

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

681

Investigation of Fourier features via neural networks and an application to
smart steering in wireless mesh networks

Sınır ağları üzerinden Fourier özniteliklerinin incelenmesi ve kablosuz
örgü ağlarda akıllı bağlantı yönlendirmeye uygulanması

Bulut KUŞKONMAZ1* , Hüseyin ÖZKAN1

1Faculty of Engineering and Natural Sciences, Electronics Engineering, Sabancı University, İstanbul, Turkey.
kuskonmazbulut@sabanciuniv.edu, huseyin.ozkan@sabanciuniv.edu

Received/Geliş Tarihi: 06.02.2021
Accepted/Kabul Tarihi: 18.01.2022

Revision/Düzeltme Tarihi: 10.01.2022 doi: 10.5505/pajes.2022.98371
Research Article/Araştırma Makalesi

Abstract Öz

Random Fourier features (RFF) provide one of the most prominent
means for nonlinear classification in especially large scale data settings.
However, considering the original proposal of RFF, Fourier features are
randomly drawn from a certain distribution and used unoptimized. In
this paper, we investigate Fourier features via a single hidden layer
feedforward neural network (SLFN) and optimize, i.e., learn, those
features (instead of drawing randomly). The learned Fourier features
are deduced from the radial basis function (rbf kernel), and
implemented in the hidden layer of the SLFN which is followed by the
output layer. We present extensive experiments with 10 different
classification datasets from various fields, e.g., bioinformatics. The
learning of Fourier features is observed to be highly superior over the
competing techniques such as perceptron in the rbf kernel space or a
greedy forward feature selection strategy. On the other hand, the
Fourier feature learning performs comparably with SVM (support
vector machines with rbf kernel) while providing substantial
computational benefits, and this is even without using the max margin
regularization. Moreover, when tested in wireless mesh networks, the
SLFN delivers promising smart steering capabilities.

 Rastgele Fourier öznitelikleri (RFÖ), doğrusal olmayan sınıflandırma
için özellikle büyük ölçekli veri koşullarında en önemli araçlardan
biridir. Bununla birlikte, RFÖ'nün orijinal önerisi dikkate alındığında,
Fourier öznitelikleri belirli bir dağılımdan rastgele seçilir ve
eniyilenmeden kullanılır. Bu yazıda, Fourier özniteliklerini tek gizli
katmanlı bir ileri beslemeli sinir ağı (TKİS) aracılığıyla incelemekte ve
bu öznitelikleri (rastgele seçim yerine) optimize etmekte, yani
öğrenmekteyiz. Öğrenilen Fourier öznitelikleri radyal taban
fonksiyonundan (rtf çekirdeği) üretildikten sonra TKİS'nin gizli
katmanında gerçeklenir ve sonra takip eden çıktı katmanında
kullanılır. Biyoinformatik gibi çeşitli alanlardan 10 farklı sınıflandırma
veri kümeleri ile kapsamlı deneyler sunmaktayız. Fourier öznitelik
öğrenmesinin, rtf çekirdek uzayında perseptron uygulama veya ileri
yönlü fırsatçı öznitelikleri seçme stratejileri gibi rakip tekniklere göre
oldukça üstün olduğu gözlemlenmiştir. Öte yandan, Fourier öznitelik
öğrenmesi, DVM (rtf çekirdekli destek vektör makineleri) ile
karşılaştırılabilir bir performans sergilerken, önemli hesaplama
avantajlarını marjin büyütmesini kullanmadan dahi
sağlayabilmektedir. Ayrıca, TKİS'yi kablosuz örgü ağlarında test
ettiğimizde akıllı yönlendirme açısından umut vaat ettiğini
gözlemlemekteyiz.

Keywords: Fourier features, Neural networks, Single hidden layer,
Classification, Kernel, Steering.

 Anahtar kelimeler: Fourier öznitelikleri, Sinir ağları, Tek gizli
katman, Sınıflandırma, Çekirdek, Bağlantı yönlendirme.

1 Introduction

Kernels in machine learning [1], e.g., support vector machines
(SVM) [2],[3], enable the exploration of nonlinear data
structures for various purposes such as classification [3],
regression [4] and distribution modeling [5]. The central idea
in learning with kernels is to map the observation space to a
high dimensional kernel space by essentially changing the
original inner product to a more appropriate one, i.e., kernel,
providing only an indirect access to the high dimensional space.
Afterwards, a linear technique is employed in the kernel space
to solve a nonlinear problem in the observation space. There
are two issues in this approach. First, an exploration of kernels
is required to find the one that best fits to the nonlinearity in
data; and in fact, there are a continuous spectrum of kernels
that one can choose from. Second, the computational as well as
space complexity are prohibitively complex when the data is
abundant. The reason is that using the resulting kernel model
requires (later after training) repetitive and complete
(occasionally partial) passes over the data (that the model is

*Corresponding author/Yazışılan Yazar

trained on) since the kernel space is often not constructed
explicitly and can be accessed only through the kernel. The first
issue (finding the best kernel) can be addressed by kernel
learning [6], and the second (prohibitive computational as well
as space complexity) can be addressed by constructing the
kernel space explicitly [7]. However, literature addressing the
both simultaneously is fairly limited.

To this end, we consider a single hidden layer feedforward
network (SLFN) for nonlinear binary classification. By using the
random Fourier features (RFF) [7] of the rbf kernel, the hidden
layer of the considered SLFN constructs (initially at the
beginning) the high dimensional kernel space explicitly and
compactly to achieve a direct access and low cost of mapping.
The mapping to the kernel space is compact (the number of the
hidden layer units is relatively small) thanks to the
exponentially fast rate of approximation of the target kernel via
RFF. Then, the output layer classifies in the constructed kernel
space by linear means for nonlinear classification in the original
observation space. We use stochastic gradient descent based

https://orcid.org/0000-0002-9055-4503
https://orcid.org/0000-0002-5539-9085

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

682

training. As a result of the hidden layer parameter optimization
during training, Fourier features (after they are randomly
drawn at the beginning) are also learned, i.e., optimized, which
yields the kernel learning aspect in the presented study. In this
context, considering the nonconvex optimization framework of
neural networks, we investigate various training strategies and
compare with certain techniques, e.g., forward feature
selection, via extensive experiments on 10 different datasets
from several fields, e.g., bioinformatics. In our experiments, the
presented approach of Fourier feature learning with neural
networks is observed to significantly outperform the
competitors. Additionally, we demonstrate an application to
smart steering in wireless mesh networks. The presented SLFN
is again superior in comparison to a previous study [8] which
uses a perceptron in the kernel space for the same purpose.

In the following, we discuss the related work. Fourier features,
first introduced in [7], are capable of approximately expanding
(i.e. constructing) the high dimensional kernel space for any
symmetric and shift invariant kernel when such features are
appropriately randomly drawn from a certain probability
distribution; and that distribution is given by the inverse
Fourier transform of the kernel being used. The approximation
improves exponentially fast with respect to the number of
random Fourier features (RFF) while reaching up to an
asymptotically exact -and importantly compact- expansion of
the kernel space. Thus, at a relatively small cost for expanding
the kernel space with RFF, it is possible to significantly speed
up both the training and test phases of kernel machines with
computation as well as space wise huge advantages. This has
led in literature to an extensive exploration into large scale data
processing based on RFF. For example, an online algorithm has
been proposed in [9] for nonlinear classification in large scale
settings, which is similar to a perceptron in the kernel space
constructed by RFF. That online perceptron in kernel space has
also been used successfully, in [8], for managing the
connections between the clients and access points in a wireless
mesh networks. In these studies, Fourier features are randomly
drawn as independent of the data and used unoptimized.

