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Differential equations in general play major role in finding solutions to many problems 

in real life. These real-life problems are modeled by either ordinary differential equations 

(with uni-variate independent variable) or partial differential equations (with multi-

variate independent variables). The solution method adopted is determined by the nature 

of the differential equation. In this paper, the solution of an 𝑛𝑡ℎ order Ordinary 

Differential Equation (ODE) is considered. The power series and the conditions for its 

convergence or otherwise is examined. Also, the index shift in the summation is applied 

in the simplification of the resulting algebraic expression and with the introduction of 

the factorial notation, the number of operations required to solve the problem is 

minimized. The resulting model therefore simplifies the solution method without the 

rigour of index shit in the summands and algebraic manipulations of the expression 

obtained. This makes the model applicable to the solution of ordinary differential 

equation of any order 𝑛. The generalized model is thereafter applied to an ordinary 

differential equation of order seven without recourse to index shift. This simplified form 

gives the solution considered and a simple and generalized solution is obtained. 

 

1. Introduction 

The importance of Differential Equations in modeling real life problems arising from several areas of human 

endeavor ranging from science and technology to the humanities cannot be overemphasized. As such various 

solution methods have been proposed and applied in solving differential equations [1]. 

A differential equation with only one independent variable is called Ordinary Differential Equation (ODE) 

while one with at least two independent variables is called Partial Differential Equation (PDE).  

The solution methods applicable to ODEs with constant coefficients can be solved by means of algebraic 

methods. Such solutions can be expressed in terms of elementary functions such as trigonometric, exponential, 

or polynomial functions [2].  Solutions of ODEs with variable coefficients on the other hand can be obtained by 

other methods. These can be solved by other means and their solutions can be expressed in non-elementary 

functions. One of such methods is the power series method, which is equally applicable to the solution of 

Legendre’s and Bessel’s equations [3, 4, 5]. 
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2. Details 

Consider the Taylor series.    

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑥)

𝑛!
(𝑥 − 𝑥0)𝑛

∞

𝑛=0

                                                                                                                                    (1).  

                                                                                                                                                              

If there exist derivatives of all orders of  𝑓(𝑥)at 𝑥 = 𝑥0, then (1) defines the Taylor series about 𝑥 = 𝑥0. If 

however 𝑥 = 0, then (1) becomes a Maclaurin series [6, 7]. 

Again, let. 

𝑎𝑛 =
𝑓(𝑛)(𝑥)

𝑛!
                                                                                                                                                              (2), 

such that 

𝑓(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

                                                                                                                                      (3) 

then (1) is called power series where 𝑎𝑛 and 𝑥0 are numbers [3,8]. 

Let the 𝑛𝑡ℎ order homogenous linear differential equation be defined as  

𝑝0(𝑥)𝑦𝑛 + 𝑝1(𝑥)𝑦𝑛−1 + 𝑝2(𝑥)𝑦𝑛−2 + 𝑝3(𝑥)𝑦𝑛−3 + ⋯ + 𝑝𝑛(𝑥) = 0      [5] 

where  𝑝𝑛(𝑥),  𝑘 = 1(1)𝑛
 
are either polynomials or convergent power series about  𝑥 = 𝑥0, with no common 

polynomial divisor, then 𝑥 = 𝑥0 is called an ordinary point of   (1)  provided  𝑃(𝑥0) ≠ 0, and is called a singular 

point if 𝑝0(𝑥) = 0 [9]. 

Theorem: Let the sequence |
𝑎𝑛

𝑎𝑛+1
| , 𝑛 = 1,2,3, ⋯  converge with limit 𝐿∗ and let 𝑅 be the radius of convergence. 

If: 

i.  𝐿∗ = 0 then 𝑅 = ∞ that is (1) converges for all 𝑥.  

ii.  𝐿∗ ≠ 0 (i.e., 𝐿∗ > 0) then  𝑅 =
1

𝐿∗ =
𝑎𝑛

𝑎𝑛+1
   

iii.  |
𝑎𝑛

𝑎𝑛+1
| → ∞, then 𝑅 = 0 (convergence is only at 𝑥0)  [10]. 

