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Abstract  Öz 

Random Fourier features (RFF) provide one of the most prominent 
means for nonlinear classification in especially large scale data settings. 
However, considering the original proposal of RFF, Fourier features are 
randomly drawn from a certain distribution and used unoptimized. In 
this paper, we investigate Fourier features via a single hidden layer 
feedforward neural network (SLFN) and optimize, i.e., learn, those 
features (instead of drawing randomly). The learned Fourier features 
are deduced from the radial basis function (rbf kernel), and 
implemented in the hidden layer of the SLFN which is followed by the 
output layer. We present extensive experiments with 10 different 
classification datasets from various fields, e.g., bioinformatics. The 
learning of Fourier features is observed to be highly superior over the 
competing techniques such as perceptron in the rbf kernel space or a 
greedy forward feature selection strategy. On the other hand, the 
Fourier feature learning performs comparably with SVM (support 
vector machines with rbf kernel) while providing substantial 
computational benefits, and this is even without using the max margin 
regularization. Moreover, when tested in wireless mesh networks, the 
SLFN delivers promising smart steering capabilities. 

 Rastgele Fourier öznitelikleri (RFÖ), doğrusal olmayan sınıflandırma 
için özellikle büyük ölçekli veri koşullarında en önemli araçlardan 
biridir. Bununla birlikte, RFÖ'nün orijinal önerisi dikkate alındığında, 
Fourier öznitelikleri belirli bir dağılımdan rastgele seçilir ve 
eniyilenmeden kullanılır. Bu yazıda, Fourier özniteliklerini tek gizli 
katmanlı bir ileri beslemeli sinir ağı (TKİS) aracılığıyla incelemekte ve 
bu öznitelikleri (rastgele seçim yerine) optimize etmekte, yani 
öğrenmekteyiz. Öğrenilen Fourier öznitelikleri radyal taban 
fonksiyonundan (rtf çekirdeği) üretildikten sonra TKİS'nin gizli 
katmanında gerçeklenir ve sonra takip eden çıktı katmanında 
kullanılır. Biyoinformatik gibi çeşitli alanlardan 10 farklı sınıflandırma 
veri kümeleri ile kapsamlı deneyler sunmaktayız. Fourier öznitelik 
öğrenmesinin, rtf çekirdek uzayında perseptron uygulama veya ileri 
yönlü fırsatçı öznitelikleri seçme stratejileri gibi rakip tekniklere göre 
oldukça üstün olduğu gözlemlenmiştir. Öte yandan, Fourier öznitelik 
öğrenmesi, DVM (rtf çekirdekli destek vektör makineleri) ile 
karşılaştırılabilir bir performans sergilerken, önemli hesaplama 
avantajlarını marjin büyütmesini kullanmadan dahi 
sağlayabilmektedir. Ayrıca, TKİS'yi kablosuz örgü ağlarında test 
ettiğimizde akıllı yönlendirme açısından umut vaat ettiğini 
gözlemlemekteyiz. 

Keywords: Fourier features, Neural networks, Single hidden layer, 
Classification, Kernel, Steering. 

 Anahtar kelimeler: Fourier öznitelikleri, Sinir ağları, Tek gizli 
katman, Sınıflandırma, Çekirdek, Bağlantı yönlendirme. 

1 Introduction 

Kernels in machine learning [1], e.g., support vector machines 
(SVM) [2],[3], enable the exploration of nonlinear data 
structures for various purposes such as classification [3], 
regression [4] and distribution modeling [5]. The central idea 
in learning with kernels is to map the observation space to a 
high dimensional kernel space by essentially changing the 
original inner product to a more appropriate one, i.e., kernel, 
providing only an indirect access to the high dimensional space. 
Afterwards, a linear technique is employed in the kernel space 
to solve a nonlinear problem in the observation space. There 
are two issues in this approach. First, an exploration of kernels 
is required to find the one that best fits to the nonlinearity in 
data; and in fact, there are a continuous spectrum of kernels 
that one can choose from. Second, the computational as well as 
space complexity are prohibitively complex when the data is 
abundant. The reason is that using the resulting kernel model 
requires (later after training) repetitive and complete 
(occasionally partial) passes over the data (that the model is 
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trained on) since the kernel space is often not constructed 
explicitly and can be accessed only through the kernel. The first 
issue (finding the best kernel) can be addressed by kernel 
learning [6], and the second (prohibitive computational as well 
as space complexity) can be addressed by constructing the 
kernel space explicitly [7]. However, literature addressing the 
both simultaneously is fairly limited. 

To this end, we consider a single hidden layer feedforward 
network (SLFN) for nonlinear binary classification. By using the 
random Fourier features (RFF) [7] of the rbf kernel, the hidden 
layer of the considered SLFN constructs (initially at the 
beginning) the high dimensional kernel space explicitly and 
compactly to achieve a direct access and low cost of mapping. 
The mapping to the kernel space is compact (the number of the 
hidden layer units is relatively small) thanks to the 
exponentially fast rate of approximation of the target kernel via 
RFF. Then, the output layer classifies in the constructed kernel 
space by linear means for nonlinear classification in the original 
observation space. We use stochastic gradient descent based 
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training. As a result of the hidden layer parameter optimization 
during training, Fourier features (after they are randomly 
drawn at the beginning) are also learned, i.e., optimized, which 
yields the kernel learning aspect in the presented study. In this 
context, considering the nonconvex optimization framework of 
neural networks, we investigate various training strategies and 
compare with certain techniques, e.g., forward feature 
selection, via extensive experiments on 10 different datasets 
from several fields, e.g., bioinformatics. In our experiments, the 
presented approach of Fourier feature learning with neural 
networks is observed to significantly outperform the 
competitors. Additionally, we demonstrate an application to 
smart steering in wireless mesh networks. The presented SLFN 
is again superior in comparison to a previous study [8] which 
uses a perceptron in the kernel space for the same purpose.  

In the following, we discuss the related work. Fourier features, 
first introduced in [7], are capable of approximately expanding 
(i.e. constructing) the high dimensional kernel space for any 
symmetric and shift invariant kernel when such features are 
appropriately randomly drawn from a certain probability 
distribution; and that distribution is given by the inverse 
Fourier transform of the kernel being used. The approximation 
improves exponentially fast with respect to the number of 
random Fourier features (RFF) while reaching up to an 
asymptotically exact -and importantly compact- expansion of 
the kernel space. Thus, at a relatively small cost for expanding 
the kernel space with RFF, it is possible to significantly speed 
up both the training and test phases of kernel machines with 
computation as well as space wise huge advantages. This has 
led in literature to an extensive exploration into large scale data 
processing based on RFF. For example, an online algorithm has 
been proposed in [9] for nonlinear classification in large scale 
settings, which is similar to a perceptron in the kernel space 
constructed by RFF. That online perceptron in kernel space has 
also been used successfully, in [8], for managing the 
connections between the clients and access points in a wireless 
mesh networks. In these studies, Fourier features are randomly 
drawn as independent of the data and used unoptimized. 