Observing the correspondence between the Fourier feature
sampling distribution and the kernel being approximated,
optimizing the distribution directly in Fourier domain has been
studied in [10] and in [11] to learn parametric kernels in a data
driven manner from a certain family, e.g, rbf kernels. The
difficulty due to the need of resampling at each time the
sampling distribution is manipulated has been overcome in
both studies by the re-parametrization of a predetermined set
of features from a mother distribution in the same family.
Therefore, the outcome is the learning of the hyperparameters
of a kernel, rather than learning of a nonparametric custom
kernel. For instance, a Gaussian kernel can be learned
unisotropically with different variances at each feature
dimension. Note that the study [10] can be seen as a
generalization of the study [11] where the latter -though-
provides relatively deeper theoretical insights. On the other
hand, the approach in [12] is different in the sense that the
sampling distribution is modeled as a mixture of Gaussians in
Fourier domain with a Dirichlet process prior and then learned
in a data driven Bayesian manner. Consequently, as an
advantage, the class of kernels of the study [12] that the
technique learns in is larger compared to the one of [10],[11].
Instead of explicitly modeling the sampling distribution
whether in a parametric [10],[11] or nonparametric manner
[12], one can approach the kernel learning problem in a rather

generative manner as in [13]. In this generative approach,
samples from a known base distribution are transformed by,
for instance, a neural network and then the transformed
samples are treated as the samples from the unknown sampling
distribution in the Fourier domain. Learning of that neural
network allows to access to kernel evaluations without needing
to know the sampling distribution explicitly, which leads to a
generative kernel learning approach [13] that is studied in the
context of generative deep learning and supervised models.

A completely different approach is presented in [14]. In that
approach, instead of learning the distribution (whether in a
parametric or nonparametric or generative manner) in Fourier
domain, Fourier features are directly learned in a data driven
manner with respect to a certain loss such as regression or
classification. The sample of the learned Fourier features at the
end of the training can perhaps be regarded as the learned
sampling distribution in the Fourier domain, which does not
necessarily correspond to the inverse Fourier transform of a
symmetric and shift invariant kernel. On the other hand, such
learned Fourier features define a new inner product which
constitutes the kernel learning aspect in [14], where the kernel
implied by the learned Fourier features is a custom one that is
not restricted to the class of symmetric and shift invariant
kernels. In this line of research, a two-layer or three-layer
neural network has been trained with stochastic gradient
descent optimization in [14], and compared with the original
RFF method of [7]. This learning of Fourier features with neural
networks is considered in [15],[16] as an RFF layer and
multiple such layers are cascaded end-to-end to achieve deeper
architectures, where each layer can essentially learn a different
kernel. The same RFF layer as an SLFN is studied in [17] for the
completely different goal of Neyman-Pearson classification to
achieve false alarm rate controllability. Instead of using an RFF
layer in a neural network, one can also learn Fourier features
by using a forward feature selection method. For instance, in
[18], a pool of Fourier features is maintained and expanded
iteratively. A single feature is newly designed and added to the
pool at each iteration such that the hard examples of the
previous iteration are better classified. Iterations end when the
desired number of iterations (or a sufficiently small regression
loss) is reached. This approach is an alternative to the neural
network based Fourier feature learning.

In contrast to the studies [7]-[9] of using Fourier features in
random as independent with data; in our presented study,
Fourier features are learned in a data driven manner and hence
the disadvantage of using RFF unoptimized and random is
removed. Learning of Fourier features does also differentiate
our study from the studies [10],[11] and [12],[13], where the
sampling distribution is learned in Fourier domain that define
Fourier features whereas we learn Fourier features that define
the sampling distribution. On the other hand, the neural
network based Fourier feature learning technique in our
presented study is conceptually the same as the SLFN of the
report [14],[17] or the RFF layer of the conference proceedings
[15],[16]. However, one difference is that the phase of the
sinusoid of the Fourier feature is obtained as a linear
combination of sine and cosine terms in [14],[15],[17]; hence, a
bias term in their neural network is skipped. Whereas the phase
is directly defined as the bias term in our neural network and in
the one of [16]. This has two outcomes in favor of our presented
study. First, A) the size of the hidden layer in [14],[15],[17] is
twice as larger as the one of our network; namely, our network
is more compact providing computation as well as space wise

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

683

advantages. Second, B) our network learns one unbounded
weight magnitude and one bounded (in the interval [0, 2𝜋]])
bias term compared to the two unbounded weight magnitudes
to be learned in [14],[15],[17]. This provides another advantage
to our network structure in terms of the training and weight
estimation. The same advantages hold for the study [16] as well.
Note that [17] considers a completely different goal of false
positive rate controllability.

In this respect, the contributions of our study can be
summarized as follows. First, we emphasize that the goal of the
presented study is not to propose a new Fourier feature
learning technique. Instead, as an important contribution, we
comprehensively analyze an existing technique of Fourier
feature learning (cf. [14]-[17]) from the perspective of several
training strategies and investigate Fourier features via neural
networks in deeper detail. In this sense, our presented study
comprehensively extends the works in the previous reports
and conference proceedings [14]-[17]. Additionally, we
demonstrate the efficacy of Fourier features learning with
neural networks in a real life application to smart steering in
wireless mesh networks. In particular, our aim is to concentrate
on various neural network training strategies such as the
stochastic gradient based optimization (this is used to obtain
computation and space-wise efficient algorithms) as well as a
coordinate descent type optimization. In the latter one,
iterations are conducted in two ways: epoch-by-epoch (each
epoch is a pass over the data) and minibatch-by-minibatch
(each minibatch can be as small as a single instance). We also
consider a variant of the feature selection of [18] as a baseline
to analyze the compactification power of the Fourier feature
learning with SLFN. Furthermore, the original RFF technique
presented in [7] is also considered along with SVM as two other
baselines. We compare these training strategies and techniques
based on a comprehensive experimental analysis with 10
different datasets from various fields such as genetics, and the
best performing ones are identified. Note that our experiments
are significantly more comprehensive in terms of the training
methodology, compared to the conference proceedings or
technical reports [14]-[17]. Moreover, we demonstrate the
presented approach (i.e. Fourier feature learning with neural
networks) based on a real life challenging application to smart
client steering for connection management in wireless mesh
networks. In this application, the presented approach is
significantly superior over the recently published results in [8].

The goal of the presented work and the background about
random Fourier features are provided in Section 2 and Section
3, respectively. In Section 4, Fourier feature learning is
presented, and then Section 5 presents our experimental
evaluation along with a demonstration of the presented
approach for smart steering in wireless mesh networks. We
conclude in Section 6 with final remarks.

2 Goal of the presented work

We study nonlinear binary classification (e.g. recognizing a
visual object as a car or human) for any given set of data
represented by {(𝑥𝑡 , 𝑦𝑡)}𝑡=1

