consecutively, the following steps were taken for predicting analytical load-deflection curves of the tested RC 

beams according to both methods developed by Branson (1965) and Bischoff (2005). Initially, the rupture 

modulus of concrete (fr) was computed as 2.4 MPa by using the Eq. (3) according to (ACI 318-19, 2019): 

𝑓𝑟 = 0.62√𝑓𝑐
  (3) 

where  is the lightweight concrete modification factor to account for the decreased mechanical properties and 

in this case  =1, fc is the specified compressive strength of concrete in MPa and was taken as 15 MPa based 

on cylinder tests.  

The cracking moment (Mcr) was computed for the beams by the following Eq. (4) (ACI 318-19, 2019). 
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𝑀𝑐𝑟 =
𝑓𝑟 𝐼𝑔

𝑦𝑡
 (4) 

where yt is the distance between gross section neutral axis and extreme fiber in tension, Ig is the gross-section 

moment of inertia by neglecting reinforcement. Ig was calculated as 325055499 mm4 and 328342608 mm4 for 

the beams with the flange thickness of 75 and 100 mm, respectively. Calculated Mcr values were explicitly 

given in Table 2. 

 

Figure 3. Analytical and experimental load-deflection diagrams 
 

Table 2. Used values for analytical approach 

Specimen 

Tension 

reinforcement 

area (mm2) 

Compression 

reinforcement 

area (mm2) 

Icr 

(mm4) 

yt 

(mm) 

yc 

(mm) 

Mcr 

(kNmm) 

L75 151 101 87601792 176.6 41.6 4416.5 

M75 314 157 151440468 176.6 47.6 4416.5 

H75 452 226 201074095 176.6 52.0 4416.5 

L100 151 101 112361382 174.3 51.7 4520.7 

M100 314 157 170151410 174.3 56.0 4520.7 

H100 452 226 215662224 174.3 59.2 4520.7 

The procedures for Branson (1965) and Bischoff (2005) methods are the same up to this stage. However, 

according to Branson (1965), if the RC member is cracked at one or more sections, immediate deflections 

should be calculated with the effective moment of inertia (Ie) given in Eq. (5) (ACI 318-14, 2014). On the other 

hand, according to Bischoff (2005), if the acting moment (Ma) is less than or equal to 2/3Mcr, Ie can be taken 

equal to Ig. Otherwise, the following Eq. (6) should be used, if Ma is greater than 2/3Mcr (ACI 318-19, 2019). 
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𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + [1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

] 𝐼𝑐𝑟 ≤ 𝐼𝑔  (5) 

𝐼𝑒 =
𝐼𝑐𝑟

1 − (
(2/3)𝑀𝑐𝑟

𝑀𝑎
)

2

(1 −  
𝐼𝑐𝑟
𝐼𝑔

) 

 
(6) 

where Icr is the cracked section moment of inertia which transformed in terms of concrete, Ig is the moment of 

inertia of gross concrete section about centroidal axis, neglecting reinforcement; Ma is the maximum moment 

acting on the RC member at stage deflection is calculated. Icr was computed according to the derivations in 

ACI 435R-95 (2000) and shown for each specimen in Table 2. The elastic modulus of concrete (Ec) was 

computed according to ACI 318-19 (2019) and found as 18203 MPa by Eq. (7). Elastic modulus of the steel 

rebars (Es) were taken as 200000 MPa. 

𝐸𝑐 = 4700√𝑓𝑐
 (7) 

The following remaining procedures were applied to obtain the analytical load-deflection diagrams of the RC 

beams by both mentioned methods. Since measured deflections only include applied load, deflection resulted 

from self-weight was neglected. Acting load was started from zero and increased by 0.5 kN steps until the 

maximum load values in the experiments were achieved. Load steps were expressed in terms of Ma at the mid-

span. Thus, Ie was computed for each Ma value by operating the protocols specific to each method. 

Typical Eq. (8) was derived for computation of mid-span deflection (δ) for a simple supported beam subjected 

to two symmetrical concentrated loads. In the Eq. (8), P is one of the two acting concentrated loads and is 

equal to half of the total applied load; a is the shear span length which in this case equal to 1125 mm; L is the 

net span length and equal to 2850 mm for the current test set-up (Figure 1). 

𝛿 =
𝑃 𝑎 

24 𝐸𝑐  𝐼𝑒𝑓

(3𝐿2 − 4𝑎2) (8) 

Eventually, analytical load-deflection diagrams were drawn and presented with the experimental 

corresponding ones in Figure 3.  