Observing the correspondence between the Fourier feature 
sampling distribution and the kernel being approximated, 
optimizing the distribution directly in Fourier domain has been 
studied in [10] and in [11] to learn parametric kernels in a data 
driven manner from a certain family, e.g, rbf kernels. The 
difficulty due to the need of resampling at each time the 
sampling distribution is manipulated has been overcome in 
both studies by the re-parametrization of a predetermined set 
of features from a mother distribution in the same family. 
Therefore, the outcome is the learning of the hyperparameters 
of a kernel, rather than learning of a nonparametric custom 
kernel. For instance, a Gaussian kernel can be learned 
unisotropically with different variances at each feature 
dimension. Note that the study [10] can be seen as a 
generalization of the study [11] where the latter -though- 
provides relatively deeper theoretical insights. On the other 
hand, the approach in [12] is different in the sense that the 
sampling distribution is modeled as a mixture of Gaussians in 
Fourier domain with a Dirichlet process prior and then learned 
in a data driven Bayesian manner. Consequently, as an 
advantage, the class of kernels of the study [12] that the 
technique learns in is larger compared to the one of [10],[11]. 
Instead of explicitly modeling the sampling distribution 
whether in a parametric [10],[11] or nonparametric manner 
[12], one can approach the kernel learning problem in a rather 

generative manner as in [13]. In this generative approach, 
samples from a known base distribution are transformed by, 
for instance, a neural network and then the transformed 
samples are treated as the samples from the unknown sampling 
distribution in the Fourier domain. Learning of that neural 
network allows to access to kernel evaluations without needing 
to know the sampling distribution explicitly, which leads to a 
generative kernel learning approach [13] that is studied in the 
context of generative deep learning and supervised models. 

A completely different approach is presented in [14]. In that 
approach, instead of learning the distribution (whether in a 
parametric or nonparametric or generative manner) in Fourier 
domain, Fourier features are directly learned in a data driven 
manner with respect to a certain loss such as regression or 
classification. The sample of the learned Fourier features at the 
end of the training can perhaps be regarded as the learned 
sampling distribution in the Fourier domain, which does not 
necessarily correspond to the inverse Fourier transform of a 
symmetric and shift invariant kernel. On the other hand, such 
learned Fourier features define a new inner product which 
constitutes the kernel learning aspect in [14], where the kernel 
implied by the learned Fourier features is a custom one that is 
not restricted to the class of symmetric and shift invariant 
kernels. In this line of research, a two-layer or three-layer 
neural network has been trained with stochastic gradient 
descent optimization in [14], and compared with the original 
RFF method of [7]. This learning of Fourier features with neural 
networks is considered in [15],[16] as an RFF layer and 
multiple such layers are cascaded end-to-end to achieve deeper 
architectures, where each layer can essentially learn a different 
kernel. The same RFF layer as an SLFN is studied in [17] for the 
completely different goal of Neyman-Pearson classification to 
achieve false alarm rate controllability. Instead of using an RFF 
layer in a neural network, one can also learn Fourier features 
by using a forward feature selection method. For instance, in 
[18], a pool of Fourier features is maintained and expanded 
iteratively. A single feature is newly designed and added to the 
pool at each iteration such that the hard examples of the 
previous iteration are better classified. Iterations end when the 
desired number of iterations (or a sufficiently small regression 
loss) is reached. This approach is an alternative to the neural 
network based Fourier feature learning.  

In contrast to the studies [7]-[9] of using Fourier features in 
random as independent with data; in our presented study, 
Fourier features are learned in a data driven manner and hence 
the disadvantage of using RFF unoptimized and random is 
removed. Learning of Fourier features does also differentiate 
our study from the studies [10],[11] and [12],[13], where the 
sampling distribution is learned in Fourier domain that define 
Fourier features whereas we learn Fourier features that define 
the sampling distribution. On the other hand, the neural 
network based Fourier feature learning technique in our 
presented study is conceptually the same as the SLFN of the 
report [14],[17] or the RFF layer of the conference proceedings 
[15],[16]. However, one difference is that the phase of the 
sinusoid of the Fourier feature is obtained as a linear 
combination of sine and cosine terms in [14],[15],[17]; hence, a 
bias term in their neural network is skipped. Whereas the phase 
is directly defined as the bias term in our neural network and in 
the one of [16]. This has two outcomes in favor of our presented 
study. First, A) the size of the hidden layer in [14],[15],[17] is 
twice as larger as the one of our network; namely, our network 
is more compact providing computation as well as space wise 
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advantages. Second, B) our network learns one unbounded 
weight magnitude and one bounded (in the interval [0, 2𝜋]]) 
bias term compared to the two unbounded weight magnitudes 
to be learned in [14],[15],[17]. This provides another advantage 
to our network structure in terms of the training and weight 
estimation. The same advantages hold for the study [16] as well. 
Note that [17] considers a completely different goal of false 
positive rate controllability. 

In this respect, the contributions of our study can be 
summarized as follows. First, we emphasize that the goal of the 
presented study is not to propose a new Fourier feature 
learning technique. Instead, as an important contribution, we 
comprehensively analyze an existing technique of Fourier 
feature learning (cf. [14]-[17]) from the perspective of several 
training strategies and investigate Fourier features via neural 
networks in deeper detail. In this sense, our presented study 
comprehensively extends the works in the previous reports 
and conference proceedings [14]-[17]. Additionally, we 
demonstrate the efficacy of Fourier features learning with 
neural networks in a real life application to smart steering in 
wireless mesh networks. In particular, our aim is to concentrate 
on various neural network training strategies such as the 
stochastic gradient based optimization (this is used to obtain 
computation and space-wise efficient algorithms) as well as a 
coordinate descent type optimization. In the latter one, 
iterations are conducted in two ways: epoch-by-epoch (each 
epoch is a pass over the data) and minibatch-by-minibatch 
(each minibatch can be as small as a single instance). We also 
consider a variant of the feature selection of [18] as a baseline 
to analyze the compactification power of the Fourier feature 
learning with SLFN. Furthermore, the original RFF technique 
presented in [7] is also considered along with SVM as two other 
baselines. We compare these training strategies and techniques 
based on a comprehensive experimental analysis with 10 
different datasets from various fields such as genetics, and the 
best performing ones are identified. Note that our experiments 
are significantly more comprehensive in terms of the training 
methodology, compared to the conference proceedings or 
technical reports [14]-[17]. Moreover, we demonstrate the 
presented approach (i.e. Fourier feature learning with neural 
networks) based on a real life challenging application to smart 
client steering for connection management in wireless mesh 
networks. In this application, the presented approach is 
significantly superior over the recently published results in [8]. 

The goal of the presented work and the background about 
random Fourier features are provided in Section 2 and Section 
3, respectively. In Section 4, Fourier feature learning is 
presented, and then Section 5 presents our experimental 
evaluation along with a demonstration of the presented 
approach for smart steering in wireless mesh networks. We 
conclude in Section 6 with final remarks. 

