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Introduction 

Dementia is an age-related neurological disease and gives 

rise to profound cognitive decline in daily routine. It 

ultimately causes death owing to inadequate health care 

service and symptom attenuating medications [1]. It has 

been reported that 47 million patients are suffering from 

dementia in worldwide and number of patients is 

approximated as 131.3 million by 2050.Moreover, the 

global healthcare expenses of dementia accounts for 818 

billion USD per year, and this cost is continuously 

increasing [2]. Early diagnosis may decrease this treatment 

cost. Alzheimer’s Disease (AD) is the progression of 

dementia and AD patients generally have memory loss, 

behavioral disorders and even there is noticeably change in 

their shape and size of brain compared to controls [3]. 

Neurofibrillary tangles and amyloid plaques in the cerebral 

cortex are some of anatomical reasons behind AD. It is 

possible to determine the stage of dementia by evaluating 

biomarkers obtained from patients, but this process is 

expensive, invasive and requires more expertise and 

specialized centers [4]. Electroencephalography (EEG) has 

gained popularity for brain monitoring system due to its cost 

effective, non-invasive implementation, and higher time 

resolution [5]. The distinctive  effects of dementia of human 

brain are assumed as follows: decreased complexity, 

slowing EEG fluctuation, and reduced synchronization in 

EEG dynamics [6]. In other words, dementia causes less 

neurons interacting each other, lower cortical connection, 

and higher linearity in EEG behaviors. In addition, EEG 

shows lower amplitude in fast frequencies, and higher 

amplitude in slow frequencies [7]. It can be deduced that 

EEG’s amplitude itself gives clues for content of data. It is 

crucial to develop an automated detection system learning 

from data samples without any feature engineering, and 

non-linear analysis.  

We can collect feature engineering under 4 sub-sections in 

terms of EEG: time domain features, frequency domain 

features (obtained from Fourier and Wavelet analysis), 

spatial features (2D topographical maps), and connectivity 

values calculated between different electrodes. EEG serves 

high time resolution, and we can directly utilize raw time 

series  records as input vectors of machine learning 

methods. Deep architectures have become the frontiers 

approach for establishing diagnostic models based on 

neurological data. Data from different participant groups 

feed networks as input sets to train an automated deep 

architecture.  
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ABSTRACT 

 
Dementia is an age-related neurological disease and gives rise to profound cognitive decline in patients’  

life. Alzheimer’s Disease (AD) is the progression of dementia and AD patients generally have memory 
loss and behavioral disorders. It is possible to determine the stage of dementia by developing automated 

systems via. signals obtained from patients. EEG is a popular brain monitoring system due to its cost 

effective, non-invasive implementation, and higher time resolution. In current study, we include 
participants of 24 HC (12 eyes open (EO), 12 eyes closed (EC)), and 24 AD (HC (12 eyes open (EO), 12 

eyes closed (EC)). The aim of current study is to design a practical AD detection tool for AD/HC 

participants with a model called DWT-CNN. We performed Discrete Wavelet Transform (DWT) to extract 
EEG sub-bands. A Conv2D architecture is applied to raw samples of related EEG sub-bands. According 

to obtained performance metrics calculated from confusion matrices, all AD and HC time series are 

correctly classified for alpha band and full band range under both EO and EC. Classification rate of AD 
vs. HC increases under EO state in all cases even if EC is commonly preferred in other studies. We will 

add MCI patients with equal size and similar demographics and repeat the experimental steps to develop 

early alert system in future studies. Adding more participants will also increase generalization ability of 
method. It is also promising study to combine EEG with different modalities (2D TF image conversion, 
or MRI) in a multimodal approach.  
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Many studies have performed binary, and multi-way 

classification to develop a diagnostic tool for dementia. Bi 

and Wang (2019) extracted 2D colored spectral 

topographical maps including 4 Healthy Conditions (HC), 

4 Mild Cognitive Impairment (MCI), and 4 AD [8]. MCI is  

conversion stage from HC to AD, and it is crucial to include 

MCI patients in experiments. They proposed Spike 

Convolutional Deep Boltzmann Machine as machine 

learning architecture and obtained 95% acc. for 3-way 

classification. Kim and Kim (2018) calculated Relative 

Power features from 10 MCI patients with 10 HC and 

implemented Deep Neural Network with 4 hidden layer [9]. 