𝑁 . In the presented study, a data
instance 𝑥𝑡 ∈ 𝑅𝑑×1 is a 𝑑 dimensional observation vector, 𝑦𝑡 ∈
{−1,1} is a binary valued corresponding label and 𝑁 is the
number of observations. In order to achieve nonlinear
modeling capability, we use the kernel approach to nonlinear
classification. In this approach, a kernel function 𝑘(⋅,⋅) encodes
the inner product between any two instances 𝑥𝑖 and 𝑥𝑗 in a high

dimensional space, where 𝑅𝐷×1 ∋ 𝑧 = 𝜙(𝑥) is the mapping to

the high dimensional space with 𝑧𝑖
𝑇𝑧𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) [19],[20]. This

mapping of the kernel approach can be considered as the
transformation of the nonlinear data manifold in the
observation 𝑥 space with the kernel similarity into a Euclidean
high dimensional 𝑧 space with the inner product similarity.
Consequently, one can simply apply a linear classifier in high
dimension to solve a nonlinear classification problem in the
original space. This is also known as the kernelization of linear
techniques or simply ``kernel trick", cf. Figure 1 for a visual
interpretation. Furthermore, an appropriate kernel function in
hand is typically sufficient to exploit the power of kernels
without constructing the mapping 𝜙(⋅) explicitly. This perhaps
provides a conceptual advantage, which -however- leads to a
computational drawback. For example, if we consider the
classification function (with 𝛾 and 𝛽 being the classifier

parameters) 𝛿(𝑥) = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑘(𝑥, 𝑥𝑖) + 𝛽 of the kernelized

support vector machines (SVM), it is straightforward to observe
that the computational complexity (in the test phase) is 𝑂(𝑁𝑠𝑣)
and the number of support vectors 𝑁𝑠𝑣 can be as large as the
size of the training set. This is prohibitively complex, and thus
hinders real time processing in especially the contemporary
fast streaming applications that constantly present data in large
scales. Similar issues appear in the training phase as well, since
training is typically more complex than testing and then the
cost of using kernels folds more harshly in large scale data
conditions. Therefore, constructing the mapping 𝜙(⋅) explicitly
appears to be the key to designing techniques that are
computationally efficient while benefiting the power of kernels.
To this end, we consider the kernel approach to binary
classification and particularly concentrate on random Fourier
features [7],[9] for an explicit construction of the kernel space.
However, random Fourier features are -in its original proposal
[7]- independent of data. For this reason, our goal is to
investigate various training approaches and algorithms for the
learning of Fourier features in the context of neural networks.
For this purpose, we present a comprehensive set of
experiments with 10 different benchmark datasets. In addition,
we demonstrate an application of the learned Fourier features
to smart steering (by using the data of [8]) in wireless mesh
networks, where we achieve significantly superior
performance compared to the method in [8].

Figure 1. Visual interpretation of the kernel trick for nonlinear
classification with linear techniques. The original observation

space (left) is transformed into the high dimensional kernel
space (right) via the mapping 𝜙(⋅).

3 Random fourier features

Random Fourier features (RFF) [7] provide a means to
compactly approximate a symmetric and shift invariant kernel
function, which can be used to achieve computationally
substantial gains in applications of classification with kernels.
A properly scaled symmetric and shift invariant kernel function

𝑘(𝑥𝑖 , 𝑥𝑗) can be written as a single argument function:

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑘(𝑥𝑗 , 𝑥𝑖) = 𝑓(𝑥𝑖 − 𝑥𝑗) = 𝑓(𝑥𝑗 − 𝑥𝑖), as explained in

the study [7] by Rahimi and Recht. Then, by Bochner's theorem

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

684

[7],[21], inverse Fourier transform of 𝑓(⋅) yields a proper

probability density function 𝑝(𝑤), i.e., 𝑘(𝑥𝑖 , 𝑥𝑗) =

𝑓(𝑥𝑖 − 𝑥𝑗) = ∫ 𝑝(𝑤)
𝑅𝑑

𝑐𝑜 𝑠 (𝑤𝑇(𝑥𝑖 − 𝑥𝑗)) 𝑑𝑤

= 𝐸𝑤 [[𝑐𝑜 𝑠(𝑤𝑇𝑥𝑖) , 𝑠𝑖 𝑛(𝑤𝑇𝑥𝑖)][𝑐𝑜 𝑠(𝑤𝑇𝑥𝑗) , 𝑠𝑖 𝑛(𝑤𝑇𝑥𝑗)]
𝑇

]

≃ 𝑧𝑖
𝑇̅̅ ̅𝑧𝑗̅,

where 𝑝(⋅) is real since 𝑓(⋅) is real and even, 𝐸𝑤(⋅) is the
expectation with respect to 𝑝(𝑤),

𝑅2𝐷 ∋ 𝑧𝑖̅ = (1/

 √ 𝐷)[𝑐𝑜𝑠(𝑤1
𝑇𝑥𝑖) , 𝑠𝑖𝑛(𝑤1

𝑇𝑥𝑖) , ⋯ , 𝑐𝑜𝑠(𝑤𝐷
𝑇𝑥𝑖) , 𝑠𝑖𝑛(𝑤𝐷

𝑇𝑥𝑖)]𝑇 (1)

is the random mapping to the 2𝐷 dimensional kernel space with
{𝑤𝑟}𝑟=1

𝐷 being an i.i.d. sample drawn from 𝑝(𝑤) (similarly for 𝑧𝑗̅

of 𝑥𝑗 and for 𝑧̅ of 𝑥 in general), and the last approximate

equation is due to the law of large numbers. Here, 𝑧̅ explicitly
and randomly constructs the high dimensional kernel space in
which the inner product approximates the kernel function in
the original space. Therefore, as a first remark, this is a compact
mapping since the approximation improves exponentially fast
with respect to the dimension 𝐷 (of the high dimensional space)
due to the Hoeffding's inequality [7]; hence, a relatively small 𝐷
is expected to perform well. Second, one can solve a nonlinear
problem in the original observation space by a linear technique
in the high dimensional space at the cost of the mapping.
Finally, third, one can also use the mapping

 𝑅𝐷 ∋ 𝑧𝑖 = (√2/𝐷)[𝑐𝑜𝑠(𝑤1
𝑇𝑥𝑖 + 𝑏1) , ⋯ , 𝑐𝑜𝑠(𝑤𝐷

𝑇𝑥𝑖 + 𝑏𝐷)]𝑇 (2)

(with {𝑏𝑟}𝑟=1
𝐷 being an i.i.d. sample drawn from uniform

distribution 𝑈(0,2𝜋) in [0,2𝜋]) for the same purpose, i.e.,

𝑘(𝑥𝑖 , 𝑥𝑗) ≃ 𝑧𝑖
𝑇𝑧𝑗 , since there exists 𝛼 ∈ 𝑅𝐷 corresponding to any

𝛼̅ ∈ 𝑅2𝐷 such that 𝑧𝑇̅̅ ̅𝛼̅ = 𝑧𝑇 which can be straightforwardly
observed by phasor addition [22].

Considering our previous example, the decision function of the

kernelized SVM 𝛿(𝑥) = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑘(𝑥, 𝑥𝑖) + can now be

approximated as 𝛿(𝑥) ≃ ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑧𝑇𝑧𝑖 + 𝛽 = 𝑧𝑇(∑ 𝛾𝑖

𝑁𝑠𝑣
𝑖=1 𝑧𝑖) +

𝛽 = 𝑧𝑇𝛼 + 𝛽, where 𝛼 = ∑ 𝛾𝑖
𝑁𝑠𝑣
𝑖=1 𝑧𝑖 . This random mapping with

RFF provides substantial gains as the computational
complexity shrinks down to 𝑂(1) (from the complexity 𝑂(𝑁sv)
of the kernelized SVM) for testing an instance at the
computational cost 𝑂(𝐷) of the random mapping 𝑥 → 𝑧 = 𝜙(𝑥).
Furthermore, this random mapping with RFF does also allow
online processing (one example is presented in [9]) for large
scale data in real time while maintaining the nonlinear
modeling capability, with again the complexity 𝑂(1) per
instance.

We next continue with the learning of Fourier features in order
to remove the randomization and design a data driven method.