2 Goal of the presented work 

We study nonlinear binary classification (e.g. recognizing a 
visual object as a car or human) for any given set of data 
represented by {(𝑥𝑡 , 𝑦𝑡)}𝑡=1

𝑁 . In the presented study, a data 
instance 𝑥𝑡 ∈ 𝑅𝑑×1 is a 𝑑 dimensional observation vector, 𝑦𝑡 ∈
{−1,1} is a binary valued corresponding label and 𝑁 is the 
number of observations. In order to achieve nonlinear 
modeling capability, we use the kernel approach to nonlinear 
classification. In this approach, a kernel function 𝑘(⋅,⋅) encodes 
the inner product between any two instances 𝑥𝑖  and 𝑥𝑗  in a high 

dimensional space, where 𝑅𝐷×1 ∋ 𝑧 = 𝜙(𝑥) is the mapping to 

the high dimensional space with 𝑧𝑖
𝑇𝑧𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) [19],[20]. This 

mapping of the kernel approach can be considered as the 
transformation of the nonlinear data manifold in the 
observation 𝑥 space with the kernel similarity into a Euclidean 
high dimensional 𝑧 space with the inner product similarity. 
Consequently, one can simply apply a linear classifier in high 
dimension to solve a nonlinear classification problem in the 
original space. This is also known as the kernelization of linear 
techniques or simply ``kernel trick", cf. Figure 1 for a visual 
interpretation. Furthermore, an appropriate kernel function in 
hand is typically sufficient to exploit the power of kernels 
without constructing the mapping 𝜙(⋅) explicitly. This perhaps 
provides a conceptual advantage, which -however- leads to a 
computational drawback. For example, if we consider the 
classification function (with 𝛾 and 𝛽 being the classifier 

parameters) 𝛿(𝑥) = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑘(𝑥, 𝑥𝑖) +  𝛽 of the kernelized 

support vector machines (SVM), it is straightforward to observe 
that the computational complexity (in the test phase) is 𝑂(𝑁𝑠𝑣) 
and the number of support vectors 𝑁𝑠𝑣 can be as large as the 
size of the training set. This is prohibitively complex, and thus 
hinders real time processing in especially the contemporary 
fast streaming applications that constantly present data in large 
scales. Similar issues appear in the training phase as well, since 
training is typically more complex than testing and then the 
cost of using kernels folds more harshly in large scale data 
conditions. Therefore, constructing the mapping 𝜙(⋅) explicitly 
appears to be the key to designing techniques that are 
computationally efficient while benefiting the power of kernels. 
To this end, we consider the kernel approach to binary 
classification and particularly concentrate on random Fourier 
features [7],[9] for an explicit construction of the kernel space. 
However, random Fourier features are -in its original proposal 
[7]- independent of data. For this reason, our goal is to 
investigate various training approaches and algorithms for the 
learning of Fourier features in the context of neural networks. 
For this purpose, we present a comprehensive set of 
experiments with 10 different benchmark datasets. In addition, 
we demonstrate an application of the learned Fourier features 
to smart steering (by using the data of [8]) in wireless mesh 
networks, where we achieve significantly superior 
performance compared to the method in [8]. 

 

Figure 1. Visual interpretation of the kernel trick for nonlinear 
classification with linear techniques. The original observation 

space (left) is transformed into the high dimensional kernel 
space (right) via the mapping 𝜙(⋅). 

3 Random fourier features 

Random Fourier features (RFF) [7] provide a means to 
compactly approximate a symmetric and shift invariant kernel 
function, which can be used to achieve computationally 
substantial gains in applications of classification with kernels. 
A properly scaled symmetric and shift invariant kernel function 

𝑘(𝑥𝑖 , 𝑥𝑗) can be written as a single argument function: 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑘(𝑥𝑗 , 𝑥𝑖) = 𝑓(𝑥𝑖 − 𝑥𝑗) = 𝑓(𝑥𝑗 − 𝑥𝑖), as explained in 

the study [7] by Rahimi and Recht. Then, by Bochner's theorem 
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[7],[21], inverse Fourier transform of 𝑓(⋅) yields a proper 

probability density function 𝑝(𝑤), i.e., 𝑘(𝑥𝑖 , 𝑥𝑗) = 

𝑓(𝑥𝑖 − 𝑥𝑗) = ∫ 𝑝(𝑤)
𝑅𝑑

𝑐𝑜 𝑠 (𝑤𝑇(𝑥𝑖 − 𝑥𝑗)) 𝑑𝑤

= 𝐸𝑤 [[𝑐𝑜 𝑠(𝑤𝑇𝑥𝑖) , 𝑠𝑖 𝑛(𝑤𝑇𝑥𝑖)][𝑐𝑜 𝑠(𝑤𝑇𝑥𝑗) , 𝑠𝑖 𝑛(𝑤𝑇𝑥𝑗)]
𝑇

]

≃ 𝑧𝑖
𝑇̅̅ ̅𝑧𝑗̅, 

where 𝑝(⋅) is real since 𝑓(⋅) is real and even, 𝐸𝑤(⋅) is the 
expectation with respect to 𝑝(𝑤), 

𝑅2𝐷 ∋ 𝑧𝑖̅ = (1/

    √ 𝐷)[𝑐𝑜𝑠(𝑤1
𝑇𝑥𝑖) , 𝑠𝑖𝑛(𝑤1

𝑇𝑥𝑖) , ⋯ , 𝑐𝑜𝑠(𝑤𝐷
𝑇𝑥𝑖) , 𝑠𝑖𝑛(𝑤𝐷

𝑇𝑥𝑖)]𝑇  (1) 

is the random mapping to the 2𝐷 dimensional kernel space with 
{𝑤𝑟}𝑟=1

𝐷  being an i.i.d. sample drawn from 𝑝(𝑤) (similarly for 𝑧𝑗̅ 

of 𝑥𝑗  and for 𝑧̅ of 𝑥 in general), and the last approximate 

equation is due to the law of large numbers. Here, 𝑧̅ explicitly 
and randomly constructs the high dimensional kernel space in 
which the inner product approximates the kernel function in 
the original space. Therefore, as a first remark, this is a compact 
mapping since the approximation improves exponentially fast 
with respect to the dimension 𝐷 (of the high dimensional space) 
due to the Hoeffding's inequality [7]; hence, a relatively small 𝐷 
is expected to perform well. Second, one can solve a nonlinear 
problem in the original observation space by a linear technique 
in the high dimensional space at the cost of the mapping. 
Finally, third, one can also use the mapping  

    𝑅𝐷 ∋ 𝑧𝑖 = (√2/𝐷)[𝑐𝑜𝑠(𝑤1
𝑇𝑥𝑖 + 𝑏1) , ⋯ , 𝑐𝑜𝑠(𝑤𝐷

𝑇𝑥𝑖 + 𝑏𝐷)]𝑇 (2) 

(with {𝑏𝑟}𝑟=1
𝐷  being an i.i.d. sample drawn from uniform 

distribution 𝑈(0,2𝜋) in [0,2𝜋]) for the same purpose, i.e., 

𝑘(𝑥𝑖 , 𝑥𝑗) ≃ 𝑧𝑖
𝑇𝑧𝑗 , since there exists 𝛼 ∈ 𝑅𝐷 corresponding to any 

𝛼̅ ∈ 𝑅2𝐷 such that 𝑧𝑇̅̅ ̅𝛼̅ = 𝑧𝑇  which can be straightforwardly 
observed by phasor addition [22]. 

Considering our previous example, the decision function of the 

kernelized SVM 𝛿(𝑥) = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑘(𝑥, 𝑥𝑖) + can now be 

approximated as 𝛿(𝑥) ≃ ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑧𝑇𝑧𝑖 + 𝛽 = 𝑧𝑇(∑ 𝛾𝑖

𝑁𝑠𝑣
𝑖=1 𝑧𝑖) +

𝛽 = 𝑧𝑇𝛼 + 𝛽, where 𝛼 = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑧𝑖 . This random mapping with 

RFF provides substantial gains as the computational 
complexity shrinks down to 𝑂(1) (from the complexity 𝑂(𝑁sv) 
of the kernelized SVM) for testing an instance at the 
computational cost 𝑂(𝐷) of the random mapping 𝑥 → 𝑧 = 𝜙(𝑥). 
Furthermore, this random mapping with RFF does also allow 
online processing (one example is presented in [9]) for large 
scale data in real time while maintaining the nonlinear 
modeling capability, with again the complexity 𝑂(1) per 
instance. 