They achieved 75% acc. for MCI vs. HC classification task. 

Ieracitano et al.(2019) used 2D grayscale Periodogram 

images as input sets for CNN with 1 hidden layer [10]. They 

collected dataset from 63 AD, 63 MCI with same number 

of HCs. They performed 2-way (AD vs. HC: 91% , AD vs. 

MCI: 84% , MCI vs. HC : 92%), and multi-class method 

(AD vs. MCI vs. HC: 80%) in acc. Morabito et al. (2016) 

carried out an experiment including 23 HC, 23 MCI, and 23 

AD patients and calculated 2D RGB images of Mexican Hat 

Continuous Wavelet Transform (CWT). They implemented 

CNN with 2 hidden layers and obtained 82% acc. for 3-way 

classification. Zhao and He (2015) used raw data of 15 HC 

and 15 AD participants via. Restricted Boltzmann Machine 

with 3 hidden layers and achieved 92% acc. for AD vs. HC 

[11].  J Huggins et al. (2021) calculated 2D RGB Scalogram 

images of 52 HC, 37 MCI and 52 AD patients with Alex-

Net architecture [12]. They yielded 95.51% acc. for 3-way 

classification. Alvi et al. also used raw EEG data directly to 

the input of Long-Short Term Memory (LSTM), Gated 

Recurrent Units (GRU), k-Nearest Neighbors (k-NN), and 

Support Vector Machines (SVM) classifier, and obtained 

highest acc. of 95.51% with GRU [13].  In recent study, we 

include participants of 24 HC (12 eyes open (EO), 12 eyes 

closed (EC)), and 24 AD (HC (12 eyes open (EO), 12 eyes 

closed (EC)). We implemented Discrete Wavelet 

Transform (DWT) to extract EEG Sub-bands. A Conv2D 

architecture is applied to raw samples of related EEG sub-

bands. We also consider the effects of eye states on 

discrimination of AD from HC samples. The aim of current 

study is to design a practical AD detection tool for AD/HC 

participants with a model called DWT-CNN. We combined 

both eyes’ states to consider the effects on performance 

metrics within a binary classification task.  

The rest of the paper is organized as follows: In material 

and methods section, we describe dataset, pre-processing 

protocol, and DWT-CNN architecture. We describe 

parameters in proposed network. In Results and Discussion 

section, all related outcomes are given based on 

illustrations. Study is concluded with conclusion and future 

work section.  

 

 

 

 

 

Materials and Methods 

In this section, dataset description, pre-processed steps to 

construct input tensors, evaluation of method, proposed 

deep learning architecture, and calculated performance 

metrics are given. The overall steps followed in proposed 

study is given in Fig. 1. Input tensors of time series data are 

created in MATLAB R2021a and stored. The rest of 

implementation is performed in Spyder (Python 3.9.) with 

a workstation including 32 GB RAM and 12 GB VRAM 

NVIDIA GeForce RTX 3060 GPU.  

Dataset 

The dataset was acquired by researcher at Florida state 

University from 19 electrodes 

(𝐹𝑝1, 𝐹𝑝2, 𝐹𝑧, 𝐹3, 𝐹4, 𝐹7, 𝐹8, 𝐶𝑧 , 𝐶3, 𝐶4, 𝑇3, 𝑇4, 𝑃𝑧 , 𝑃3, 𝑃4, 𝑇5, 𝑇6, 

 𝑂1,  𝑎𝑛𝑑 𝑂2 ) using international 10-20 replacement. 