4 Learning fourier features

Random Fourier features (RFF) (𝑤𝑟 , 𝑏𝑟)𝑟=1
𝐷 as an i.i.d. sample

drawn from 𝑝(𝑤) × 𝑈(0,2𝜋) are indeed powerful features
enabling computationally highly efficient nonlinear
classification for large scale data in real time. However, an
improvement is certainly possible by learning such features in
a data driven manner, as opposed to relying on a random
sample drawn without taking into account the data. To this end,
we observe that the RFF based random mapping in (2) can be
implemented in the first and hidden layer of a network with the
parameters 𝑤 and 𝑏, and then the output layer follows with the
parameters 𝛼 and 𝛽. The result is a single hidden layer
feedforward neural network (SLFN) as visually represented in
Figure 2, where the first and hidden layer includes 𝐷 units and
the corresponding parameters are randomly initialized as
(𝑤𝑟 , 𝑏𝑟)𝑟=1

𝐷 ∼ 𝑁(0,2𝑔𝐼) × 𝑈(0,2𝜋), and thus the set of random
Fourier features (RFF), i.e., {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 , is the set of

hidden layer activations with the sinusoidal activation function
𝑐𝑜𝑠(⋅). In this work, we use the radial basis function (rbf)

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(− 𝑔 ||𝑥𝑖 − 𝑥𝑗||
2

) as the kernel, where 𝑔 is the

bandwidth parameter and hence the randomization is Gaussian
given by the inverse Fourier transform the rbf kernel: 𝑝(𝑤) =
𝑁(0,2𝑔𝐼) and 𝐼 is the 𝑑 × 𝑑 identity matrix. The presented work
can be straightforwardly extended to any symmetric and shift
invariant kernel.

Figure 2. Visual representation of our single hidden layer feedforward neural network (SLFN), where 𝐷 is the size of the hidden layer and 𝑑 is
dimension of the data. The hidden layer activation is chosen sinusoidal to produce the Fourier features {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 ; and initially, (𝑤𝑟, 𝑏𝑟)𝑟=1

𝐷
are randomly drawn from the density 𝑁(0,2𝑔𝐼) × 𝑈(0,2𝜋).

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

685

We emphasize that even if the hidden layer of this SLFN
Figure 2 is kept untrained, the network is still expected to
perform well. This is because the hidden layer is designed and
initialized to approximately expand the kernel space, in which
the linear classification can already model almost any
nonlinearity in the original space (provided that the kernel
being exploited is appropriate). Thus, RFF also provides a
decent initalization to the subsequent training phase. On the
other hand, training the hidden layer optimizes the weights
{(𝑤𝑟 , 𝑏𝑟)}𝑟=1

𝐷 , which yields the learning of Fourier features at
the hidden layer activations {𝑐𝑜𝑠(𝑤𝑟

𝑇𝑥𝑡 + 𝑏𝑟)}𝑟=1
𝐷 .

4.1 Various training approaches for learning Fourier
features

This section provides our training approaches which can be
categorized as classification with A) random Fourier features
(single layer learning: online kernel perceptron or a perceptron
trained in the rbf kernel space, as well as SVM with rbf kernel),
B) SLFFS: single layer learning with selected Fourier features
(forward selection), C) SLFN in the typical training settings, and
D) SLFN with coordinate descent type optimization. In those
approaches, we use backpropagation together (when it
applies) with SGD or minibatch optimization as well as cross
entropy (CE) or mean square error (MSE) losses.

4.2 Single layer learning (SL)

This approach -as a baseline for our comparisons- keeps the
hidden layer untrained and only learns the output layer, which
essentially implements a kernel machine to obtain a classifier
in the kernel space. One can use here stochastic gradient
descent (SGD) or minibatch for training: both correspond to
principally the same large scale online kernel perceptron in [9]
(i.e. a perceptron trained in the rbf kernel space) or the smart
steering classifier in [8]. In addition, SVM with the rbf kernel (or
linear SVM in the kernel space expanded by random Fourier
features [7],[23]) also falls in this category, since a margin
based classifier is trained in the kernel space without an
attempt to optimize the kernel space.

4.2.1 Single layer learning with fourier feature selection
(SLFFS)

This approach -as another baseline for our comparisons-
follows an alternative to the neural network based Fourier
feature learning, and it can be seen similar in nature to the
feature combination with boosting presented in [18]. In this
approach, we randomly draw a large set, i.e., pool, of Fourier
features as previously described, and then select the useful
Fourier features (from that initial large set, i.e., pool) in a
greedy manner with forward selection based on a certain
criterion, e.g., mean square error. This approach is to compare
the compactification power of Fourier feature learning, i.e., to
investigate whether the SLFN or feature selection performs
favorably with the same number of Fourier features.

4.2.1.1 Two Layer Learning (TL)

This approach is the typical neural network training setting
with SGD or minibatch optimization [19]. Both the hidden and
output layers are trained.

4.2.2 Batch-Based two layer learning (TL-B)

This training approach processes the data minibatch by
minibatch iteratively in a coordinate descent type optimization
framework [24]. One iteration learns the output layer while

keeping the hidden layer untrained, and the following iteration
learns the hidden layer while keeping the output layer
untrained. Iterations follow each other in an alternating
manner. Each minibatch can be chosen as small as a single data
instance or as a tiny subset.

4.2.3 Epoch-Based two layer learning (TL-E)

This training approach is actually the batch-based two layer
training, where each minibatch is chosen as the complete
training dataset. In this case, we call iterations as epochs and
each epoch is a complete pass over the data. This is to better
investigate the coordinate descent type optimization
framework [24] with more robust derivatives.

5 Experiments

Our experiments extensively investigates Fourier features
based on the aforementioned training approaches to binary
classification. In particular, we first conduct a performance
analysis with 10 different benchmark datasets from various
fields, and then demonstrate an application to steering in
wireless mesh networks where we achieve superiors results
compared to a recent study [8].

5.1 Investigation with Benchmark Datasets

The benchmark of 10 classification datasets that we use in this
part can be found in [25] and summarized in Table 1. Each
dataset is z-score standardized (zero mean and unit variance)
before the processing, and shuffled afterwards to obtain 10
different permutations. Also, 5-fold cross validation is used for
parameter optimization and in each case, 80% (20%) is
reserved for training (testing). Mean accuracy results are
reported across 10 different permutations along with the
corresponding standard deviations. Optimized parameters are
the dimension of the kernel space 𝐷 ∈
{0.5, 1, 2, 4, 8, 10, 20, 30, 50, 100} × 𝑑 (where 𝑑 is the data
dimension and we use ceiling when necessary to round to
integer) as well as the kernel bandwidth parameter 𝑔 ∈
{0.01, 0.02, 0.04, 0.08, 0.15, 0.3, 0.5, 1, 2, 4, 8, 10, 20, 30, 40, 50}.
Minibatch size is 100 and the learning rate is 0.01 in all of the
experiments.

Based on our overall classification results that are reported in
Table 2, our observations are as follows: 1) cross entropy (CE)
loss yields better results compared to the loss of mean square
error, 2) TL algorithm generally outperforms the others, and 3)
using minibatch or SGD for optimization seem to not generate a
significance difference. Consequently, SLFN based learning of
Fourier features is superior over a plain kernelization (cf. the
comparisons between TL's and SL) and observed to be
promising in terms of enabling computationally efficient online
processing due to the comparability (in terms of accuracy) SGD
and minibatch. Also, a joint learning of Fourier features and
classifier is observed to outperform the coordinate descent
type learning (cf. the comparisons between TL and TL-B or TL-
E). Therefore, we continue our experiments below with the TL
algorithm trained based on the CE loss since it is observed to
outperform the others. Our benchmark results in Table 2 are
produced by using a similar setting for all algorithms for
fairness. After choosing the best performing TL algorithm (with
CE and SGD or minibatch) as discussed above, we now further
optimize it (TL algorithm with CE and SGD or minibatch)
standalone in terms of the number of minibatches and learning
rate while comparing to SVM with rbf kernel.

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

686

Table 1. Benchmark details as provided in [25].