We next continue with the learning of Fourier features in order 
to remove the randomization and design a data driven method. 

4 Learning fourier features 

Random Fourier features (RFF) (𝑤𝑟 , 𝑏𝑟)𝑟=1
𝐷  as an i.i.d. sample 

drawn from 𝑝(𝑤) × 𝑈(0,2𝜋) are indeed powerful features 
enabling computationally highly efficient nonlinear 
classification for large scale data in real time. However, an 
improvement is certainly possible by learning such features in 
a data driven manner, as opposed to relying on a random 
sample drawn without taking into account the data. To this end, 
we observe that the RFF based random mapping in (2) can be 
implemented in the first and hidden layer of a network with the 
parameters 𝑤 and 𝑏, and then the output layer follows with the 
parameters 𝛼 and 𝛽. The result is a single hidden layer 
feedforward neural network (SLFN) as visually represented in 
Figure 2, where the first and hidden layer includes 𝐷 units and 
the corresponding parameters are randomly initialized as 
(𝑤𝑟 , 𝑏𝑟)𝑟=1

𝐷 ∼ 𝑁(0,2𝑔𝐼) × 𝑈(0,2𝜋), and thus the set of random 
Fourier features (RFF), i.e., {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 , is the set of 

hidden layer activations with the sinusoidal activation function 
𝑐𝑜𝑠(⋅). In this work, we use the radial basis function (rbf) 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝( − 𝑔 ||𝑥𝑖 − 𝑥𝑗||
2

) as the kernel, where 𝑔 is the 

bandwidth parameter and hence the randomization is Gaussian 
given by the inverse Fourier transform the rbf kernel: 𝑝(𝑤) =
𝑁(0,2𝑔𝐼) and 𝐼 is the 𝑑 × 𝑑 identity matrix. The presented work 
can be straightforwardly extended to any symmetric and shift 
invariant kernel. 

 

 

Figure 2. Visual representation of our single hidden layer feedforward neural network (SLFN), where 𝐷 is the size of the hidden layer and 𝑑 is 
dimension of the data. The hidden layer activation is chosen sinusoidal to produce the Fourier features {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 ; and initially, (𝑤𝑟, 𝑏𝑟)𝑟=1

𝐷  
are randomly drawn from the density 𝑁(0,2𝑔𝐼) × 𝑈(0,2𝜋). 
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We emphasize that even if the hidden layer of this SLFN  
Figure 2 is kept untrained, the network is still expected to 
perform well. This is because the hidden layer is designed and 
initialized to approximately expand the kernel space, in which 
the linear classification can already model almost any 
nonlinearity in the original space (provided that the kernel 
being exploited is appropriate). Thus, RFF also provides a 
decent initalization to the subsequent training phase. On the 
other hand, training the hidden layer optimizes the weights 
{(𝑤𝑟 , 𝑏𝑟)}𝑟=1

𝐷 , which yields the learning of Fourier features at 
the hidden layer activations {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 . 

4.1 Various training approaches for learning Fourier 
features 

This section provides our training approaches which can be 
categorized as classification with A) random Fourier features 
(single layer learning: online kernel perceptron or a perceptron 
trained in the rbf kernel space, as well as SVM with rbf kernel), 
B) SLFFS: single layer learning with selected Fourier features 
(forward selection), C) SLFN in the typical training settings, and 
D) SLFN with coordinate descent type optimization. In those 
approaches, we use backpropagation together (when it 
applies) with SGD or minibatch optimization as well as cross 
entropy (CE) or mean square error (MSE) losses. 

4.2 Single layer learning (SL) 

This approach -as a baseline for our comparisons- keeps the 
hidden layer untrained and only learns the output layer, which 
essentially implements a kernel machine to obtain a classifier 
in the kernel space. One can use here stochastic gradient 
descent (SGD) or minibatch for training: both correspond to 
principally the same large scale online kernel perceptron in [9] 
(i.e. a perceptron trained in the rbf kernel space) or the smart 
steering classifier in [8]. In addition, SVM with the rbf kernel (or 
linear SVM in the kernel space expanded by random Fourier 
features [7],[23]) also falls in this category, since a margin 
based classifier is trained in the kernel space without an 
attempt to optimize the kernel space. 

4.2.1 Single layer learning with fourier feature selection 
(SLFFS) 

This approach -as another baseline for our comparisons- 
follows an alternative to the neural network based Fourier 
feature learning, and it can be seen similar in nature to the 
feature combination with boosting presented in [18]. In this 
approach, we randomly draw a large set, i.e., pool, of Fourier 
features as previously described, and then select the useful 
Fourier features (from that initial large set, i.e., pool) in a 
greedy manner with forward selection based on a certain 
criterion, e.g., mean square error. This approach is to compare 
the compactification power of Fourier feature learning, i.e., to 
investigate whether the SLFN or feature selection performs 
favorably with the same number of Fourier features. 

4.2.1.1 Two Layer Learning (TL) 

This approach is the typical neural network training setting 
with SGD or minibatch optimization [19]. Both the hidden and 
output layers are trained. 

4.2.2 Batch-Based two layer learning (TL-B) 

This training approach processes the data minibatch by 
minibatch iteratively in a coordinate descent type optimization 
framework [24]. One iteration learns the output layer while 

keeping the hidden layer untrained, and the following iteration 
learns the hidden layer while keeping the output layer 
untrained. Iterations follow each other in an alternating 
manner. Each minibatch can be chosen as small as a single data 
instance or as a tiny subset. 

4.2.3 Epoch-Based two layer learning (TL-E) 

This training approach is actually the batch-based two layer 
training, where each minibatch is chosen as the complete 
training dataset. In this case, we call iterations as epochs and 
each epoch is a complete pass over the data. This is to better 
investigate the coordinate descent type optimization 
framework [24] with more robust derivatives. 

5 Experiments 

Our experiments extensively investigates Fourier features 
based on the aforementioned training approaches to binary 
classification. In particular, we first conduct a performance 
analysis with 10 different benchmark datasets from various 
fields, and then demonstrate an application to steering in 
wireless mesh networks where we achieve superiors results 
compared to a recent study [8]. 

5.1 Investigation with Benchmark Datasets 

The benchmark of 10 classification datasets that we use in this 
part can be found in [25] and summarized in Table 1. Each 
dataset is z-score standardized (zero mean and unit variance) 
before the processing, and shuffled afterwards to obtain 10 
different permutations. Also, 5-fold cross validation is used for 
parameter optimization and in each case, 80% (20%) is 
reserved for training (testing). Mean accuracy results are 
reported across 10 different permutations along with the 
corresponding standard deviations. Optimized parameters are 
the dimension of the kernel space 𝐷 ∈
{0.5, 1, 2, 4, 8, 10, 20, 30, 50, 100} × 𝑑 (where 𝑑 is the data 
dimension and we use ceiling when necessary to round to 
integer) as well as the kernel bandwidth parameter 𝑔 ∈
{0.01, 0.02, 0.04, 0.08, 0.15, 0.3, 0.5, 1, 2, 4, 8, 10, 20, 30, 40, 50}. 
Minibatch size is 100 and the learning rate is 0.01 in all of the 
experiments. 