Dataset divides into 4 sub-groups: A (HC, EO), B (HC, EC), 

C (AD, EO), and D (AD, EC). Groups A, and B include 24 

HC participants (average age 72, range 61-83) and groups 

C and D have 24 AD patients (average age 69, range 53-

85). Each participant has 8 s length of EEG segment, band 

range of record is 1-30 Hz, and sampling frequency 𝑓𝑠 = 128 

Hz. Detailed explanation of dataset can be found in [14].  

Discrete Wavelet Transform 

Wavelet Transform (WT) is widely used for time-frequency 

analysis of biomedical signals and serves practical solutions 

especially due to EEGs non-stationary, and non-linear 

behaviors. WT used narrow window functions for high 

frequencies and wider windows for lower frequencies. 

Discrete Wavelet Transform uses low pass (h(n)) and high 

pass (g(n)) filter pairs for down-sampling process of time 

series. Approximate (A) and detail (D) are obtained after 

each down-sampling to obtain low and high frequency 

components respectively. Same process continues until 

reaching out desired frequency level. Low pass, and high 

pass filtering process is given as follows: 

φ𝑗, 𝑘(𝑛) = 2𝑗/2ℎ(2𝑗𝑛 − 𝑘)     (1) 

φ𝑗, 𝑘(𝑛) = 2𝑗/2ℎ(2𝑗𝑛 − 𝑘)     (2) 

,in which 𝑛 = 0, 1, 2, … , 𝑀 − 1; 𝑗 = 0, 1, 2, … , 𝐽 − 1; 𝑘 =
0, 1, 2, . . . , 2𝑗 − 1; 𝐽 = 𝑙𝑜𝑔2

𝑀, and M is length of the signal. 

Approximate  𝐴𝑖 and detail 𝐷𝑖  coefficients can be expressed 

as follows: 

Ai =
1

√𝑀
∑ 𝑥(𝑛)𝑛 × φj, k(n)        (3) 

Di =
1

√𝑀
∑ 𝑥(𝑛)𝑛 × 𝜓j, k(n)       (4) 

, in which 𝑘 = 0, 1, 2, … . , 2𝑗 − 1 ,and M is length of 

discrete EEG time series.  In current study, 4𝑡ℎ level DWT 

with ‘db2’ is used to obtain delta (< 4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), and beta (13-30 Hz).   
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Figure 1. Steps followed in proposed methodology
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Welch’s Method for Power Spectrum Density 

Visualization 

Welch’s method estimates the power spectrum density 

(PSD) of a given signal using overlapped segment 

averaging estimator. Every segments are windowed with 

window function. PSD estimation is achieved by averaging 

modified periodograms[15] . 𝑖𝑡ℎ periodogram of a given 

x(n) is express as: 

𝑆𝑥𝑥
(𝑖)

(𝑓) =
𝑇𝑠

𝐾.𝑀
|∑ 𝑥𝑖(𝑛)𝑤(𝑛)𝑒−𝑗2𝜋𝑓𝑛𝑀−1

𝑛=0 |
2
 (5) 

, in which f is normalized frequency, w(n) is window 

function,𝑇𝑠 is sampling coefficient. Normalization constant 

K is defined as: 

=
1

𝑀
∑ 𝑤2(𝑛)𝑀−1

𝑛=0      (6) 

To sum up, we calculated 𝑖𝑡ℎ PSD of a signal x(n) as: 

𝑃𝑤𝑒𝑙𝑐ℎ(𝑓) =
1

𝐿
∑ 𝑆𝑥𝑥

(𝑖)
(𝑓)𝐿−1

𝑖=0     (7) 

, where L refers to lenght of time signal. 

 In this study, we estimate PSD of EEG sub-bands using 

‘Hann’ window with 50% overlapping. Length of window 

function is selected as 512. We picked up and combined 

central, temporal, parietal, and occipital electrodes from a 

randomly selected participant from each class. We excluded 

frontal electrodes to avoid redundant noises due to eye 

movements.  