2.3 Proposed Method 

In the proposed method, Eq. (6) which is adopted by ACI 318-19 (2019) was used as it is, except for the 

constant Ec assumption. As known, since the stress-strain behavior of concrete is nonlinear, it is possible to 

determine different Ec value for each point on the curve. The deviation from linearity becomes more obvious 

with increasing stress. Various models have been developed to express stress-strain relationship of concrete 

analytically (Hognestad, 1951; Hognestad et al., 1955; Desayi & Krishnan, 1964; Todeschini et al., 1964; 

Popovics, 1973; Carreira & Chu, 1985; Kumar, 2004). Among these, the widely-accepted Hognestad (1951) 

model with the Eq. (9) given below was selected for its convenience. 

𝜎𝑐 =  𝑓𝑐
 [

2𝜀𝑐

𝜀𝑐𝑜
− (

𝜀𝑐

𝜀𝑐𝑜
)

2

] for 𝜀𝑐 ≤ 𝜀𝑐𝑜 (9) 

where σc is the stress in concrete; εco is the strain corresponding with the maximum stress fc; εc is the stain in 

which the stress is computed. If εc=σc/Ec is substituted in the Eq. (9), and then solved for Ec, following Eq. (10) 

can be obtained for the valid root. Thus, Ec could be defined as a secant modulus for each σc value. 

𝐸𝑐 =  
𝑓𝑐
[1 + √1 − (𝜎𝑐/𝑓𝑐

) ] 

𝜀𝑐𝑜
 (10) 
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In Eq. (10), εco was taken as 0.002 which is valid for most of the cases (CEB-FIB, 1970). fc was 15 MPa based 

on cylinder tests. σc was calculated for each Ma value according to the adopted practical approach by Eq. (11). 

𝜎𝑐 =  
𝑀𝑎

  𝑦𝑐

𝐼𝑒
 (11) 

where yc is the distance between neutral axis and the extreme fiber in compression. The value of yc was 

calculated by the derivations of flanged sections with compression steel based on the ACI 435R-95 (2000) and 

given for each specimen explicitly in Table 2. Ie was computed by Eq. (6) which is Bischoff (2005) approach 

due its more rational results than the Branson (1965). 

In this way, the analytical load-deflection diagram of the specimens plotted by using stress-varying modulus 

of elasticity were illustrated in Figure 4 with the previously drawn ones in Figure 3. Note that some portions 

of the post-yielding experimental curves were removed in order to make precise evaluations on a larger scale. 

 

Figure 4. Initial load-deflection curves including proposed ones 

3. RESULTS AND DISCUSSION 

First point of the slope change in the load-deflection diagrams corresponds to the cracking load of the RC 

beams (Figure 4). Branson (1965) and Bischoff (2005) equations mostly underestimated the deflections after 

cracking. The deviation was more obvious for the medium and high reinforcement ratios (Figure 3). 

Exceptionally, Bischoff (2005) method slightly overestimated deformations up to approximately 1.5 times the 

experimental cracking load for beams with low reinforcement ratios (Figure 4). While Branson’s (1965) 

approach was better for estimating the cracking behavior in RC beams with low reinforcement ratios, 

Bischoff’s (2005) was better for medium and highly reinforced beams. Both methods resulted in almost equal 

deflections after about 2.5 times the experimental cracking loads. Therefore, the effects of the methods on 

behavior were dominant only for beams with low reinforcement. On the other hand, the proposed approach, 
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using stress-varying modulus of elasticity, had negligible impact on the cracking behavior even for beams with 

low reinforcement as expected. In other words, using stress-varying modulus of elasticity in Bischoff’s (2005) 

equation did not make any difference from an engineering point of view (Figure 4). 

Immediate deflections are mostly calculated under service loads. Therefore, the accuracy of deflection 

calculation is much more significant for loads at this level. The service load level for an RC beam 

approximately corresponds to 65% of the yielding load of the beam (Py) when gravity load and flexural 

resistance factors are considered in the design codes (ACI 318-19, 2019). Experimental Py values were 

apparent and directly obtained from load-deflection curves of the test specimens (Figure 3). Experimental and 

analytical deflections correspond to experimental 0.65Py were considered service deflections (δs) and given in 

Table 3. 