Based on our overall classification results that are reported in 
Table 2, our observations are as follows: 1) cross entropy (CE) 
loss yields better results compared to the loss of mean square 
error, 2) TL algorithm generally outperforms the others, and 3) 
using minibatch or SGD for optimization seem to not generate a 
significance difference. Consequently, SLFN based learning of 
Fourier features is superior over a plain kernelization (cf. the 
comparisons between TL's and SL) and observed to be 
promising in terms of enabling computationally efficient online 
processing due to the comparability (in terms of accuracy) SGD 
and minibatch. Also, a joint learning of Fourier features and 
classifier is observed to outperform the coordinate descent 
type learning (cf. the comparisons between TL and TL-B or TL-
E). Therefore, we continue our experiments below with the TL 
algorithm trained based on the CE loss since it is observed to 
outperform the others. Our benchmark results in Table 2 are 
produced by using a similar setting for all algorithms for 
fairness. After choosing the best performing TL algorithm (with 
CE and SGD or minibatch) as discussed above, we now further 
optimize it (TL algorithm with CE and SGD or minibatch) 
standalone in terms of the number of minibatches and learning 
rate while comparing to SVM with rbf kernel. 
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Table 1. Benchmark details as provided in [25]. 

Dataset Dimension # of Instances (+,-) 
# of epochs, 

minibatches/SGD 
Data type 

Australian 14 650 (363, 287) 300/20 Real/Australian Credit Approval 

Banana 2 5000 (2769, 2231) 250/10 Synthetic 

Breast Cancer 10 600 (375, 225) 300/20 Real/Diagnostic Wisconsin Breast Cancer Database 

Diabetes 8 750 (263, 487) 250/20 Real/Pima İndians Diabetes Dataset 

Fourclass 2 850 (547, 303) 300/20 Synthetic 

German Numer 24 1000 (700, 300) 150/10 Real/German Credit Data 

Phishing 68 11000 (4877, 6123) 10/2 Real/Phishing Website Dataset 

Splice 60 3000 (1454, 1546) 60/10 Real/Splice Junctions in DNA Sequence 

Svmguide1 4 7000 (3054, 3946) 150/10 Synthetic 

Svmguide3 21 1250 (919, 331) 150/10 Synthetic 

Table 2. Benchmark results (mean accuracy over 10 different data permutations along with the corresponding standard deviation) 
of TL, SL, TL-E and TL-B algorithms with CE/MSE loss and minibatch/SGD optimizer on ten different datasets. 

 TL (CE) SL (CE) TL-E (CE) TL-B (CE) TL (MSE) SL (MSE) TL-E (MSE) TL-B (MSE) 