Preparing Input Tensors, and train-test split 

In each class of A, B, C, and D, we equally have 12 

participants. Each participants have 8 s record for each of 

19 channel. We totally have 12x1024x19 data samples for 

each class. 1024 length of sample are converted into 

squared matrices 32x32. Afterwards, each class has 

12x19x32x32x1 input tensors. Z-score transform is finally 

applied to combination of 2 class for data normalization (i.e. 

data distribution of each column has mean 0 and standard 

deviation 1). For the validation and evaluation step, we 

initially divide input data as 80% training and 20% test set. 

Then, 20% of remaining training set is determined as 

validation set.  

Conv2D as Deep Learning Architecture 

CNN performs for both feature extraction and classification 

task simultaneously. Features extracted from raw data 

automatically using convolution stage, activation function 

and pooling layers, and classification task is performed via. 

a fully connected multi-layer neural network. Convolution 

operation uses the kernels (i.e. filters) and expressed as: 

 

 

 

 

 

𝑌𝑗 = ∑ 𝑋𝑖 ∗ 𝐾𝑗 + 𝐵𝑗      (8) 

, in which 𝐵𝑗  refers to bias and * corresponds for 

convolution operation. Local region 𝑋𝑖 convolves with 𝑗𝑡ℎ 

filter and it shifts over all input tensor with stride s. We 

obtain a feature map 𝑌𝑗 with size of 𝑦1 and 𝑦2,expressed as: 

𝑦1,2 =
ℎ−𝑘1,2+2 𝑥 𝑝

𝑠
+ 1     (9) 

, where p is zero padding parameter. An activation function, 

generally sigmoid or hyperbolic tangent preferred, is used 

for nonlinear transfer function. ‘ReLu’ has gained 

popularity due to its better performance for generalization 

and learning time in CNN architecture. In order to reduce 

the resolution of input feature vectors, pooling layers haven 

been utilized. It is important to capture invariant features by 

using pooling layer. Max-pooling is an effective sub-

sampling operator to increase generalization performance 

and capture important features. Fully connected layer has 

neurons connected to every unit of previous layers and size 

of last layer is equal to number of current classes [16].  

The proposed architecture of Conv2D is given in Fig. 3. In 

current study, we implemented 2 convolutional layer + 

‘relu’ with 3x3 filters and number of 64 neurons. 2x2 max 

pooling is used to capture distinct feature and reduce 

dimension of feature maps. 2 dense layer  (64,32) is coming 

after feature extractor layer and drop out (0.3) is added after 

dense layers. ‘binary_crossentropy’ is selected as loss 

function. We have trained the Conv2D architecture along 

100 epochs for classification of AD and HC EEGs. 

Evaluation of Performance Metrics 

We evaluated many performance metrics estimated from 

confusion matrices. Accuracy, sensitivity (recall), 

specificity, precision, and f1-score are calculated for 

classification purpose. In an ideal classifier, FP and FN 

should be zero. Moreover, precision and recall values needs 

to be one. F1-score is a metric that takes precision and recall 

into account and show trustworthy results. Formulas of 

performance metrics are given as given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (10) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (12) 

 

𝐹1 − 𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (13) 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2. Samples of 8 s EEG records and their (0-30 Hz) PSDs belong to randomly selected participants from (a) HC with 

EC (b) HC with EO (c) AD with EC and (d) AD with EO classes  
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Figure 3. Architectural summary of proposed Conv2D model 
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Table 1. Train/validation accuracy, loss plots along 100 epochs and related confusion matrices for EEG sub-bands and full 

band range under different eyes states 

  Train/validation accuracy Train/validation loss Confusion matrices 
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Table 2. Performance metrics for classification of AD vs. HC participants for EEG sub-bands and full band range under 

different eyes states 

EEG 

Sub-bands 

Eye 

Conditions 

Participants Accuracy Precision Recall F1-score 

 

Delta 

EC HC 0.99 0.97 1 0.99 

AD 0.99 1 0.97 0.99 

EO HC 1 1 1 1 

AD 1 1 1 1 

 

Theta 

EC HC 0.96 0.97 0.94 0.96 

AD 0.96 0.95 0.97 0.96 

EO HC 1 1 1 1 

AD 1 1 1 1 

 