 

Theorem: The power series (1) is said to be convergent if there exists 0 ≤ 𝜌 ≤ ∞ called the radius of 

convergence such that |𝑥 − 𝑥0| < 𝜌.  

 

Also, the convergence or otherwise of series (1) can be determined by the ratio test, that is, 

𝐿 = |𝑥 − 𝑥0| lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
                                                                                                                                                (4)  

 

That is the given a power series (2) converges if 𝐿 < 1, diverges if 𝐿 > 1 and may or may not converge if 𝐿 = 1 

Theorem: The power series (2.3) has a positive radius of convergence [3, 7]. 
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2.1. Shift of Summation Index in Power Series 

Repeatedly differentiating the power series (1) yields  

𝑓′(𝑥) = ∑ 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1                                                                                                                                   (5) 

∞

𝑛=0

 

 

𝑓′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2

∞

𝑛=0

                                                                                                                    (6) 

𝑓′′′(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2)𝑎𝑛(𝑥 − 𝑥0)𝑛−3                                                                                                    (7)

∞

𝑛=0

 

                                                ⋮                    

𝑓(𝑘)(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2) ⋯ (𝑛 − 𝑘 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘

∞

𝑛=0

     [3 − 5]                                                   (8) 

 

                   

But 𝑛 cannot take on the values of 0, 1, 2, …, 𝑛 − 𝑘 + 1 respectively in the above, hence the summation indices 

are shifted, thus. 

𝑓′(𝑥) = ∑ 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1 

∞

𝑛=1

                                                                                                                                  (9) 

 

𝑓′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2

∞

𝑛=2

                                                                                                                    (10) 

𝑓′′′(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2)𝑎𝑛(𝑥 − 𝑥0)𝑛−3  

∞

𝑛=3

                                                                                                 (11) 

                                                ⋮                    

𝑓(𝑘)(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2) ⋯ (𝑛 − 𝑘 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘                                                                       (12)

∞

𝑛=𝑘

 

 

But (2.3) can be written as  

𝑓(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

 = ∑
𝑛!

(𝑛 − 0)!
𝑎𝑛(𝑥 − 𝑥0)𝑛 

∞

𝑛=0

                                                                                   (13) 
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𝑓′(𝑥) = ∑ 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1   

∞

𝑛=1

 = ∑
𝑛!

(𝑛 − 1)!
𝑎𝑛(𝑥 − 𝑥0)𝑛−1  

∞

𝑛=1

                                                                    (14) 

 

 

𝑓′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2   

∞

𝑛=2

   = ∑
𝑛!

(𝑛 − 2)!
𝑎𝑛(𝑥 − 𝑥0)𝑛−2              

∞

𝑛=2

                                      (15) 

 

 

𝑓′′′(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2)𝑎𝑛(𝑥 − 𝑥0)𝑛−3

∞

𝑛=3

 = ∑
𝑛!

(𝑛 − 3)!
𝑎𝑛(𝑥 − 𝑥0)𝑛−3              

∞

𝑛=3

                           (16)  

 

               ⋮                  

𝑓(𝑘)(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2) ⋯ (𝑛 − 𝑘 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘

∞

𝑛=𝑘

= ∑
𝑛!

(𝑛 − 𝑘)!
𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘   

∞

𝑛=𝑘

 (17)   

                                                

2.2. The Factorial Notation and Index Change 

Now, suppose. 

𝑓(𝑥) = (𝑥 − 𝑥0)𝑐 ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

                                                                                                                       (18) 

is expressed as 

𝑓(𝑥) = ∑ 𝑎𝑛

𝑛!

(𝑛 − 0)!
(𝑥 − 𝑥0)𝑛+𝑐

∞

𝑛=0

                                                                                                          (19) 

Then the successive derivatives of   f x
 
will be  

                    

         𝑓′(𝑥) = ∑ 𝑎𝑛

𝑛!

(𝑛 − 1)!
(𝑥 − 𝑥0)𝑛+𝑐−1  

∞

𝑛=1

                                                                                                    (20) 

 

𝑓′′(𝑥) = ∑ 𝑎𝑛

𝑛!

(𝑛 − 2)!
(𝑥 − 𝑥0)𝑛+𝑐−2  

∞

𝑛=2

                                                                                                   (21) 

𝑓′′′(𝑥) = ∑ 𝑎𝑛
𝑛!