Dataset Dimension # of Instances (+,-)
of epochs,

minibatches/SGD
Data type

Australian 14 650 (363, 287) 300/20 Real/Australian Credit Approval

Banana 2 5000 (2769, 2231) 250/10 Synthetic

Breast Cancer 10 600 (375, 225) 300/20 Real/Diagnostic Wisconsin Breast Cancer Database

Diabetes 8 750 (263, 487) 250/20 Real/Pima İndians Diabetes Dataset

Fourclass 2 850 (547, 303) 300/20 Synthetic

German Numer 24 1000 (700, 300) 150/10 Real/German Credit Data

Phishing 68 11000 (4877, 6123) 10/2 Real/Phishing Website Dataset

Splice 60 3000 (1454, 1546) 60/10 Real/Splice Junctions in DNA Sequence

Svmguide1 4 7000 (3054, 3946) 150/10 Synthetic

Svmguide3 21 1250 (919, 331) 150/10 Synthetic

Table 2. Benchmark results (mean accuracy over 10 different data permutations along with the corresponding standard deviation)
of TL, SL, TL-E and TL-B algorithms with CE/MSE loss and minibatch/SGD optimizer on ten different datasets.

 TL (CE) SL (CE) TL-E (CE) TL-B (CE) TL (MSE) SL (MSE) TL-E (MSE) TL-B (MSE)

Australian

SGD
87.23 ± 2.90

minibatch
87.07 ± 1.27

SGD
84.07 ± 3.60

minibatch
85.15 ± 2.17

SGD
84.92 ± 4.65

minibatch
86.84 ± 2.74

SGD
86.23 ± 2.92

minibatch.
86.07 ± 2.74

SGD
72.38 ± 16.93

minibatch
69.84 ± 15.37

SGD
70.00 ± 16.92

minibatch
60.15 ± 11.11

SGD
67.84 ± 15.57

minibatch
69.00 ± 14.15

SGD
66.92 ± 14.75

minibatch
63.76 ± 13.03

Banana

SGD
89.32 ± 1.14

minibatch
89.82 ± 0.66

SGD
88.45 ± 1.53

minibatch
89.48 ± 0.65

SGD
89.22 ± 1.11

minibatch
89.35 ± 1.21

SGD
89.68 ± 1.19

minibatch
89.19 ± 1.34

SGD
89.15 ± 1.11

minibatch
85.92 ± 5.59

SGD
87.99 ± 1.28

minibatch
85.59 ± 3.68

SGD
87.83 ± 1.11

minibatch
83.41 ± 3.57

SGD
88.53 ± 1.27

minibatch
84.86 ± 3.07

Breast Cancer

SGD
95.58 ± 1.75

minibatch
95.83 ± 1.90

SGD
94.58 ±1.63

minibatch
95.16 ± 1.61

SGD
95.66 ±1.74

minibatch
96.25 ± 1.25

SGD
95.66 ± 1.74

minibatch
95.75 ± 1.80

SGD
68.66 ± 25.47

minibatch
73.16 ± 21.96

SGD
75.25 ± 28.01

minibatch
51.50 ± 20.78

SGD
71.91 ± 25.04

minibatch
59.91 ± 22.18

SGD
76.83 ± 24.44

minibatch
51.41 ± 20.16

Diabetes

SGD
76.46 ± 2.61

minibatch
76.40 ± 1.40

SGD
73.73 ± 3.54

minibatch
73.40 ± 3.14

SGD
74.66 ± 4.39

minibatch
74.86 ± 2.89

SGD
75.00 ± 3.05

minibatch
74.40 ± 3.22

SGD
72.13 ± 6.10

minibatch
63.55 ± 12.58

SGD
61.53 ± 15.66

minibatch
73.55 ± 4.01

SGD
69.06 ± 11.95

minibatch
54.55 ± 13.25

SGD
61.13 ± 18.16

minibatch
63.33 ± 7.68

Fourclass

SGD
99.88 ± 0.23

minibatch
98.41 ± 1.14

SGD
99.47 ± 0.61

minibatch
96.23 ± 1.98

SGD
99.70 ± 0.54

minibatch
96.88 ± 1.53

SGD
99.70 ± 0.47

minibatch
96.88 ± 1.53

SGD
96.00 ± 4.71

minibatch
69.58 ± 17.26

SGD
92.23 ± 8.24

minibatch
64.00 ± 14.80

SGD
93.82 ± 5.87

minibatch
69.52 ± 14.54

SGD
95.35 ± 3.60

minibatch
69.58 ± 14.56

German
Numer

SGD
73.90 ± 3.76

minibatch
74.75 ± 2.96

SGD
72.85 ± 2.96

minibatch
68.45 ± 3.55

SGD
72.90 ± 4.18

minibatch
67.90 ± 4.53

SGD
73.50 ± 3.15

minibatch
70.15 ± 3.83

SGD
67.50 ± 13.76

minibatch
57.20 ± 19.13

SGD
61.30 ± 13.82

minibatch
59.00 ± 16.07

SGD
58.90 ± 19.83

minibatch
50.30 ± 18.75

SGD
66.05 ± 13.79

minibatch
48.80 ± 19.73

Phishing

SGD
93.52 ± 0.73

minibatch
92.75 ± 0.61

SGD
92.31 ± 1.08

minibatch
89.90 ± 1.19

SGD
93.34 ± 0.63

minibatch
92.89 ± 0.87

SGD
90.85 ± 5.23

minibatch
92.37 ± 1.81

SGD
77.85 ± 18.16

minibatch
57.28 ± 15.48

SGD
83.06 ± 13.63

minibatch
59.66 ± 8.68

SGD
84.60 ± 13.82

minibatch
68.43 ± 10.20

SGD
83.76 ± 14.11

minibatch
71.40 ± 10.28

Splice

SGD
84.05 ± 1.10

minibatch
83.88 ± 1.24

SGD
78.60 ± 2.64

minibatch
50.05 ± 5.72

SGD
79.10 ± 7.57

minibatch
80.35 ± 2.58

SGD
80.50 ± 6.67

minibatch
80.11 ± 1.98

SGD
72.85 ± 12.90

minibatch
62.06 ± 10.97

SGD
71.83 ± 6.93

minibatch
53.91 ± 4.97

SGD
73.40 ± 9.75

minibatch
59.03 ± 6.58

SGD
72.28 ± 10.73

minibatch
58.80 ± 6.71

Svmguide1

SGD
96.35 ± 0.45

minibatch
96.55 ± 0.37

SGD
95.60 ± 0.61

minibatch
95.78 ± 0.83

SGD
95.76 ± 0.65

minibatch
95.21 ± 1.48

SGD
96.38 ± 0.43

minibatch
95.75 ± 0.56

SGD
95.70 ± 0.88

minibatch
82.80 ± 18.30

SGD
90.49 ± 12.43

minibatch
85.01 ± 17.88

SGD
95.10 ± 1.20

minibatch
84.95 ± 12.50

SGD
90.20 ± 12.46

minibatch
82.32 ± 15.15

Svmguide3

SGD
80.72 ± 3.03

minibatch
79.28 ± 3.10

SGD
77.60 ± 3.95

minibatch
72.92 ± 2.70

SGD
75.52 ± 10.58

minibatch
78.44 ± 2.48

SGD
77.08 ± 9.69

minibatch
76.72 ± 3.37

SGD
69.24 ± 18.13

minibatch
62.64 ± 18.09

SGD
66.00 ± 19.58

minibatch
67.32 ± 15.08

SGD
70.08 ± 7.92

minibatch
68.04 ± 7.20

SGD
73.20 ± 12.86

minibatch
65.80 ± 12.60

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

687

The resulting accuracy performance is given in Table 3, where
the kernel bandwidth parameter 𝑔 and the number 𝐷 of Fourier
features are used as the previously cross validated choices. We
observe that the TL algorithm now performs comparable with
(or slightly outperforms in 8 cases out of 10) SVM with rbf
kernel. This is different from our previous observation in which
the TL algorithm significantly outperforms (in contrast to the
comparability or slightly better performance in favor of the TL
algorithm in Table 3 compared to SVM with rbf kernel) the SL
algorithm (cf. Table 2). On the contrary, we point out that SVM
with rbf kernel and SL algorithm are in fact similar in principle
(as they both do not attempt to optimize the given kernel
space) while having two important differences: A) SVM with rbf
kernel additionally incorporates the strong max margin
concept as a regularizer [23] (our TL or SL algorithms do not
have the max margin regularizer) and B) SVM with rbf kernel
assumes access to all data all the time whereas our TL and SL
algorithms are both sequential in nature with access to only a
single instance or a minibatch each time. Therefore, we
consider that the use of max margin regularization in SVM with
rbf kernel along with complete data access (to all data all the
time) explains this difference between our observations and
also explains the exception in the case of Splice dataset (the
only relatively low performance of the TL algorithm compared
to SVM with rbf kernel, cf. Table 3).