Alpha 

EC HC 1 1 1 1 

AD 1 1 1 1 

EO HC 1 1 1 1 

AD 1 1 1 1 

 

Beta 

EC HC 0.99 0.97 1 0.99 

AD 0.99 1 0.97 0.99 

EO HC 1 1 1 1 

AD 1 1 1 1 

 

Full Band 

Range 

EC HC 0.99 1 0.97 0.99 

AD 0.99 0.97 1 0.99 

EO HC 1 1 1 1 

AD 1 1 1 1 
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Table 3. Literature studies for AD detection based on deep learning architectures 

 

Authors Dataset Extracted  

features 

Machine Learning 

Architecture 

Achieved 

Results (accuracy%) 

Bi and Wang 

(2019) [8] 

4 HC, 4 MCI, 

and 4 AD 

2 D RGB spectral 

topographical maps 

Spike 

Convolutional 

Deep Boltzmann  

machine 

AD vs. MCI vs. HC: 95% 

Kim and Kim 

(2018) [9] 

10 HC, 10 MCI Features from 

Relative Power 

Deep Neural 

Network 

With 4 hidden layer 

MCI vs. HC: 75% 

Ieracitano et a. 

(2019) [10] 

63 HC, 63 MCI, 

And 63 AD 

2D grayscale 

Periodogram  

images 

CNN with 1  

Hidden layer 

AD vs. HC: 91% 

AD vs. MCI: 84% 

MCI vs. HC: 92% 

AD vs. MCI vs. HC: 80% 

Morabito et al. 

(2016) 

23 HC, 23 MCI, 

And 23 AD 

2D RGB images of 

Mexican Hat CWT 

CNN with 2 hidden  

layer 

AD vs. HC: 85% 

AD vs. MCI: 78% 

MCI vs. HC: 85% 

AD vs. MCI vs. HC: 82% 

Zhao and 

He (2015) [11] 

15 HC, 15 AD Raw Data Restricted 

Boltzmann 

Machine with 3 

hidden layers 

AD vs. HC: 92% 

J Huggins et al. 

(2021) [12] 

52 HC, 37 MCI, and 

52 AD 

2 D RGB of 

Scalogram images 

AlexNet AD vs. MCI vs. HC: 98.9% 

Alvi et al. 2022 

[13] 

16 HC, 11 MCI Raw EEG Data LSTM, GRU, k-

NN 

SVM 

MCI vs. HC: 95.51% 

Current study 24 HC (12 EO, 12 

EC); 24 AD (12 EO, 

1 EC) 

Raw EEG Sub-

bands 

2D CNN AD vs. HC: 100% for both 

EO and EC in alpha band 

 

Results and Discussion 

In Fig. 2., amplitudes of 8s  EEG samples and their PSDs 

with respect to time and frequency are given. These are the 

samples of randomly selected subjects from class of A (HC 

with EO), B (HC with EC), C (AD with EO), and D (AD 

with EC). Amplitudes of EEGs are set in range of [-50, 50] 

µV and Amplitudes of PSDs are between [0-150] µ𝑉2. It is 

very difficult to differentiate ADs and HCs by only 

observing time series samples. It can be clearly seen that 

there is an increased alpha band effect during EC. This 

finding is compatible with previous findings [17]. 

Amplitude range of HC condition under EC and EO is wider 

in comparison with ADs. EEG patterns are so repetitive and 

changed in a narrowed in for AD patients. Amplitude of 

PSDs belong to EC is higher regarding EO.  It is easily 

deduced that linearity is distinctively increased for AD 

patients. Amplitude of EEG has potential to classify ADs 

and HCs without any conversion stage and feature 

engineering. We only apply DWT to EEGs to investigate 

frequency specific observations.  

Train/validation accuracies and train/validation losses are 

given with confusion matrices in Table 1 for all EEG sub-

bands, and full band range under EC and EO conditions. 