Branson (1965) and Bischoff (2005) equations gave the same results at the service loads for the RC beams 

with high and medium reinforcement ratios. On the other hand, Bischoff (2005) equation resulted slightly more 

deflections for the beams with low reinforcement. Nevertheless, both equations in their current form constantly 

underestimated the deflections for the service loads. They predicted almost 30% less than the experimental 

results for highly and medium reinforced beams. At low reinforcement ratios, this value was on average 22% 

and 14% less for Branson (1965) and Bischoff (2005), respectively. In other words, Bischoff (2005) correlated 

better with the experimental results. On the other hand, the proposed approach, using stress-varying modulus 

of elasticity, was in close agreement with the experimental results. The proposed approach estimated the 

deflection of the L75 specimen 23% more at service load levels. However, the overestimation was only 7% 

for specimen L100 which could be considered equivalent to L75. Thus, this contradiction was attributed to 

random causes arising from specific behavior of RC members. Nevertheless, it should not be disregarded that 

the deviation was in the safe region. When specimen L75 was excluded from the evaluation, the difference 

varied between +7% and -6%. Additionally, this range corresponded to deviations below 0.5 mm (Table 3). 

Table 3. Service load deflections of specimens 

Specimen 

Experiment 

yield load, Py 

(kN) 

Experiment 

0.65Py 

(kN) 

Experiment δs 

(mm) 

Branson δs  Bischoff δs  

δs of the 

proposed 

approach  

mm Rel. mm Rel. mm Rel. 

L75 28 18.2 5.2 4.2 0.81 4.8 0.92 6.4 1.23 

M75 52 33.8 8.0 5.5 0.69 5.5 0.69 7.5 0.94 

H75 82 53.3 9.1 6.6 0.73 6.6 0.73 9.4 1.03 

L100 32 20.8 5.5 4.1 0.75 4.4 0.80 5.9 1.07 

M100 61 39.7 8.3 5.8 0.70 5.8 0.70 8.2 0.99 

H100 86 55.9 9.1 6.4 0.70 6.4 0.70 9.4 1.03 

Rel.: The ratio of the analytical deflection to the experimental deflection 

In the proposed approach, the best fit was observed in the behavior of medium reinforced beams. The curves 

almost overlap to the yield point. A similar favorable consistency was valid for specimen L100. In specimen 

L75, while the current approaches mostly underestimate the deflection, the proposed approach overestimate in 

the same proximity (Figure 4). The agreement between the experimental curves gradually decreased as they 

got closer to yield in highly reinforced RC beams. However, the proposed approach resulted deflections much 

more close to the experimental ones even in the yield regions. Moreover, slight deviations were on the 

conservative side (Figure 4). 
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4. CONCLUSION 

In this study, T-sectioned six RC beams with low, medium, and high reinforcements were tested and 

experimental load-deflection diagrams were obtained. Deflections were calculated according to Branson 

(1965) and Bischoff (2005) by using constant modulus of elasticity as it is recommended by ACI 318-14 (2014) 

and ACI 318-19 (2019), respectively. Afterwards, the nonlinear behavior of concrete that changes with stress 

was also taken into account for the Bischoff (2005) method to predict deflections as accurately as possible. 

The widely-accepted and practical Hognestad (1951) concrete stress-strain relationship was implemented in 

the proposed approach. Consistency between the analytical and experimental results was evaluated. In the 

current section, significant outcomes of the study were presented. On the other hand, it should be noted that 

the results are based on data from a limited number of test specimens. For this reason, solid and absolute 

judgements should be avoided.  

When Branson (1965) and Bischoff (2005) equations were compared, Branson (1965) approach simulated the 

cracking behavior of RC beams with low reinforcement ratios better than Bischoff (2005). On the other hand, 

Bischoff (2005) approach was better for the tested medium and highly reinforced beams. Both deflection 

calculation methods did not result any significant difference under the assumed service loads and constantly 

underestimated the experimental deflections. The reached deviation was 30% less than the experimental results 

for high and medium reinforcement ratios. 

Deflections could be calculated more accurately when non-linear stress-strain behavior of concrete was 

deployed in Bischoff (2005) approach. The proposed approach was able to estimate the experimental 

deflections under service loads with an average proximity of 5%. Moreover, this average value was on the safe 

side. The best fit to the experimental load-deflection curves was observed in medium reinforced beams which 

is valid for most of the case. 

CONFLICT OF INTEREST 

The author declares that there is no conflict of interest. 