Table 3. Comparison of TL algorithm (CE loss) with SVM (rbf
kernel) in terms of mean accuracy (over 10 different data

permutations) along with the corresponding standard
deviations.

Data
(epochs, earning rate)

TL
mean ± std

SVM
mean ± std

Australian
(500, 0.008)

87.76 ± 1.70 86.00 ± 2.13

Banana
400, 0.01)

90.08 ± 0.45 90.04 ± 0.75

Breast Cancer
(500, 0.01)

96.33 ± 1.58 96.16 ± 1.76

Diabetes
(550, 0.005)

76.93 ± 2.17 76.26 ± 1.94

Fourclass
(900, 0.01)

99.94 ± 0.17 99.88 ± 0.24

German Numer
(350, 0.01)

76.60 ± 2.47 76.10 ± 3.00

Phishing
(200, 0.01)

94.37 ± 0.47 96.95 ± 0.36

Splice
(900, 0.001)

84.83 ± 1.34 91.03 ± 1.20

Svmguide1
(350, 0.05)

96.84 ± 0.34 96.79 ± 0.35

Svmguide3
(250, 0.01)

81.08 ± 2.99 81.06 ± 3.07

Importantly, due to the comparable performance between the
TL algorithm and SVM with rbf kernel, we observe that learning
Fourier features (TL algorithm) is highly effective as it is able
to compete with the strong max margin regularization, and this
is even in the sequential setting with online processing (recall
that SVM with rbf kernel assumes access to all data all the time
whereas our TL algorithm is sequential in nature with access to
only a single instance or a minibatch each time). Therefore, one
can certainly expect to -even sequentially- significantly
outperform SVM with rbf kernel by using the max margin
regularization based on learning Fourier features (for instance,
in conjunction with the TL algorithm). As a result, we conclude
that learning of Fourier features (our TL algorithm) is largely
beneficial based on our presented comparisons and analyses.
This substantial benefit is not only performance-wise, also
computationally. We stress that the presented learning of

Fourier features in the context of SLFN and the resulting
sequential classification (TL algorithm) is computationally
highly efficient (as described in detail in the previous Section 2
and Section 3), cutting down the computational complexity of
SVM with rbf kernel from 𝑂(𝑁3) to 𝑂(𝑁) in training and from
𝑂(𝑁2) to 𝑂(𝑁) in test, where 𝑁 is the number of processed
instances (The number of support vectors in SVM can be as
large as the number of training instances).

Our last experiment in this section is to compare, for Fourier
feature learning, A) the introduced SLFN (TL algorithm) and B)
the SL algorithm with forward feature selection (SLFFS). In our
context, the SLFFS algorithm provides an alternative Fourier
feature learning method as it greedily (and in a forward
manner) chooses the most informative Fourier features from
an initial large set. Therefore, we use the comparison between
the algorithms TL and SLFFS to demonstrate the efficacy of
Fourier feature learning via neural networks, cf. the SLFN
design in Figure 2 that is used in the TL algorithm.

Recall that the TL algorithm learns and exploits 𝐷 Fourier
features. Therefore, for a fair comparison, we design the SLFFS
algorithm to select the same number 𝐷 of Fourier features from
an initial large random pool consisting of 10𝐷 randomly drawn
Fourier features. The selection process is greedy and operates
in a forward manner with respect to a certain criterion. For
instance, this criterion in [18] is the weighted least squares (LS)
regression in the framework of boosting, where the weights are
over data samples and a Fourier feature is designed in a specific
manner at each iteration (to well separate the sampled pair of
positive and negative instance of that iteration). We also use the
LS regression to select Fourier features; however, our selection
is out of a random large pool based on the LS regression loss
whereas the selection in [18] is essentially a specific
combination by boosting (cf. [18] for the details). The forward
greedy selection in our SLFFS is as follows. In the first step, we
obtain a Fourier feature from the pool, fit to the classification
labels via LS regression, and record the mean square error
(MSE). This is repeated for every single feature in the pool, then
we select at the end our first Fourier feature (which minimizes
the MSE) as a result of the first step and eliminate the selected
feature from the pool. In any step, we obtain a feature from the
pool, temporarily concatenate it to the features that are
previously chosen, use the LS fitting and record the MSE. This is
repeated for every single feature in the pool and then we select
at the end our next Fourier feature (which minimizes the MSE)
as a result of that step and eliminate the selected feature from
the pool. This process continues until we select 𝐷 Fourier
features. We have three remarks regarding the described
selection. A) Instead of selecting one by one, we select the
Fourier features ten by ten to speed up the process, B) the
kernel bandwidth parameter 𝑔 and the number 𝐷 of Fourier
features are used as the previously cross validated choices, and
C) note that we have ten random permutations for each dataset,
each permutation has training and test sets, and the described
feature selection here is completed within the training set
based on 5-fold cross-validation. After this selection is
completed, we initialize the first layer of our SLFN in Figure 2
with the selected features and then run the SL algorithm. Hence,
in this experiment, the SL algorithm with the selected features
(i.e. Fourier feature learning with a greedy forward selection)
competes with the TL algorithm (i.e. Fourier feature learning
with a neural network) as a comparison. The SL algorithm with

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

688

the selected features is called in the presented work as the FFS
algorithm.

We report our findings in Table 4. In this table, the results of the
SLFFS algorithm are newly presented, whereas the results of
the algorithms TL and SL are copied from Table 2 to have them
all in one place for ease of exposition. Here, we do not opt to
include the improved results of the TL algorithm from Table 3
(instead we use Table 2) in order to have a fair comparison
between TL and SL. Based on our findings, it is strongly
observed that the algorithm SLFFS outperforms the algorithm
SL, and the TL algorithm significantly (and also uniformly
across all datasets) outperforms the algorithm SLFFS. The
observation that both of TL and SLFFS yield a better
performance in comparison to SL reinforces once again the
effectiveness of the learning of Fourier features compared to
the random use as originally proposed in [7]. On the other hand,
since TL is significantly superior over SLFFS, we conclude that
the learning of Fourier features with the introduced SLFN
stands out as a reliable learning technique compared to the
alternative of forward selection. One interesting observation is
in the case of Splice dataset, where the algorithms SL and SLFFS
appear to fail whereas the TL algorithm (learning of Fourier
features with the introduced SLFN) is again highly successful.