Australian 

SGD                    
87.23 ± 2.90  

minibatch 
87.07 ± 1.27 

SGD                 
84.07 ± 3.60 

minibatch      
85.15 ± 2.17 

SGD                 
84.92 ± 4.65 

minibatch      
86.84 ± 2.74 

SGD                    
86.23 ± 2.92 

minibatch.        
86.07 ± 2.74 

SGD                  
72.38 ± 16.93 

minibatch         
69.84 ± 15.37 

SGD                 
70.00 ± 16.92  

minibatch       
60.15 ± 11.11 

SGD                
67.84 ± 15.57  

minibatch         
69.00 ± 14.15 

SGD                
66.92 ± 14.75 

minibatch        
63.76 ± 13.03 

Banana 

SGD 
89.32 ± 1.14  

minibatch 
89.82 ± 0.66 

SGD                  
88.45 ± 1.53   

minibatch           
89.48 ± 0.65 

SGD                
89.22 ± 1.11   

minibatch        
89.35 ± 1.21 

SGD                 
89.68 ± 1.19   

minibatch         
89.19 ± 1.34 

SGD                 
89.15 ± 1.11  

minibatch        
85.92 ± 5.59 

SGD                 
87.99 ± 1.28 

minibatch         
85.59 ± 3.68 

SGD                  
87.83 ± 1.11   

minibatch         
83.41 ± 3.57 

SGD                 
88.53 ± 1.27  

minibatch          
84.86 ± 3.07 

Breast Cancer 

SGD 
95.58 ± 1.75 

minibatch 
95.83 ± 1.90 

SGD 
94.58 ±1.63 

minibatch      
95.16 ± 1.61 

SGD                
95.66 ±1.74 

minibatch     
96.25 ± 1.25 

SGD                 
95.66 ± 1.74  

minibatch       
95.75 ± 1.80 

SGD                 
68.66 ± 25.47  

minibatch        
73.16 ± 21.96 

SGD                
75.25 ± 28.01  

minibatch         
51.50 ± 20.78 

SGD                
71.91 ± 25.04  

minibatch        
59.91 ± 22.18 

SGD                  
76.83 ± 24.44   

minibatch       
51.41 ± 20.16 

Diabetes 

SGD 
76.46 ± 2.61 

minibatch 
76.40 ± 1.40 

SGD                  
73.73 ± 3.54  

minibatch          
73.40 ± 3.14 

SGD                    
74.66 ± 4.39  

minibatch          
74.86 ± 2.89 

SGD                  
75.00 ± 3.05   

minibatch        
74.40 ± 3.22 

SGD                  
72.13 ± 6.10   

minibatch         
63.55 ± 12.58 

SGD                  
61.53 ± 15.66  

minibatch         
73.55 ± 4.01 

SGD                 
69.06 ± 11.95  

minibatch         
54.55 ± 13.25 

SGD                    
61.13 ± 18.16  

minibatch          
63.33 ± 7.68 

Fourclass 

SGD 
99.88 ± 0.23  

minibatch 
98.41 ± 1.14 

SGD                 
99.47 ± 0.61  

minibatch         
96.23 ± 1.98 

SGD                   
99.70 ± 0.54  

minibatch          
96.88 ± 1.53 

SGD                 
99.70 ± 0.47  

minibatch         
96.88 ± 1.53 

SGD                  
96.00 ± 4.71  

minibatch          
69.58 ± 17.26 

SGD                 
92.23 ± 8.24  

minibatch          
64.00 ± 14.80 

SGD                  
93.82 ± 5.87  

minibatch           
69.52 ± 14.54 

SGD                 
95.35 ± 3.60  

minibatch         
69.58 ± 14.56 

German 
Numer 

SGD 
73.90 ± 3.76  

minibatch 
74.75 ± 2.96 

SGD                   
72.85 ± 2.96  

minibatch         
68.45 ± 3.55 

SGD                   
72.90 ± 4.18  

minibatch         
67.90 ± 4.53 

SGD                  
73.50 ± 3.15    

minibatch         
70.15 ± 3.83 

SGD                  
67.50 ± 13.76   

minibatch         
57.20 ± 19.13 

SGD                   
61.30 ± 13.82    

minibatch        
59.00 ± 16.07 

SGD                 
58.90 ± 19.83   

minibatch          
50.30 ± 18.75 

SGD                   
66.05 ± 13.79   

minibatch        
48.80 ± 19.73 

Phishing 

SGD 
93.52 ± 0.73  

minibatch 
92.75 ± 0.61 

SGD                  
92.31 ± 1.08  

minibatch           
89.90 ± 1.19 

SGD                  
93.34 ± 0.63  

minibatch          
92.89 ± 0.87 

SGD                  
90.85 ± 5.23  

minibatch         
92.37 ± 1.81 

SGD                   
77.85 ± 18.16  

minibatch       
57.28 ± 15.48 

SGD                   
83.06 ± 13.63  

minibatch       
59.66 ± 8.68 

SGD                  
84.60 ± 13.82         

minibatch      
68.43 ± 10.20 

SGD                
83.76 ± 14.11  

minibatch         
71.40 ± 10.28 

Splice 

SGD 
84.05 ± 1.10     

minibatch 
83.88 ± 1.24 

SGD                 
78.60 ± 2.64  

minibatch         
50.05 ± 5.72 

SGD                   
79.10 ± 7.57 

minibatch         
80.35 ± 2.58 

SGD                   
80.50 ± 6.67  

minibatch        
80.11 ± 1.98 

SGD                  
72.85 ± 12.90  

minibatch         
62.06 ± 10.97 

SGD                  
71.83 ± 6.93  

minibatch       
53.91 ± 4.97 

SGD                
73.40 ± 9.75  

minibatch         
59.03 ± 6.58 

SGD                  
72.28 ± 10.73  

minibatch         
58.80 ± 6.71 

Svmguide1 

SGD 
96.35 ± 0.45  

minibatch 
96.55 ± 0.37 

SGD                    
95.60 ± 0.61   

minibatch          
95.78 ± 0.83 

SGD                  
95.76 ± 0.65  

minibatch         
95.21 ± 1.48 

SGD                
96.38 ± 0.43  

minibatch         
95.75 ± 0.56 

SGD                
95.70 ± 0.88  

minibatch         
82.80 ± 18.30 

SGD                  
90.49 ± 12.43  

minibatch         
85.01 ± 17.88 

SGD                   
95.10 ± 1.20  

minibatch         
84.95 ± 12.50 

SGD                  
90.20 ± 12.46  

minibatch         
82.32 ± 15.15 

Svmguide3 

SGD 
80.72 ± 3.03   

minibatch 
79.28 ± 3.10 

SGD                     
77.60 ± 3.95   

minibatch       
72.92 ± 2.70 

SGD                   
75.52 ± 10.58  

minibatch        
78.44 ± 2.48 

SGD                  
77.08 ± 9.69  

minibatch        
76.72 ± 3.37 

SGD                
69.24 ± 18.13  

minibatch         
62.64 ± 18.09 

SGD                  
66.00 ± 19.58  

minibatch         
67.32 ± 15.08 

SGD                   
70.08 ± 7.92  

minibatch          
68.04 ± 7.20 

SGD                 
73.20 ± 12.86  

minibatch         
65.80 ± 12.60 
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The resulting accuracy performance is given in Table 3, where 
the kernel bandwidth parameter 𝑔 and the number 𝐷 of Fourier 
features are used as the previously cross validated choices. We 
observe that the TL algorithm now performs comparable with 
(or slightly outperforms in 8 cases out of 10) SVM with rbf 
kernel. This is different from our previous observation in which 
the TL algorithm significantly outperforms (in contrast to the 
comparability or slightly better performance in favor of the TL 
algorithm in Table 3 compared to SVM with rbf kernel) the SL 
algorithm (cf. Table 2). On the contrary, we point out that SVM 
with rbf kernel and SL algorithm are in fact similar in principle 
(as they both do not attempt to optimize the given kernel 
space) while having two important differences: A) SVM with rbf 
kernel additionally incorporates the strong max margin 
concept as a regularizer [23] (our TL or SL algorithms do not 
have the max margin regularizer) and B) SVM with rbf kernel 
assumes access to all data all the time whereas our TL and SL 
algorithms are both sequential in nature with access to only a 
single instance or a minibatch each time. Therefore, we 
consider that the use of max margin regularization in SVM with 
rbf kernel along with complete data access (to all data all the 
time) explains this difference between our observations and 
also explains the exception in the case of Splice dataset (the 
only relatively low performance of the TL algorithm compared 
to SVM with rbf kernel, cf. Table 3). 

Table 3. Comparison of TL algorithm (CE loss) with SVM (rbf 
kernel) in terms of mean accuracy (over 10 different data 

permutations) along with the corresponding standard 
deviations. 

Data  
(epochs, earning rate) 

TL 
mean ± std 

SVM 
mean ± std 

Australian 
(500, 0.008) 

87.76 ± 1.70  86.00 ± 2.13 

Banana 
400, 0.01) 

90.08 ± 0.45 90.04 ± 0.75 

Breast Cancer 
(500, 0.01)  

96.33 ± 1.58 96.16 ± 1.76 

Diabetes 
(550, 0.005)  

76.93 ± 2.17 76.26 ± 1.94 

Fourclass 
(900, 0.01) 

99.94 ± 0.17 99.88 ± 0.24 

German Numer 
(350, 0.01)  

76.60 ± 2.47 76.10 ± 3.00 

Phishing 
(200, 0.01)  

94.37 ± 0.47 96.95 ± 0.36 

Splice 
(900, 0.001)  

84.83 ± 1.34 91.03 ± 1.20 

Svmguide1 
(350, 0.05) 

96.84 ± 0.34 96.79 ± 0.35 

Svmguide3 
(250, 0.01) 

81.08 ± 2.99 81.06 ± 3.07 

Importantly, due to the comparable performance between the 
TL algorithm and SVM with rbf kernel, we observe that learning 
Fourier features (TL algorithm) is highly effective as it is able 
to compete with the strong max margin regularization, and this 
is even in the sequential setting with online processing (recall 
that SVM with rbf kernel assumes access to all data all the time 
whereas our TL algorithm is sequential in nature with access to 
only a single instance or a minibatch each time). Therefore, one 
can certainly expect to -even sequentially- significantly 
outperform SVM with rbf kernel by using the max margin 
regularization based on learning Fourier features (for instance, 
in conjunction with the TL algorithm). As a result, we conclude 
that learning of Fourier features (our TL algorithm) is largely 
beneficial based on our presented comparisons and analyses. 
This substantial benefit is not only performance-wise, also 
computationally. We stress that the presented learning of 

Fourier features in the context of SLFN and the resulting 
sequential classification (TL algorithm) is computationally 
highly efficient (as described in detail in the previous Section 2 
and Section 3), cutting down the computational complexity of 
SVM with rbf kernel from 𝑂(𝑁3) to 𝑂(𝑁) in training and from 
𝑂(𝑁2) to 𝑂(𝑁) in test, where 𝑁 is the number of processed 
instances (The number of support vectors in SVM can be as 
large as the number of training instances). 

Our last experiment in this section is to compare, for Fourier 
feature learning, A) the introduced SLFN (TL algorithm) and B) 
the SL algorithm with forward feature selection (SLFFS). In our 
context, the SLFFS algorithm provides an alternative Fourier 
feature learning method as it greedily (and in a forward 
manner) chooses the most informative Fourier features from 
an initial large set. Therefore, we use the comparison between 
the algorithms TL and SLFFS to demonstrate the efficacy of 
Fourier feature learning via neural networks, cf. the SLFN 
design in Figure 2 that is used in the TL algorithm.  