(𝑛−3)!
(𝑥 − 𝑥0)𝑛+𝑐−3                                                                                                       (22)∞

𝑛=3      
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𝑓(𝑘)(𝑥) = ∑
𝑛!

(𝑛 − 𝑘)!
𝑎𝑛(𝑥 − 𝑥0)𝑛+𝑐−𝑘   

∞

𝑛=𝑘

                                                                                                 (23) 

                

𝑘 = 5 

𝑦(5)(𝑥) = ∑
(𝑛 + 5)!

𝑛!
𝑎𝑛+5𝑥𝑛  

∞

𝑛=0

 

                 

𝑦(5)(𝑥) = ∑
(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑛!

𝑛!
𝑎𝑛+5𝑥𝑛  

∞

𝑛=0

 

               = ∑(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+5𝑥𝑛  

∞

𝑛=0

 

 

From the given example                  

∑(𝑛 + 7)(𝑛 + 6)(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+7𝑥𝑛

∞

𝑛=0

− ∑(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+5𝑥𝑛  

∞

𝑛=0

= 0   

∑{(𝑛 + 7)(𝑛 + 6)(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+7

∞

𝑛=0

− (𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+5}𝑥𝑛 = 0   

 

Since 𝑥𝑛 ≠ 0, then  

 

(𝑛 + 7)(𝑛 + 6)(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+7 − (𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+5

= 0 

 

             

(𝑛 + 7)(𝑛 + 6)(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+7 = (𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+5 

𝑎𝑛+7 =
1

(𝑛 + 7)(𝑛 + 6)
𝑎𝑛+5 

                

𝑛 = 0:  𝑎7 =
1

(7)(6)
𝑎5 
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𝑛 = 1:  𝑎8 =
1

(8)(7)
𝑎6 

𝑛 = 2:  𝑎9 =
1

(9)(8)
𝑎7 =

1

(9)(8)(7)(6)
𝑎5 

𝑛 = 3:  𝑎10 =
1

(10)(9)
𝑎8 =

1

(10)(9)(8)(7)
𝑎6 

𝑛 = 4:  𝑎11 =
1

(11)(10)
𝑎9 =

1

(11)(10)(9)(8)(7)(6)
𝑎5 

𝑛 = 5:  𝑎12 =
1

(12)(11)
𝑎10 =

1

(12)(11)(10)(9)(8)(7)
𝑎6 

𝑛 = 6:  𝑎13 =
1

(13)(12)
𝑎11 =

1

(13)(12)(11)(10)(9)(8)(7)(6)
𝑎5 

𝑛 = 7:  𝑎14 =
1

(14)(13)
𝑎12 =

1

(14)(13)(12)(11)(10)(9)(8)(7)
𝑎6 

 

𝑛 = 8:  𝑎15 =
1

(15)(14)
𝑎13 =

1

(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)
𝑎5 

 

𝑎2𝑘+5 =
5!

(2𝑘 + 5)!
𝑎5 

 

𝑎2𝑘+6 =
6!

(2𝑘 + 6)!
𝑎6 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ +
5!

(2𝑘 + 5)!
𝑎5𝑥2𝑘+5 +

6!

(2𝑘 + 6)!
𝑎6𝑥2𝑘+6 + ⋯ 

 

3. Conclusions 

In this paper, we have discussed the solution of ODE about a singular point. The power series was employed with 

its associated and the conditions for convergence. The index shift in the summation enabled the simplification of 

the algebraic expression obtained via the factorial notation. This in turn reduced the required number of 

operations in the solution of the problem. In other words, the model simplified the solution method without 

recourse to index shit and further simplifying the expression obtained.  

 While most illustrative examples have been limited to problems of first, second and third orders, we have 

proposed a generalized model for all order problems which eliminates index shift.  

 The model can be applied in solving ordinary differential equation of any order 𝑛. The application of the 

generalized model to an ordinary differential equation of order seven and the result obtained, without necessarily 

shifting the index makes the model a robust one with reduced computational steps. Thus, for an ODE of any 

order. This therefore simplifies solution method of any order of a homogenous linear ODE. 
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