Validation losses are so stable along 100 epoch for EO 

condition. Losses are suddenly increases and more 

fluctuations are observed for EC. Validation accuracy is 

lower in comparison with training accuracy in most cases 

of EC. Discrimination rate of AD vs. HC increases under 

EO state in all cases. Most of the studies based on AD 

detection are included subjects with EC because EC states 

prevents possible eyes blinks and ocular noises. In addition 

to this advantageous case, alpha activity is increased during 

EC and authors in [17] stated that epoch with less alpha 

effect increases the discrimination of mild Alzheimer’s.   In 

current study, according to obtained performance metrics 

calculated from confusion matrices, all AD and HC time 

series are correctly classified for Alpha band and full band 

range under both eyes’ state.  

Table 3 summarizes binary and 3-way deep learning-based 

studies for detection of AD via. different perspective. All 

studies include equal size of participant class to balance 

sample size. Some of the studies have MCI, a conversion 

stage between HC and progression of dementia AD, for 

early detection purpose. Most of the studies proposed a 2D 

conversion method from 1D EEG time series to colored, or 

grayscale spectral maps for feature extraction. Very few 

studies processed with extracting direct features or using 

raw EEG itself. CNN, spike convolutional networks, pre-

defined deep architectures (i.e. AlexNet) for 2D input 

arrays, and CNN is considered as most popular deep 
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learning-based approaches with different architectural 

structures. For binary approach using AD and HC 

participant, highest accuracy of 92% is obtained via. 

applying Restricted Bolzman Machine to raw EEG data 

[11]. We correctly discriminate  all AD and HC instances 

with 100% accuracy by applying raw EEG inputs to 2 

layered- CNN network. 8 s records are converted 32x32x1 

squared input tensors to feed deep architecture.  None of the 

literature studies in Table 3. reported any deduction and 

results to observe effects of different eyes states on AD 

detection. We put forward that EO state increases 

classification rate of AD vs. HC. Miraglia et al. (2016) 

suggest that eyes open state may reflect better the cortical 

impairment as well as information processing rather than 

eyes closed [18]. Authors in suggest eyes-closed EEG state 

with epochs including less alpha activity works better for 

diagnosis of AD [19]. 

There have been many methods for pre-processing step 

such as notch filtering, band pass filter, value normalization 

to [0-1], and artifact removal methods such as independent 

component analysis, visual inspection , blind source 

separation, baseline correction, and so on [20]. We believe 

that z-normalization is also a  crucial pre-processing step 

before classification stage. z-normalization eliminates 

outliers coming from different classes and make an 

alignment in data distribution. Moreover, DWT maintains 

user an effective artifact handling using its low pass, and 

high pass filter pairs.  

Conclusion 

In current study, DWT-CNN approach is applied for 

classification of AD and HC EEG records. 4th level DWT 

with ‘db2’ is applied to obtain EEG sub-bands. We have 

processed 8 s artifact free raw EEG segments via. 19 

electrodes and constructed 12x19x32x32x1 input tensors 

for each of HC with EO, HC with EC, AD with EO and AD 

with EC states. Z-core normalization is applied to eliminate 

outliers coming from AD and HC classes and set data 

distribution with mean 0 and standard deviation 1.  2-

layered CNN is used as machine learning architecture. 

According to performance metrics, all AD and HC time 

series are correctly classified for alpha band and full band 

range for both EO and EC state. Classification rate of AD 

vs. HC increases under EO state in all cases. 

Drawbacks of current study are assumed as follows: 

including MCI patients may help to develop an early 

detection of dementia with handling MCI vs. AD, or MCI 

vs. all classification task. We will add MCI patients with 

equal size and similar demographics and repeat the 

experimental steps in future studies. Generalization ability 

of current approach may also increase within increasing 

number of participants. Combining 2D TF RGB images 

with raw EEG time series tensors in a multimodal learning 

approach is also potential work for further research. In a 

similar point of view, it is also promising study to combine 

EEG and MRI images as input sets for classifier. Moreover, 

a hyperparameter optimization task can be carried out via. 

alternative deep networks (transfer learning with pre-

trained networks, CNN-LSTM hybrid architectures, etc.) in 

upcoming studies.  
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