Recall that the TL algorithm learns and exploits 𝐷 Fourier 
features. Therefore, for a fair comparison, we design the SLFFS 
algorithm to select the same number 𝐷 of Fourier features from 
an initial large random pool consisting of 10𝐷 randomly drawn 
Fourier features. The selection process is greedy and operates 
in a forward manner with respect to a certain criterion. For 
instance, this criterion in [18] is the weighted least squares (LS) 
regression in the framework of boosting, where the weights are 
over data samples and a Fourier feature is designed in a specific 
manner at each iteration (to well separate the sampled pair of 
positive and negative instance of that iteration). We also use the 
LS regression to select Fourier features; however, our selection 
is out of a random large pool based on the LS regression loss 
whereas the selection in [18] is essentially a specific 
combination by boosting (cf. [18] for the details). The forward 
greedy selection in our SLFFS is as follows. In the first step, we 
obtain a Fourier feature from the pool, fit to the classification 
labels via LS regression, and record the mean square error 
(MSE). This is repeated for every single feature in the pool, then 
we select at the end our first Fourier feature (which minimizes 
the MSE) as a result of the first step and eliminate the selected 
feature from the pool. In any step, we obtain a feature from the 
pool, temporarily concatenate it to the features that are 
previously chosen, use the LS fitting and record the MSE. This is 
repeated for every single feature in the pool and then we select 
at the end our next Fourier feature (which minimizes the MSE) 
as a result of that step and eliminate the selected feature from 
the pool. This process continues until we select 𝐷 Fourier 
features. We have three remarks regarding the described 
selection. A) Instead of selecting one by one, we select the 
Fourier features ten by ten to speed up the process, B) the 
kernel bandwidth parameter 𝑔 and the number 𝐷 of Fourier 
features are used as the previously cross validated choices, and 
C) note that we have ten random permutations for each dataset, 
each permutation has training and test sets, and the described 
feature selection here is completed within the training set 
based on 5-fold cross-validation. After this selection is 
completed, we initialize the first layer of our SLFN in Figure 2 
with the selected features and then run the SL algorithm. Hence, 
in this experiment, the SL algorithm with the selected features 
(i.e. Fourier feature learning with a greedy forward selection) 
competes with the TL algorithm (i.e. Fourier feature learning 
with a neural network) as a comparison. The SL algorithm with 
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the selected features is called in the presented work as the FFS 
algorithm. 

We report our findings in Table 4. In this table, the results of the 
SLFFS algorithm are newly presented, whereas the results of 
the algorithms TL and SL are copied from Table 2 to have them 
all in one place for ease of exposition. Here, we do not opt to 
include the improved results of the TL algorithm from Table 3 
(instead we use Table 2) in order to have a fair comparison 
between TL and SL. Based on our findings, it is strongly 
observed that the algorithm SLFFS outperforms the algorithm 
SL, and the TL algorithm significantly (and also uniformly 
across all datasets) outperforms the algorithm SLFFS. The 
observation that both of TL and SLFFS yield a better 
performance in comparison to SL reinforces once again the 
effectiveness of the learning of Fourier features compared to 
the random use as originally proposed in [7]. On the other hand, 
since TL is significantly superior over SLFFS, we conclude that 
the learning of Fourier features with the introduced SLFN 
stands out as a reliable learning technique compared to the 
alternative of forward selection. One interesting observation is 
in the case of Splice dataset, where the algorithms SL and SLFFS 
appear to fail whereas the TL algorithm (learning of Fourier 
features with the introduced SLFN) is again highly successful. 

This can be attributed to the large dimensionality of this dataset 
despite the low number of instances as well as the intrinsic 
linear structure of this dataset. In addition to large 
dimensionality, since the random Fourier features in SL and the 
selection of Fourier features from a random set in SLFFS are 
both incapable of generating a linear model out of a kernel 
approach, SL and SLFFS appear to be not performing 
satisfactorily in this case of Splice dataset. Another 
interpretation is that starting with a nonlinear model to solve a 
linear problem is typically inefficient, especially under harsh 
conditions due to the large ratio of the dimension to number of 
instances. On the other hand, the gradient descent based 
learning of Fourier features in the TL algorithm is able to 
successfully steer from an originally nonlinear model to a linear 
model, and thus TL significantly outperforms. We emphasize 
that the TL algorithm readily and successfully solves the 
nonlinear classification problems as well, which can be clearly 
observed (by the decent performance figures of TL uniformly 
across all datasets) from the classification results in Table 2, 
Table 3 and Table 4. 

Table 4. Comparison of the algorithms TL, SL and SLFFS (SL 
algorithm applied with the selected Fourier features). Mean 
accuracy across 10 different data permutations is reported. 

Data TL 
mean ± std 

SL 
mean ± std 

SLFFS 
mean ± std 

Australian 87.07 ± 1.27 85.15 ± 2.17 86.30 ± 3.01 

Banana  89.82 ± 0.66 89.48 ± 0.65 89.61 ± 0.93 

Breast Cancer 95.83 ± 1.90 95.16 ± 1.61 95.33 ± 2.04 
Diabetes  76.40 ± 1.40 73.40 ± 3.14 75.33 ± 3.14 
Fourclass 98.41 ± 1.14 96.23 ± 1.98 97.94 ± 1.18 
German 
Numer 

74.75 ± 2.96 68.45 ± 3.55 70.50 ± 4.24 

Phishing 92.75 ± 0.61 89.90 ± 1.19 86.00 ± 2.49 
Splice 83.88 ± 1.24 50.05 ± 5.72 51.20 ± 5.85 

Svmguide1  96.55 ± 0.37 95.78 ± 0.83 96.05 ± 0.60 
Svmguide3  79.28 ± 3.10 72.92 ± 2.70 73.48 ± 2.28 

5.2 Application to smart steering in wireless mesh 
networks 

In this section, we test the presented approach of Fourier 
feature learning on the steering data that is collected from a Wi-

fi mesh network, cf. [8] for the details. Wi-fi mesh networks are 
widely used to achieve a better coverage of the area being 
served and thus provide an enhanced internet connection to the 
clients (devices that are connected to internet). As illustrated in 
Figure 3, a wi-fi mesh network has multiple access points (APs) 
such that a client (which can be possibly moving) is typically 
connected to internet through the AP that best serves. 
Moreover, each AP typically contains two frequency bands 
(interfaces), 2.4 GHz and 5 GHz, that the clients can use to 
access to internet. Therefore, in an attempt to receive a higher 
quality of internet connection, clients can not only switch from 
one AP to another but also from one interface to another. From 
the perspective of an authorized central agent in this setting, it 
is important by exploiting the mesh structure to optimally 
manage and distribute the clients to the available APs such that 
the overall quality of the internet connection among the clients 
of the network is maximized. To this end, the metrics such as 
total cost per link (summation of the cost of each connection 
from a client to gateway AP) and received signal strength 
indicator (RSSI) play a crucial role in measuring the connection 
quality that is to be maximized, as explained in [8]. 

 

Figure 3. A Wi-Fi mesh network is illustrated. In this example, 
the network includes three access points (APs) with two 

interfaces (2.4 GHz and 5 GHz) per each, and we observe a 
client that is connected to the second AP. 