This can be attributed to the large dimensionality of this dataset
despite the low number of instances as well as the intrinsic
linear structure of this dataset. In addition to large
dimensionality, since the random Fourier features in SL and the
selection of Fourier features from a random set in SLFFS are
both incapable of generating a linear model out of a kernel
approach, SL and SLFFS appear to be not performing
satisfactorily in this case of Splice dataset. Another
interpretation is that starting with a nonlinear model to solve a
linear problem is typically inefficient, especially under harsh
conditions due to the large ratio of the dimension to number of
instances. On the other hand, the gradient descent based
learning of Fourier features in the TL algorithm is able to
successfully steer from an originally nonlinear model to a linear
model, and thus TL significantly outperforms. We emphasize
that the TL algorithm readily and successfully solves the
nonlinear classification problems as well, which can be clearly
observed (by the decent performance figures of TL uniformly
across all datasets) from the classification results in Table 2,
Table 3 and Table 4.

Table 4. Comparison of the algorithms TL, SL and SLFFS (SL
algorithm applied with the selected Fourier features). Mean
accuracy across 10 different data permutations is reported.

Data TL
mean ± std

SL
mean ± std

SLFFS
mean ± std

Australian 87.07 ± 1.27 85.15 ± 2.17 86.30 ± 3.01

Banana 89.82 ± 0.66 89.48 ± 0.65 89.61 ± 0.93

Breast Cancer 95.83 ± 1.90 95.16 ± 1.61 95.33 ± 2.04
Diabetes 76.40 ± 1.40 73.40 ± 3.14 75.33 ± 3.14
Fourclass 98.41 ± 1.14 96.23 ± 1.98 97.94 ± 1.18
German
Numer

74.75 ± 2.96 68.45 ± 3.55 70.50 ± 4.24

Phishing 92.75 ± 0.61 89.90 ± 1.19 86.00 ± 2.49
Splice 83.88 ± 1.24 50.05 ± 5.72 51.20 ± 5.85

Svmguide1 96.55 ± 0.37 95.78 ± 0.83 96.05 ± 0.60
Svmguide3 79.28 ± 3.10 72.92 ± 2.70 73.48 ± 2.28

5.2 Application to smart steering in wireless mesh
networks

In this section, we test the presented approach of Fourier
feature learning on the steering data that is collected from a Wi-

fi mesh network, cf. [8] for the details. Wi-fi mesh networks are
widely used to achieve a better coverage of the area being
served and thus provide an enhanced internet connection to the
clients (devices that are connected to internet). As illustrated in
Figure 3, a wi-fi mesh network has multiple access points (APs)
such that a client (which can be possibly moving) is typically
connected to internet through the AP that best serves.
Moreover, each AP typically contains two frequency bands
(interfaces), 2.4 GHz and 5 GHz, that the clients can use to
access to internet. Therefore, in an attempt to receive a higher
quality of internet connection, clients can not only switch from
one AP to another but also from one interface to another. From
the perspective of an authorized central agent in this setting, it
is important by exploiting the mesh structure to optimally
manage and distribute the clients to the available APs such that
the overall quality of the internet connection among the clients
of the network is maximized. To this end, the metrics such as
total cost per link (summation of the cost of each connection
from a client to gateway AP) and received signal strength
indicator (RSSI) play a crucial role in measuring the connection
quality that is to be maximized, as explained in [8].

Figure 3. A Wi-Fi mesh network is illustrated. In this example,
the network includes three access points (APs) with two

interfaces (2.4 GHz and 5 GHz) per each, and we observe a
client that is connected to the second AP.

A “steering action" refers to the request of the authorized
central agent to guide a client to switch from the current AP or
interface (that it is currently connected) to another AP or
interface. Possible actions are: steering a client between
different interfaces within the same AP, between different APs
within the same interface, or between different interfaces of
different APs. However, the outcome is not always successful,
namely, the requested switch is not always realized and may
eventually fail due to several reasons such as inaccurate
reporting of the metrics or a vendor related issue. In this case
of persistent un-switching (despite multiple steering actions),
the corresponding client is known as the ``sticky client" which
causes the inefficient use of resources, i.e., APs, compromising
the connection quality [8].

Among possible steering strategies, we emphasize that the
approach of issuing steering actions based on a predetermined
rule is certainly not optimal as it does not learn from previous
actions and outcomes. On the other hand, understanding when
exactly and under what conditions of the aforementioned
metrics the steering actions succeed or fail has the potential to
help the agent issue steering actions more successfully. Namely,
learning from previous steering actions and the corresponding

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

689

outcomes based on, for instance, a machine learning approach
in a data driven and smart manner, the issued actions would be
more likely to succeed. This would not only enhance the quality
of internet connection, but also decrease the overhead of
constantly communicating failing actions to a client that is
perhaps sticky.

To this end, in [8], a binary classification problem is defined in
which the ``steering data" describe steering actions by the
aforementioned metrics, i.e., features, (signal strength and a
certain link cost regarding the current connection as well as the
targeted one: Current RSSI, Current Cost, Target RSSI and
Target Cost) at the moment of the action as well as the
corresponding outcome, i.e., labels, as successful or
unsuccessful. We test the TL algorithm and compare it with the
algorithm presented in [8] (which is essentially the SL
algorithm) based on this steering data and present our average
classification results in Figure 4 (over 1000 trials each of which
is a random permutation of the steering data of [8]) with
respect to the amount of data as streamed in an online
application. For a fair comparison, we follow the same
experiments conducted in [8] based on the feature pairs Target
RSSI-Current RSSI and Current Cost-Current RSSI for
switchings from 5 Ghz to 2.4 GHz.

We also include results of a linear perceptron (no kernel
transformation), named as “No transform" in the figure. We
first observe that the algorithms TL and SL strongly and
uniformly outperform the linear perceptron in both cases of
feature pairs. This shows that the steering is a nonlinear
problem. Moreover, the TL algorithm strongly and uniformly

outperforms the SL algorithm, indicating the high efficacy of the
Fourier feature learning in the case of the steering data. Finally,
in Table 5, and based on all 6 feature pairs, we evaluate the
performance of the TL algorithm, and observe that the TL
algorithm strongly outperforms the previously published
results (given in parentheses as SL algorithm) uniformly in all
cases. This, once again, reinforces that the presented approach
of Fourier feature learning is superior over the perceptron in
the kernel space and yields significantly superior steering
results over the prior literature.

6 Conclusion and future work

We presented a single hidden layer feedforward neural
network (SLFN) for Fourier feature learning, and investigated
various training strategies: 1) single layer learning that yields a
perceptron in the kernel space, 2) forward Fourier feature
selection used with the single layer learning, 3) SLFN trained
with stochastic gradient descent optimization, which is named
as the TL algorithm, and 4) SLFN with coordinate descent
optimization. The learned Fourier features were evaluated in
terms of nonlinear classification based on 10 benchmark
datasets from various fields such as bioinformatics and
diagnostics. We observed that the TL algorithm (with the cross
entropy loss) strongly outperforms the other strategies.
Moreover, the TL algorithm performs comparable with the SVM
with rbf kernel, which indicates that Fourier feature learning
powerfully compensates for the strong max margin concept of
SVM.

Figure 4. Comparisons of the TL algorithm with the results of [8] (SL algorithm) and with linear perceptron (“No transform") with
the feature pairs Target RSSI-Current RSSI (left) and Current Cost-Current RSSI (right).

Table 5. Comparison of the TL algorithm (upper) with the results of [8] (SL algorithm lower in parenthesis).