REFERENCES 

AASHTO. (2005). LRFD bridge design specifications, American Association of State Highway and 

Transportation Officials, USA. 

ACI 318-14. (2014). Building code requirements for structural concrete and commentary, American Concrete 

Institute, USA. 

ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete 

Institute, USA. 

ACI 435R-95. (2000). Control of deflection in concrete structure. American Concrete Institute, USA. 

AS 3600-2009. (2009). Australian standard for concrete structures. Standards Australia, Australia. 

Ammash, H., Hemzah, S., & Al-Ramahee, M. (2018). Unified advanced model of effective moment of ınertia 

of reinforced concrete members. International Journal of Applied Engineering Research, 13(1), 557-563. 

Arabshahi, A., Tavakol, M., Sabzi, J., & Gharaei-Moghaddam, N. (2022). Prediction of the effective moment 

of inertia for concrete beams reinforced with FRP bars using an evolutionary algorithm. Structures, 35, 684-

705. doi:10.1016/j.istruc.2021.11.011 

Bischoff, P. H. (2005). Revaluation of deflection prediction for concrete beams reinforced with steel and fiber 

reinforced polymer bars. Journal of Structural Engineering, 131(5), 752-767. doi:10.1061/(ASCE)0733-

9445(2005)131:5(752) 

Bischoff, P. H. (2020). Comparison of existing approaches for computing deflection of reinforced concrete. 

ACI Structural Journal, 117(1), 231-240. doi:10.14359/51718072 

Branson, D. E. (1965). Instantaneous and time-dependent deflection on simple and continuous reinforced 

concrete beams (HPR Report No.7), Highway Department Bureau of Public Roads, USA. 

https://doi.org/10.1016/j.istruc.2021.11.011
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
https://doi.org/10.14359/51718072


525 
Eray ÖZBEK 

GU J Sci, Part A, 9(4): 516-525 (2022) 
 

 

Carreira, D. J. & Chu, K. D. (1985). Stress-strain relationship for plain concrete in compression. ACI Journal 

Proceedings, 82(6), 797-804.  

CEB-FIB. (1970). International recommendations for the design and construction of concrete structures: 

principles and recommendations, Comité Euro-International-Federation Internationale de la Précontrainte, 

London, UK. 

CSA A23.3-04. (2004). Design of concrete structures, Canadian Standards Association, Canada. 

Desayi, P. & Krishnan S. (1964). Equation for the stress strain curve of concrete. ACI Journal Proceedings, 

61(3), 345-350. 

Hognestad, E. (1951). A study of combined bending axial load in reinforced concrete members. University of 

Illinois Bulletin Series No. 399. The University of Illinois Engineering Experimental Station, USA.  

Hognestad, E., Hanson, N. W., & McHenry, D. (1955). Concrete stress distribution in ultimate strength design. 

ACI Journal Proceedings, 52(4), 455-480. doi:10.14359/11609 

Kalkan, İ. (2010). Deflection prediction for reinforced concrete beams through different effective moment of 

ınertia expressions. International Journal of Engineering Research and Development, 5(1), 72-80. 

Kim, S.-W., Han, D.-S., & Kim, K.-H. (2021). Evaluation of shear effect on deflection of RC beams. Applied 

Sciences, 11(16), 7690. doi:10.3390/app11167690 

Kumar, P. A. (2004). Compact analytical material model for unconfined concrete under uni-axial compression. 

Materials and Structures, 37(9), 585-590. doi:10.1007/BF02483287 

Mancuso, C., & Bartlett, F. M. (2017). ACI 318-14 criteria for computing instantaneous deflections. ACI 

Structural Journal, 114(5), 1299-1310. doi:10.14359/51689726 

Popovics, S. A. (1973). Numerical approach to the complete stress-strain curve of concrete. Cement and 

Concrete Research, 3(5), 583-599. doi:10.1016/0008-8846(73)90096-3 

Todeschini, C. E, Bianchini, A. C., & Kesler, C. E. (1964). Behavior of concrete columns reinforced with high 

strength steels. ACI Journal Proceedings, 61(6), 701-716. 

TS500. (2000). Requirements for design and construction of reinforced concrete structures, Turkish Standarts 

Institute, Turkey. 

https://doi.org/10.14359/11609
https://doi.org/10.3390/app11167690
https://doi.org/10.1007/BF02483287
https://doi.org/10.14359/51689726
https://doi.org/10.1016/0008-8846(73)90096-3