A “steering action" refers to the request of the authorized 
central agent to guide a client to switch from the current AP or 
interface (that it is currently connected) to another AP or 
interface. Possible actions are: steering a client between 
different interfaces within the same AP, between different APs 
within the same interface, or between different interfaces of 
different APs. However, the outcome is not always successful, 
namely, the requested switch is not always realized and may 
eventually fail due to several reasons such as inaccurate 
reporting of the metrics or a vendor related issue. In this case 
of persistent un-switching (despite multiple steering actions), 
the corresponding client is known as the ``sticky client" which 
causes the inefficient use of resources, i.e., APs, compromising 
the connection quality [8]. 

Among possible steering strategies, we emphasize that the 
approach of issuing steering actions based on a predetermined 
rule is certainly not optimal as it does not learn from previous 
actions and outcomes. On the other hand, understanding when 
exactly and under what conditions of the aforementioned 
metrics the steering actions succeed or fail has the potential to 
help the agent issue steering actions more successfully. Namely, 
learning from previous steering actions and the corresponding 
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outcomes based on, for instance, a machine learning approach 
in a data driven and smart manner, the issued actions would be 
more likely to succeed. This would not only enhance the quality 
of internet connection, but also decrease the overhead of 
constantly communicating failing actions to a client that is 
perhaps sticky. 

To this end, in [8], a binary classification problem is defined in 
which the ``steering data" describe steering actions by the 
aforementioned metrics, i.e., features, (signal strength and a 
certain link cost regarding the current connection as well as the 
targeted one: Current RSSI, Current Cost, Target RSSI and 
Target Cost) at the moment of the action as well as the 
corresponding outcome, i.e., labels, as successful or 
unsuccessful. We test the TL algorithm and compare it with the 
algorithm presented in [8] (which is essentially the SL 
algorithm) based on this steering data and present our average 
classification results in Figure 4 (over 1000 trials each of which 
is a random permutation of the steering data of [8]) with 
respect to the amount of data as streamed in an online 
application. For a fair comparison, we follow the same 
experiments conducted in [8] based on the feature pairs Target 
RSSI-Current RSSI and Current Cost-Current RSSI for 
switchings from 5 Ghz to 2.4 GHz. 

We also include results of a linear perceptron (no kernel 
transformation), named as “No transform" in the figure. We 
first observe that the algorithms TL and SL strongly and 
uniformly outperform the linear perceptron in both cases of 
feature pairs. This shows that the steering is a nonlinear 
problem. Moreover, the TL algorithm strongly and uniformly 

outperforms the SL algorithm, indicating the high efficacy of the 
Fourier feature learning in the case of the steering data. Finally, 
in Table 5, and based on all 6 feature pairs, we evaluate the 
performance of the TL algorithm, and observe that the TL 
algorithm strongly outperforms the previously published 
results (given in parentheses as SL algorithm) uniformly in all 
cases. This, once again, reinforces that the presented approach 
of Fourier feature learning is superior over the perceptron in 
the kernel space and yields significantly superior steering 
results over the prior literature. 

6 Conclusion and future work 

We presented a single hidden layer feedforward neural 
network (SLFN) for Fourier feature learning, and investigated 
various training strategies: 1) single layer learning that yields a 
perceptron in the kernel space, 2) forward Fourier feature 
selection used with the single layer learning, 3) SLFN trained 
with stochastic gradient descent optimization, which is named 
as the TL algorithm, and 4) SLFN with coordinate descent 
optimization. The learned Fourier features were evaluated in 
terms of nonlinear classification based on 10 benchmark 
datasets from various fields such as bioinformatics and 
diagnostics. We observed that the TL algorithm (with the cross 
entropy loss) strongly outperforms the other strategies. 
Moreover, the TL algorithm performs comparable with the SVM 
with rbf kernel, which indicates that Fourier feature learning 
powerfully compensates for the strong max margin concept of 
SVM. 

 

 

 

 

Figure 4. Comparisons of the TL algorithm with the results of [8] (SL algorithm) and with linear perceptron (“No transform") with 
the feature pairs Target RSSI-Current RSSI (left) and Current Cost-Current RSSI (right). 

Table 5. Comparison of the TL algorithm (upper) with the results of [8] (SL algorithm lower in parenthesis). 

 Multi AP 

From 2.4 GHz to 5 GHz From 5 GHz to 2.4 GHz 
Same AP Different AP Same AP Different AP 

Current Cost - Target RSSI 96.83 
(94.94) 

90.83 
(87.71) 

93.00 
(91.90) 

93.50 
(89.52) 

Target Cost - Target RSSI 98.50 
(94.28) 

95.16 
(88.06) 

97.37 
(95.75) 

99.00 
(95.75) 

Target RSSI - Current RSSI 96.00 
(94.26) 

97.00 
(93.40) 

98.87 
(95.42) 

99.00 
(95.04) 

Current RSSI - Target Cost 95.00 
(92.19) 

89.33 
(85.27) 

98.00 
(94.34) 

99.50 
(98.08) 

Current Cost - Current RSSI 97.00 
(94.35) 

97.16 
(91.86) 

98.87 
(94.75) 

99.16 
(97.99) 

Target Cost - Current Cost 74.16 
(60.67) 

74.16 
(57.71) 

94.50 
(66.38) 

98.33 
(53.34) 
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On the other hand, the TL algorithm is computation as well as 
space wise highly efficient, whereas SVM is prohibitively 
complex. In addition, we demonstrated an application of the TL 
algorithm to smart steering in wireless mesh networks, and 
tested with the steering data from a previous study. In this 
application, the task is to classify a steering action (i.e. a request 
from a network client to switch from one connection to 
another) as successful or not. Hence, a better connectivity 
among all network clients can be realized overall. The TL 
algorithm has been again observed to be significantly superior 
over the previously reported results as it strongly outperforms 
the perceptron trained in the kernel space.  

As future work, we plan to compare the investigated approach 
of Fourier feature learning with the alternative approach of 
learning of the kernel parameter. Since the Fourier features are 
directly a function of the kernel parameter through sampling; 
in a neural network set-up, one can directly backpropagate to 
the parameter to estimate its value based on a classification loss 
(after an appropriate reparameterization). In this alternative, 
the advantage is that the parameter complexity is small because 
the kernel parameter is only a scalar (for instance, the 
bandwidth of the rbf kernel). Whereas the learning of the 
Fourier features requires the estimation of, 𝐷 𝑥 (𝑑 + 1) many, 
far more parameters (with the rbf kernel), with 𝐷 being the 
number of Fourier features and 𝑑 being the dimension. Despite 
its advantage of reduced parameter complexity, learning of the 
kernel parameter restricts the data modeling capability to the 
specific kernel being used, which might be seen as a 
disadvantage. Hence, a comparison to understand this trade-off 
would be useful. Another important future research direction is 
to fit an unisotropic Gaussian kernel to the data through the 
learning of the Fourier features. Note that the sampling 
distribution of the features is the inverse Fourier transform of 
the kernel. Then, one can apply the forward Fourier transform 
to the sample distribution of the features when the training 
(Fourier feature learning) converges. Here, the forward 
transform can model an unisotrotopic Gaussian kernel for the 
data if the sample distribution of the features is Gaussian. As a 
result, one can constrain the learning of the Fourier features 
and ensure Gaussianity by, for example, using the Kullback-
Leibler divergence (in the loss function) between the sample 
distribution and a Gauss distribution with zero mean and 
sample covariance (at each step in training). The resulting 
unisotropic Gauss kernel has the potential to provide useful 
insights to modelling the manifold that the data lie in. 
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