 Multi AP

From 2.4 GHz to 5 GHz From 5 GHz to 2.4 GHz
Same AP Different AP Same AP Different AP

Current Cost - Target RSSI 96.83
(94.94)

90.83
(87.71)

93.00
(91.90)

93.50
(89.52)

Target Cost - Target RSSI 98.50
(94.28)

95.16
(88.06)

97.37
(95.75)

99.00
(95.75)

Target RSSI - Current RSSI 96.00
(94.26)

97.00
(93.40)

98.87
(95.42)

99.00
(95.04)

Current RSSI - Target Cost 95.00
(92.19)

89.33
(85.27)

98.00
(94.34)

99.50
(98.08)

Current Cost - Current RSSI 97.00
(94.35)

97.16
(91.86)

98.87
(94.75)

99.16
(97.99)

Target Cost - Current Cost 74.16
(60.67)

74.16
(57.71)

94.50
(66.38)

98.33
(53.34)

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

690

On the other hand, the TL algorithm is computation as well as
space wise highly efficient, whereas SVM is prohibitively
complex. In addition, we demonstrated an application of the TL
algorithm to smart steering in wireless mesh networks, and
tested with the steering data from a previous study. In this
application, the task is to classify a steering action (i.e. a request
from a network client to switch from one connection to
another) as successful or not. Hence, a better connectivity
among all network clients can be realized overall. The TL
algorithm has been again observed to be significantly superior
over the previously reported results as it strongly outperforms
the perceptron trained in the kernel space.

As future work, we plan to compare the investigated approach
of Fourier feature learning with the alternative approach of
learning of the kernel parameter. Since the Fourier features are
directly a function of the kernel parameter through sampling;
in a neural network set-up, one can directly backpropagate to
the parameter to estimate its value based on a classification loss
(after an appropriate reparameterization). In this alternative,
the advantage is that the parameter complexity is small because
the kernel parameter is only a scalar (for instance, the
bandwidth of the rbf kernel). Whereas the learning of the
Fourier features requires the estimation of, 𝐷 𝑥 (𝑑 + 1) many,
far more parameters (with the rbf kernel), with 𝐷 being the
number of Fourier features and 𝑑 being the dimension. Despite
its advantage of reduced parameter complexity, learning of the
kernel parameter restricts the data modeling capability to the
specific kernel being used, which might be seen as a
disadvantage. Hence, a comparison to understand this trade-off
would be useful. Another important future research direction is
to fit an unisotropic Gaussian kernel to the data through the
learning of the Fourier features. Note that the sampling
distribution of the features is the inverse Fourier transform of
the kernel. Then, one can apply the forward Fourier transform
to the sample distribution of the features when the training
(Fourier feature learning) converges. Here, the forward
transform can model an unisotrotopic Gaussian kernel for the
data if the sample distribution of the features is Gaussian. As a
result, one can constrain the learning of the Fourier features
and ensure Gaussianity by, for example, using the Kullback-
Leibler divergence (in the loss function) between the sample
distribution and a Gauss distribution with zero mean and
sample covariance (at each step in training). The resulting
unisotropic Gauss kernel has the potential to provide useful
insights to modelling the manifold that the data lie in.

7 Acknowledgements
This work was supported by The Scientific and Technological
Research Council (TUBITAK) of Turkey under Contract
118E268.

8 Author contribution statement

This work was completed as a part of the MS thesis of the first
author Bulut KUŞKONMAZ, where the second author
Hüseyin ÖZKAN was the thesis advisor.

9 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared.

There is no conflict of interest with any person / institution in
the article prepared.

10 References

[1] Hofmann T, Schölkopf B, Smola AJ. “Kernel methods in
machine learning”. The Annals of Statistics,
36(3), 1171-1220, 2008.

[2] Cortes C, Vapnik V. “Support-vector networks”.
Machine Learning, 20(3), 273-297, 1995.

[3] Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio
T, Vapnik V. “Comparing support vector machines with
gaussian kernels to RBF classifiers”. IEEE Transactions on
Signal Processing, 45(11), 2758-2765, 1997.

[4] Jaakkola TS, Haussler D. “Probabilistic kernel regression
models”. Artificial Intelligence and Statistics, Ft.
Lauderdale, FL, USA, 3-6 January 1999.

[5] Kerpicci M, Ozkan H, Kozat SS. “Online anomaly detection
with bandwidth optimized hierarchical kernel density
estimators”. IEEE Transactions on Neural Networks and
Learning Systems, 32(9), 4253-4266, 2020.

[6] Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan
MI. “Learning the kernel matrix with semidefinite
programming”. Journal of Machine Learning
Research, 5(1), 27-72, 2004.

[7] Rahimi A, Recht B. “Random features for large-scale kernel
machines”. Neural Information Processing
Systems, Vancouver, B.C., Canada, 3-6 December 2007.

[8] Kuskonmaz B, Ozkan H, Gurbuz O. “Machine learning-
based smart steering for wireless mesh networks”.
Ad Hoc Networks, 88(1), 98-111, 2019.

[9] Lu J, Hoi SC, Wang J, Zhao P, Liu ZY. “Large scale online
kernel learning”. Journal of Machine Learning
Research, 17(1), 1613-1655, 2016.

[10] Băzăvan EG, Li F, Sminchisescu C. “Fourier kernel
learning”. European Conference on Computer Vision,
Berlin, Germany, 7-13 October 2012.

[11] Nguyen T, Le T, Bui H, Phung D. “Large-scale online kernel
learning with random feature reparameterization”.
International Joint Conferences on Artificial Intelligence,
Melbourne, Australia, 19-25 August 2017.

[12] Oliva JB, Dubey A, Wilson AG, Póczos B, Schneider J, Xing
EP. “Bayesian nonparametric kernel-learning”. Artificial
Intelligence and Statistics, Cadiz, Spain, 9-11 May 2016.

[13] Li CL, Chang WC, Mroueh Y, Yang Y, Póczos B. “Implicit
kernel learning”. Artificial Intelligence and Statistics,
Naha, Okinawa, Japan, 16-18 April 2019.

[14] Wang A, Law L, Miscouridou X, Mider M, Ip S. “Kernel
learning via random fourier representations”. Warwick
Statistics Programme, Oxford University, Oxford, England,
Reports and Presentations, 2016.

[15] Xie J, Liu F, Wang K, Huang X. “Deep kernel learning via
random fourier features”. arXiv Preprint, 2019.
https://doi.org/10.48550/arXiv.1910.02660.

[16] Xue H, Wu ZF, Sun WX. “Deep spectral kernel learning”.
International Joint Conferences on Artificial Intelligence,
Macao, China, 10-16 August 2019.

[17] Can B, Ozkan H. “A neural network approach for online
nonlinear neyman-pearson classification”. IEEE Access,
8(1), 210234-210250, 2020.

[18] Porikli F, Ozkan H. “Data driven frequency mapping for
computationally scalable object detection”. IEEE
International Conference on Advanced Video and Signal
Based Surveillance, Klagenfurt, Austria,
30 August–2 September 2011.

https://doi.org/10.48550/arXiv.1910.02660

Pamukkale Univ Muh Bilim Derg, 28(5), 681-691, 2022
B. Kuşkonmaz, H. Özkan

691

[19] Alpaydin E. Introduction to Machine Learning. 4th ed.
Cambridge, MA, USA, MIT Press, 2020.

[20] Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B. “An
Introduction to kernel-based learning algorithms”.
 IEEE Transactions on Neural Networks, 12(2), 181-201,
2001.

[21] Rudin W. Fourier Analysis on Groups. New York, USA,
Wiley, 2011.

[22] McClellan JH, Schafer RW, Yoder MA. Signal Processing
First. 1st ed. Upper Saddle River, NJ, USA, Pearson, 2003.

[23] Burges CJ. “A tutorial on support vector machines for
pattern recognition”. Data Mining and Knowledge
Discovery, 2(2), 121-167, 1998.

[24] Wright S. “Coordinate descent algorithms”. Mathematical
Programming, 151(1), 3-34, 2015.

[25] Chang CC, Lin CJ. “LIBSVM: A library for support vector
machines”. ACM Transactions on Intelligent Systems and
Technology, 2(3), 1-27, 2011.

